
Research Article
Real-Time Vehicle Trajectory Prediction for Traffic Conflict
Detection at Unsignalized Intersections

Qianxia Cao ,1 Zhongxing Zhao ,2 Qiaoqiong Zeng ,2 Zhengwu Wang ,2

and Kejun Long 3

1Key Laboratory of Highway Engineering of Ministry of Education, Changsha University of Science and Technology,
Changsha 410114, China
2School of Traffic & Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China
3Hunan Key Laboratory of Smart Roadway and Cooperative Vehicle-Infrastructure Systems,
Changsha University of Science and Technology, Changsha 410114, China

Correspondence should be addressed to Qianxia Cao; qianxiacao@gmail.com

Received 9 September 2021; Accepted 1 December 2021; Published 20 December 2021

Academic Editor: Xinqiang Chen

Copyright © 2021 Qianxia Cao et al. 'is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Real-time prediction of vehicle trajectory at unsignalized intersections is important for real-time traffic conflict detection and early
warning to improve traffic safety at unsignalized intersections. In this study, we propose a robust real-time predictionmethod for turning
movements and vehicle trajectories using deep neural networks. Firstly, a vision-based vehicle trajectory extraction system is developed
to collect vehicle trajectories and their left-turn, go straight, and right-turn labels to train turning recognition models and multilayer
LSTM deep neural networks for the prediction task. 'en, when performing vehicle trajectory prediction, we propose the vehicle
heading angle change trendmethod to recognize the futuremove of the target vehicle to turn left, go straight, and turn right based on the
trajectory data characteristics of the target vehicle before passing the stop line. Finally, we use the trained multilayer LSTM models of
turning left, going straight, and turning right to predict the trajectory of the target vehicle through the intersection. Based on the
TensorFlow-GPU platform, we use Yolov5-DeepSort to automatically extract vehicle trajectory data at unsignalized intersections. 'e
experimental results show that the proposed method performs well and has a good performance in both speed and accuracy evaluation.

1. Introduction

At unsignalized intersections, the traffic volume is small and
there is no traffic signal control. Conflicts between traffic
flows at unsignalized intersections cannot be effectively
separated in time and space, leading to traffic safety issues
that cannot be ignored. By judging the conflict points be-
tween vehicles in advance and prompting the driver to take
measures to avoid risks, the safety level of unsignalized
intersections can be effectively improved. Vehicle trajectory
prediction is an important part of realizing conflict warning.
Based on the predicted trajectory’s arrival time to collision
(TTC), postencroachment time (PET), gap time (GT), and
other parameters, the position of the conflict point that
exceeds the safety threshold can be extracted to determine
the risk of the conflict point, and then the conflict warning
can be carried out.

Currently, relevant scholars are mostly working on
methods for predicting vehicle trajectories in autonomous
driving scenarios. 'e main methods of vehicle trajectory
prediction in the autonomous driving environment are
divided intomethods based on physical models andmethods
based on trajectory data. 'e methods based on physical
models take motion as the starting point and construct
dynamic or kinematic models based on expert knowledge
[1–3]. In [1], the maximum curvature of the trajectory and
the obstacle avoidance path planner based on the parameter
cubic Bezier curve are defined. Pool et al. developed a
motion mixture model through probabilistic filters for cy-
clist path prediction and used the local road topology to
obtain a better prediction distribution [2]. Xie et al. used the
lane line curvature as a constraint to predict the trajectory of
the vehicle in the next few seconds by the constructed cubic
Bezier curves while combining the vehicle state information
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and applying the constant turn rate and acceleration model
(CTRA model) to form a weighting function to filter the
best-predicted trajectory [3].

'e methods based on trajectory data use deep learning
or nondeep learning to analyze large amounts of historical
data and to make trajectory predictions. Nondeep learning
algorithms include implicit Markov models, regression
models, Kalman filters, and Gaussian processes. 'e ex-
tended Kalman filter (EKF) [4] and Monte Carlo are proven
to have good accuracy in short-term trajectory prediction.
For example, Kawasaki and Tasaki proposed an intersection
turning vehicle trajectory prediction method [5]. 'e speed
and intersection geometry are considered, and the vehicle
speed is assumed to be minimized before crossing the
crosswalk. Finally, the ideal speed model is combined with
the extended Kalman filter to predict the future vehicle
position in multiple steps.

'e rapid development of deep learning in recent years
has brought new ideas to trajectory prediction. Recurrent
neural networks (RNNs), long short-term memory (LSTM),
and gated recurrent units (GRUs) have been successfully
applied in time-series data analysis. In terms of deep learning
model selection, many scholars have proposed unique deep
learning algorithms based on application scenarios. Some
scholars use the RNN to predict vehicle trajectory data [6].
However, the RNN structure cannot remember the long-term
information state, and the gradient disappears or the gradient
explodes during reverse training, making the network lose its
learning ability. LSTM can better avoid these problems, so it is
more popular. For example, Chen et al. proposed a vehicle
trajectory prediction model based on the LSTM enco-
der–decoder [7]. 'e model uses three layers of different
LSTMs to capture the information of spatial, temporal, and
trajectory data. 'e information is spliced into the entire
context vector, and finally, the trajectory is predicted by the
decoder. Alahi et al. proposed the “social-LSTM” structure
[8], which allows LSTM that is adjacent in space to share each
other’s hidden state, thereby capturing the dependencies
betweenmultiple related sequences. Ji et al. proposed a vehicle
trajectory prediction model based on LSTM [9]. 'e model
first uses the softmax function to determine the driving in-
tention and then uses LSTM to predict the vehicle trajectory.
Luo et al. proposed a target-oriented lane attention trajectory
prediction model [10]. Its trajectory coding module uses two
standard LSTMs: one is used to encode historical position,
and the other is used to encode historical speed. 'e two
extracted features are connected to predict the motion feature
of the vehicle. Besides LSTM, some scholars are also doing
research on a two-stage trajectory prediction network
(TPNet) [11]. In the first stage, they extract basic features from
the trajectory data. In order to narrow the search range, they
predict a rough end point, and this predicted end point is used
to generate a recommended trajectory. In the second stage,
they screen recommended trajectories based on historical
trajectories and movable areas formed by high-precision
maps. 'ey find the most likely future trajectory from the
recommended trajectories and then refine them to ensure the
diversity of the final prediction. Moreover, Yao et al. proposed
a bidirectional multimodal trajectory prediction method

(BiTrap) based on target estimation [12]. 'is model has
achieved good results in predicting pedestrian trajectories
from the first-person view (FPV) and bird’s-eye view (BEV)
scenarios.

In terms of deep learning data acquisition, there are
many ways to acquire traffic data, such as video and loop
detector. Feng et al. [13] proposed a cross-frame target
association algorithm under the constraints of vehicle dy-
namics and trajectory confidence using Yolov5. Chen et al.
[14] proposed a method to extract vehicle trajectories au-
tomatically and accurately from aerial video. 'is method
uses wavelet transform to denoise the Frenet coordinate data
and eliminate the deviation of the vehicle trajectory position.
In addition, some scholars use OpenCV 2.3 [15] to collect
turning motion trajectories to train DNNs and LSTM
networks for early trajectory prediction in the next 2 s. In
terms of deep learning data processing, the original traffic
flow data may be polluted by noise during the data collection
process. In this way, noise data will significantly affect the
performance of traffic flow prediction. In this case, some
scholars use noise reduction processing on the original
traffic flow data to obtain better prediction results. Jiang et al.
[16] proposed the Savitzky–Golay filter to filter the noise of
the NGSIM (I-80) dataset. 'ey used three deep neural
networks, long short-termmemory (LSTM), gated recurrent
unit (GRU), and stacked autoencoder (SAE), to predict the
position and speed of the advancing vehicle. In addition,
empirical mode decomposition (EMD), ensemble empirical
mode decomposition (EEMD), and wavelet (WL) have also
been applied to remove the noise of traffic flow data [17].
According to the characteristics of different datasets, some
scholars solve actual traffic problems from a unique per-
spective according to the scenarios. Kim et al. [18] divided
the road environment on which the vehicle travels into an
occupancy grid map, expressed the predicted trajectory of
the vehicle as the occupancy probability on the occupancy
grid map, and used the LSTM network structure to generate
the future vehicle occupancy probability on the occupancy
grid map. Mirus et al. [19] studied the influence of the
composition of the training dataset on the neural network-
based vehicle trajectory prediction model. 'e research
results of this study show that the training effect of the LSTM
model that combines driving scenarios with classification
training is better than that of the LSTM model that does not
distinguish between scenarios.

At present, there are few research studies on real-time
predictionmethods of the vehicle trajectory in actual manual
driving scenarios. From the perspective of the domestic and
the foreign traffic environment, autonomous driving tech-
nology has not been widely used in most areas. It is un-
deniable that autonomous driving is a development trend.
But for now, the research on vehicle trajectory prediction in
autonomous driving scenarios cannot be applied to the
current vehicle conflict detection at unsignalized intersec-
tions. 'e study of vehicle trajectory prediction under
manual driving scenarios and its application in the field of
conflict warning can quickly apply the research results to
practice and greatly improve the safety level of unsignalized
intersections.

2 Journal of Advanced Transportation



'e problems faced are as follows: (1) existing vehicle
trajectory data based on UAV, GPS, driving simulation, and
other sources cannot realize real-time detection and pre-
diction of the vehicle trajectory. Based on a fixed video
surveillance system, real-time detection and prediction of
vehicle trajectories can be achieved, but there is currently no
corresponding vehicle trajectory dataset. (2) Multiobjective
and long-term real-time vehicle trajectory prediction
methods are still being explored, and there are many
challenges in improving the prediction accuracy and speed.

'e main goal of our research is to extract the vehicle
trajectory data at the entrance lane of an unsignalized in-
tersection in real time and then predict the turning and
trajectory of the vehicle to further detect vehicle conflicts at
the intersection. 'e main academic contributions of this
research are as follows: (1) a real-time vehicle trajectory
prediction framework for traffic conflict detection at
unsignalized intersections based on road surveillance videos
is proposed. (2) We propose a vehicle turning intention
recognition method based on the change trend of the vehicle
heading angle at the entrance of an unsignalized intersection
and a vehicle trajectory prediction method based on a
multilayer LSTMmodel. (3) We extract thousands of vehicle
trajectory data from surveillance videos of unsignalized
intersections and generate a vehicle trajectory dataset facing
the road-monitoring perspective.

Our research is organized as follows: Section 2 describes
the proposed real-time prediction method in detail, Section
3 explains the data source and experimental process and
results, and Section 4 briefly summarizes the research
results.

2. Materials and Methods

Vehicle trajectory prediction at unsignalized intersections is
a multitarget trajectory prediction problem. 'e focus is on
predicting the trajectory of each vehicle. 'e trajectory
prediction of a single vehicle can be divided into two stages.
First, according to the detected vehicle’s trajectory charac-
teristics at the entrance of the intersection, it is judged
whether the turning intention of the vehicle entering the
intersection is straight, left, or right. Second, the historical
vehicle trajectory data are used to predict the track position
of the vehicle passing the intersection.

For the first stage, accurately identifying the vehicle’s
turning intention can provide an important guarantee for
the accuracy and reliability of the real-time prediction of the
vehicle trajectory. In this paper, we consider the vehicle’s
heading angle at the entrance lane as the turning feature and
use the vehicle heading angle change trend to recognize the
vehicle’s steering intention. For the second stage, the real-
time vehicle trajectory position prediction is a time-series
prediction, so we consider using LSTM to build a vehicle
trajectory position prediction model. 'e overview of our
method is shown in Figure 1.

'e vehicle trajectory data are time-series data. We first
extract the historical trajectory of vehicles passing through
the intersection from the surveillance video. 'e trajectories
can be divided into three types: left turn, going straight, and

right turn. Using these three trajectory datasets to train the
LSTM, we can get the left-turn LSTM, straight-going LSTM,
and right-turn LSTM models. 'en, according to the real-
time detected trajectory of the target vehicle at the entrance
of the intersection, the vehicle’s heading angle change trend
feature is used to identify the vehicle’s turning intention.
'en, according to the identified turning label of the target
vehicle, the trained LSTM model corresponding to the
turning label is used for further trajectory prediction.

2.1.Model Training. 'emodel we use is a multilayer LSTM
model (see Figure 2), and its hidden layer contains N− 1
dropout layers, N− 1 LSTM layers, and one dense layer. 'e
historical vehicle trajectory data of the same entrance at the
same intersection extracted from a video surveillance camera
are divided into three types: left-turn dataset, straight-going
dataset, and right-turn dataset. 'rough training separately,
the left-turn LSTM, straight-going LSTM, and right-turn
LSTM models of each entrance of the intersection can be
obtained.

2.2. Turning Intention Prediction. First, we use the historical
trajectory data of the vehicle at the entrance lane of the
intersection to calculate the heading angle of each dis-
placement of the vehicle. 'en, we select the heading angle
data of the appropriate length to generate a sliding pane and
perform a univariate linear regression on the data in the
sliding pane. Finally, according to the actual situation of the
intersection, the classification conditions of the vehicle
turning left, going straight, and turning right are adjusted
according to the data characteristics such as the regression
slope and change trend. When we perform vehicle turning
intent recognition, we extract the vehicle heading angle
feature based on the video trajectory data detected in the
entrance lane in real time and combine the adjusted clas-
sification conditions to accurately and stably identify the
turning intention of the vehicle. 'e heading angle calcu-
lation formula [20] is as follows:
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where θt is the heading angle and (xt
a, yt

a) is the coordinate
of the vehicle “a” at time t.

2.3. Trajectory Prediction. After obtaining the turning label
of the target vehicle trajectory, based on the real-time de-
tection of the target vehicle trajectory data at the entrance of
the intersection, we use the trained multilayer LSTM model
consistent with the turning label of the target vehicle to
predict the trajectory of the vehicle passing the intersection.
'e forecasting process is shown in Figure 3.

3. Results and Discussion

Based on the surveillance video of an unsignalized inter-
section, we use Yolov5-DeepSort to extract vehicle trajec-
tories and obtain information such as the ID of each vehicle
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and the trajectory coordinates through the intersection.
'en, after the video trajectory data are processed, the
trajectory of the stopped vehicle and the abnormal trajectory
of the vehicle are removed, and the trajectory data are
automatically labeled with the turning category. 'en, we
use the processed trajectory data for training and prediction
to demonstrate the effectiveness of the model proposed in
the study. 'e model is implemented on one TensorFlow
GPU.

3.1. Datasets

3.1.1. Data Acquisition. 'e vehicle trajectory data selected
in the experiment come from the traffic flow videos of
unsignalized intersections taken by video surveillance
cameras. 'e total length of the captured video is about 4

hours, the resolution is 1920∗ 1080, and the video frame rate
is 25 frames per second. We use Yolov5-DeepSort to detect
and track vehicles at the intersection. Yolov5 [21] detects and
recognizes vehicles in each frame of the video. DeepSort
assigns a unique vehicle ID and tracks the same vehicle in
real time, thereby obtaining the trajectory data of all vehicles
passing through the intersection. 'e vehicle detection and
tracking results are shown in Figure 4, and the extracted part
of the trajectory is shown in Figure 5.

3.1.2. Data Processing. 'e trajectory data obtained through
video detection are affected by the speed, driving path, and
body size of each vehicle. 'ey are also affected by objective
factors such as weather, angle, and pixels at the time of video
shooting. 'erefore, the extracted trajectory data need
further processing. We clean the data, eliminate abnormal
trajectories, and extract complete and normal vehicle tra-
jectory data for model verification. Examples of extracted
trajectory data are shown in Table 1.

3.1.3. Direction Label. In order to obtain the turning label of
each vehicle’s trajectory data in the video, we draw the
recognition area at each entrance and exit position of the
intersection in the video and obtain the pixel coordinates of
the recognition area. 'e rule of whether to enter and exit
the recognition area is as follows: every time we obtain a new
vehicle coordinate at the entrance of the intersection, the
coordinate will be automatically corresponded to the cor-
responding position of the recognition area, and then we can
judge which recognition area of the intersection the vehicle
is passing through according to the vehicle coordinates. 'e
matching rules for turning labels are as follows: when the
target vehicle appears in the intersection recognition areaM
for the first time, and after a certain period, if it appears in
the intersection recognition area N for the second time, then
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Figure 1: Overview of our method.

Dense

LSTM

Dropout

……

LSTM

Dropout

…X1 X2 Xn-1 Xn

Y*

Figure 2: Multilayer LSTM model.

4 Journal of Advanced Transportation



we will think that the vehicle enters the intersection from the
M entrance and leaves from the N exit, and the turning label
format is set to (M, N). After the turning recognition is
completed, the trajectory data are divided into a straight-
going dataset, a left-turn dataset, and a right-turn dataset
according to the turn label. 'e recognition area is drawn as
shown in Figure 6.

3.1.4. Experimental Dataset. To establish a trajectory data-
set, we need to unify the number of trajectory points for each
trajectory, so that the trajectory data form a matrix with a
fixed size and no null values and meet the requirements for

vehicles to pass through the intersection completely.
According to the actual situation of the intersection, we
select 4 seconds after the vehicle passes the stop line as the
trajectory coordinate prediction range, that is, the coordi-
nate data of 100 trajectory points after the vehicle passes the
stop line.

3.2. Model Training. In order to better verify the effective-
ness of our model, the trajectory data of the same entrance at
the same intersection are selected in the experiment to verify
the model. 'ere are 1030 vehicle trajectory data in the
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Figure 3: Schematic diagram of the forecasting method.

Figure 4: Vehicle detection and tracking results.
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selected entrance lanes, including 301 left-turn, 406 straight-
going, and 323 right-turn datasets. We first normalize the
trajectory data and then use the dedimensionalized trajec-
tory data to train the left-turn, straight-going, and right-turn
LSTM models of the entrance lane. We use 80% of the
trajectory data as the training set and 20% as the validation
set.

3.2.1. Turn Recognition Training. We adjust the parameters
of the vehicle heading angle change trend recognition al-
gorithm according to the terrain characteristics of the
unsignalized intersection. 'e adjustable recognition algo-
rithm parameters are the starting recognition position, the
length of the recognition area, the size of the sliding pane,
and the sliding step length.

After multiple rounds of training, we choose 12 meters
before the stop line as the starting position for recognition
and choose 50 trajectory coordinate points after the starting
position for heading angle calculation.'e sliding pane is 20,
and the sliding step is 2. 'e judgment rule for turning
recognition is as follows: when the regression slope of the
heading angle exceeding 2/3 falls between −0.25 and 0.25, it
is the intention to go straight; when the regression slope of
the heading angle exceeding 2/3 falls between 0.1 and 2, it is
the intention to turn right; and when the regression slope of
the heading angle exceeding 6/10 falls between −2 and −0.2,
it is the intention to turn left. Refer to Figure 7 for the
regression slope scatter diagram of each steering heading
angle.'e scatter plot of the regression slope of each turning
heading angle is shown in Figure 7.

3.2.2. Multilayer LSTM Model Training. After normalizing
the vehicle trajectory data in the training set and eliminating
dimensions, we select the appropriate number of LSTM
model layers, sliding pane length, and prediction step length
through training.

First, we input the trajectory data into the LSTM model
of different numbers of layers for experiments and then use
the LSTM model with the optimal number of layers to test
sliding panes of different lengths and the prediction step size.
'e optimizer selected for each LSTM model is Adam, the
error calculation method is MSE (mean square error), and
the accuracy evaluation standard is ACC.

During the model training process, we find that adding a
layer of LSTM will cause the training time to increase at a
rate of 0.3 to 0.8 times. When we choose too few LSTM
layers, we cannot learn the data completely, and when we
choose too many LSTM layers, the training time will be too
long. 'erefore, if we want to achieve the purpose of im-
proving training accuracy and shortening training time, we
must select the appropriate number of layers for the mul-
tilayer LSTM according to the dataset. We also find that
different sliding pane lengths will lead to different training
errors. 'is is because when the sliding pane is too short,
there will be too little input of known trajectory charac-
teristic information, and when the sliding pane is too long,
too much trajectory characteristic information will be input.

Table 1: Examples of extracted trajectory data.

Vehicle ID Turn direction Coordinate 1 2 3 4 5
1 (1, 2) x 385.43 397.58 409.47 420.45 431.65
1 (1, 2) y 195.02 195.81 196.43 196.12 196.95
2 (4, 2) x 378.77 393.54 407.71 421.81 435.95
2 (4, 2) y 101.68 102.07 102.45 101.13 100.6
3 (3, 1) x 165.43 180.47 195.27 210.39 224.41
3 (3, 1) y 188.35 189.9 190.33 191.12 192.01
4 (1, 4) x 252.1 264.86 277.81 290.98 303.35
4 (1, 4) y 175.02 175.83 176.71 177.1 178.06

Figure 6: Recognition area of the entrance and exit of the
intersection.
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Finally, we find that the increase in the length of the pre-
dicted trajectory point has a slight impact on the training
time, but it will cause an increase in the training error.'is is
because as the length of the predicted trajectory point in-
creases, the trajectory feature information learned by the
multilayer LSTM from the known trajectory is not enough to
predict the long future trajectory point. According to the
experimental results and considering the influence of var-
ious data, our parameter selection is shown in Table 2. 'e
changes in the number of LSTM layers and the training
accuracy are shown in Figure 8, the predicted coordinate
length and the training mean square error are shown in
Figure 9, and the predicted sliding pane length and the
training mean square error are shown in Figure 10.

3.3. Model Prediction and Result Discussion

3.3.1. Turning Recognition Based on the Change Trend of
Vehicle Heading Angle. We use the validation set data to test
the vehicle heading angle change trend recognition algo-
rithm and obtain the average recognition accuracy of each
steering intention. Finally, we compare the vehicle heading
angle change trend recognition algorithm with the KNN
turning prediction algorithm, and the accuracy of the vehicle
heading angle change trend recognition algorithm has been
greatly improved. 'e vehicle heading angle change trend
recognition algorithm makes full use of the geographic
information of the intersection and recognizes the turning
intention according to the heading angle change charac-
teristics of each turning vehicle. 'e recognition result is
only related to the characteristics of the intersection and the
changing trend of the vehicle heading angle. It does not rely
too much on the historical database with rich samples and
has a good migration ability. 'erefore, compared with the
KNN algorithm, it has higher stability and practicability.'e
accuracy comparison between the vehicle heading angle
change trend algorithm and the KNN algorithm is shown in
Table 3.

3.3.2. Vehicle Trajectory Prediction Based on Four-Layer
LSTM Model. After the target vehicle obtains the predicted
turning label, we use the trained corresponding turning
multilayer LSTM model to predict the future trajectory data
of the target vehicle (100 trajectory points) based on the real-
time detected target vehicle trajectory data at the entrance
lane (30 trajectory points). Compared with the constant turn
rate and acceleration (CTRA) vehicle model, the multilayer
LSTM prediction model proposed in the thesis has obvious
advantages in prediction accuracy and speed. 'e com-
parison of prediction accuracy and time-consuming data is
shown in Table 4.

3.3.3. Result Discussion. According to the target vehicle’s
turning predicted by the vehicle heading angle change trend
algorithm and the trajectory data of the target vehicle de-
tected in real time at the entrance, the corresponding turning
LSTM model is used to predict the future trajectory point.

'e prediction result of going straight is shown in
Figures 11–14. 'e prediction result of left turn is shown in
Figures 15–18.'e prediction result of right turn is shown in
Figures 19–22.

According to Figure 11, the training accuracy of 97.22%
of the straight-going LSTM models exceeds 94%, and the
training accuracy of 63.89% of the straight-going LSTM
models exceeds 97%. 'e training effect is good. According
to Table 4 and Figures 12–14, in the pixel coordinate system,
the absolute error between the predicted trajectory of the
straight-going LSTM model and the actual trajectory is
within 100, and the average absolute error is 45.784. 'e
deviation between the trajectory predicted by the straight-
going LSTM model and the actual trajectory is small. 'e
prediction takes 1.87 seconds and has a real-time perfor-
mance. 'e training accuracy, absolute prediction error, and
prediction time of the straight-going LSTM model are all
within acceptable ranges, and the experimental results are
good.

According to Figure 15, the training accuracy of the left-
turn LSTM model exceeds 97%, and the training effect is
good. According to Table 4 and Figures 16 and 17, in the
pixel coordinate system, the average absolute error between
the predicted trajectory and the actual trajectory is 42.151.
Among them, the prediction error of the first 50 steps does
not exceed 40. According to Table 4 and Figure 18, 87.23% of
the prediction errors are distributed within 100. 'e pre-
diction effect in the first half is better. 'e prediction takes
2.02 seconds, and the prediction speed is slightly slow. By
analyzing the trajectory, we can see that the driving distance
for a left turn is longer, and there are more conflict points at
the intersection. Moreover, the radius of the left turn is
larger, and the trajectory direction has a certain degree of
uncertainty.'e prediction process is more complicated and
requires higher computing power.

Figure 19 shows that the training accuracy of the right-
turn LSTM model is more dispersed than that of the other
two turning models. 60% of the models have a training
accuracy of over 97%, and 90% of the models have a training
accuracy of over 94%, which is slightly inferior to that of the
other two turning models. According to Figures 20–22, we
find that there is a certain deviation between the predicted
trajectory of right turn and the actual trajectory. In the pixel
coordinate system, the average absolute error between the
predicted trajectory of the right-turn LSTM model and the
actual trajectory is 73.21. 72.73% of the prediction deviations
are distributed within 100. 'e prediction takes 1.96 sec-
onds, which is better than that of the left-turn model. By
analyzing the trajectory, we can see that the right-turn
trajectory has a large turning amplitude and a small turning
radius. Although there are fewer conflict points, the distance
that the right-turning vehicle travels within the intersection
is shorter, and fewer characteristic data are acquired.

In summary, by comparing the prediction models of left-
turn, straight-going, and right-turn trajectories in terms of
prediction error, prediction time consumption, and pre-
diction model stability, we can see the following: (1) In terms
of prediction errors, the average prediction error of the left-
turn LSTM model is the smallest, the average prediction
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error of the straight-going LSTM model is not much dif-
ferent from that of the left-turn LSTM model, and the av-
erage prediction error of the right-turn LSTM model is
slightly larger. (2) In terms of time-consuming prediction,
the complexity of the straight-going trajectory is low, and the
time-consuming prediction is the shortest. 'e trajectory of
turning right and turning left is more complicated, the
prediction time is about 2 s, and the prediction of turning left
is slightly longer. (3) In terms of the stability of the pre-
diction model, the standard deviation of the prediction error

of the straight-going LSTM model is 21.233, the standard
deviation of the prediction error of the left turn is 37.451,
and the standard deviation of the prediction error of the
right turn is 32.388. 'e result of straight-going trajectory
prediction is relatively stable, and the prediction result of the
left-turn trajectory is slightly worse than that of the right-
turn trajectory.

'e real-time vehicle trajectory prediction effect for
traffic conflict detection at unsignalized intersections is
shown in Figure 23.

Table 2: LSTM model parameters for each turn.

LSTM model Number of LSTM layers Sliding pane length Prediction step
Going straight 4 6 1
Left turn 4 9 1
Right turn 4 12 1
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Figure 8: Relationship between the number of LSTM layers and the training accuracy.
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Figure 9: Relationship between the prediction step size and the training mean square error.
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Figure 10: Relationship between the length of the sliding pane and the training mean square error.

Table 3: Comparison of accuracy of different turning recognition methods.

Methods
Accuracy

Going straight (%) Left turn (%) Right turn (%)
Ours 99.7 96.2 97.3
KNN 87.3 81.5 78.6

Table 4: Comparison of prediction algorithms.

Methods Direction MAE (axis) Time (s)

Four-layer LSTM
Going straight 45.784 1.87

Left turn 42.151 2.02
Right turn 73.210 1.96

CTRA
Going straight 110.495 3.57

Left turn 265.614 4.11
Right turn 246.051 3.96
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Figure 11: Training accuracy distribution for going straight.
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Figure 12: Prediction result of the straight trajectory.
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Figure 13: MAE scatter plot for straight trajectory prediction.
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Figure 14: MAE histogram of straight trajectory prediction.
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Figure 15: Training accuracy distribution for left turn.
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Figure 16: Prediction result of the left-turn trajectory.
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Figure 17: MAE scatter plot for left-turn trajectory prediction.
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Figure 18: MAE histogram of left-turn trajectory prediction.
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Figure 19: Training accuracy distribution for right turn.
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Figure 20: Prediction result of the right-turn trajectory.
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Figure 21: MAE scatter plot for right-turn trajectory prediction.
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Figure 22: MAE histogram of right-turn trajectory prediction.

Figure 23: Real-time vehicle trajectory prediction effect.
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4. Conclusions

In this paper, a real-time vehicle trajectory prediction
method based on the vehicle heading angle change trend
recognition algorithm and the multilayer LSTM model is
constructed. 'is method first extracts the vehicle trajectory
data of the intersection through video detection and then
trains three multilayer LSTM models for going straight, left
turn, and right turn according to the direction categories.
'en, we use the vehicle heading angle change trend rec-
ognition algorithm to recognize the turning intention of the
target vehicle. Finally, we use the LSTM model corre-
sponding to the turning category to predict the trajectory
position in real time. 'e experimental results show that
compared with other algorithms, the vehicle heading angle
change trend recognition algorithm has better prediction
accuracy and stability. 'e four-layer LSTM model is ef-
fective in predicting vehicle trajectories at unsignalized
intersections. Compared with the constant turn rate and
acceleration (CTRA) vehicle model, it has better prediction
performance.

Our further work is to explore the improved algorithm of
LSTM or GRU and at the same time increase the prediction
speed to achieve further improvement in real-time perfor-
mance.'en, by further studying the conflict discrimination
algorithm, real-time conflict warning of vehicles at
unsignalized intersections will be realized.
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