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Given the time-efficient characteristics of urban cold chain transportation and the time-varying characteristics of urban road
speed, customers encounter the problem of limited vehicle path optimization due to a fuzzy time window. An optimization model
of urban cold chain transportation with the objective function as the minimum total cost is constructed under the premise of
service reliability, and an artificial immune particle swarm optimization algorithm is designed to solve the model. For an empirical
analysis of Xiamen’s cold chain transportation, a two-stage solution involving “static optimization and dynamic optimization” is
used to verify the effectiveness of the model and the practical value of this research. Results show that the time-varying model can
effectively reflect the situation of urban road transportation and satisfy the timeliness requirement of urban cold
chain transportation.

1. Introduction

With the advancement of the economy and the improve-
ment of people’s living standards, China’s cold chain lo-
gistics has developed rapidly, and the requirements for cold
chain distribution are constantly improving. -e traditional
cold chain distribution with large quantities and few batches
cannot meet the current distribution demand, and small-
batch, multi-frequency, multi-variety cold chain distribution
has become the primary trend in logistics distribution. Given
that most of the roads in cities are time varying, urban cold
chain transport links have become increasingly complex and
random. -erefore, the optimization of urban cold chain
transportation paths should consider the transportation
cost, loss of value, and decrease in service reliability caused
by timeliness. In the process of cold chain distribution, the
product quality gradually decreases with the passage of time,
which not only causes damage to cold chain logistics en-
terprises, but also reduces customer experience. -is urgent
problem in the industry needs to be solved.

Domestic and foreign research on cold chain logistics
vehicle routing problems focused on the optimization of

cold chain logistics transport routing with time window
constraints and optimization of cold chain logistics vehicle
routing with multiple distribution centers, multiple vehicle
models, and the lowest carbon emission. -e research on
cold chain delivery time windows is as follows. Govindan
et al. [1] constructed a multi-objective optimization model
for the integrated decision and allocation of perishable goods
in a supply network with a time window. Xiao et al. [2]
analyzed the cost of each link in cold chain distribution and
constructed a VRP model with a minimum assembly in
consideration of various constraints, such as vehicle load
and time window. Kang et al. [3] considered vehicle use,
transportation, cargo damage, refrigeration, penalty, and
carbon emission costs as total cost optimization objectives to
optimize the distribution path of cold chain logistics. Some
scholars have also conducted researches on multi-distri-
bution centers and multi-model cold-chain logistics vehicle
routes: Tarantilis et al. [4] examined the distribution of meat
and milk in Greece, studied the route problem of open cold
chain logistic distribution vehicles with multiple vehicle
types and distribution centers, and solved the problem with
the threshold value method. Morim et al. [5] considered the
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constraints of multiple time windows and vehicle models and
built a vehicle distribution path optimization model. Rabbani
et al. [6] studied the deterministic vehicle routing problem
under multiple intermediate warehouses and proposed the
concept of perishable food freshness to obtain the optimal
distribution path. Zhang et al. [7] designed a mathematical
model of a cold chain logistic vehicle path with multiple vehicle
fields and models and solved it by using the genetic algorithm
and elite selection method. -ese studies have a certain ref-
erence value, but they mainly emphasize economic goals and
the influence of the external environment on the speed of the
vehicle is ignored. However, with the continuous increase in
urban traffic load, urban traffic congestion has become a normal
state, and the passage time of road segments changes constantly
with time. -e vehicle routing problem based on static traffic
networks is different from the actual situation. A static model
often takes the solution with a short distance but long trans-
portation time as the optimal solution, which is contrary to the
objective of cold chain logistics decision-makers to pursue
timeliness. A time-varying network can address the fluctuation
of urban cold chain transport vehicle speed as realistically as
possible, which is close to the actual situation. Considering the
time-varying vehicle path has become a research hotspot in
recent years, in terms of traffic congestion, Zheng [8] added
traffic congestion factors to their models when solving the cold
chain logistics distribution vehicle path and, respectively, used
an improved genetic algorithm and a stage optimization
method to solve the problem. Lan et al. [9] built a vehicle path
optimization model that considers urban road congestion and
used a hybrid genetic algorithm to solve the model. Deng et al.
[10] built a mixed-integer optimization model for military lo-
gistics distribution with a time window and used the genetic
algorithm to solve the model. Wang et al. [11] studied the green
vehicle routing problem with capacity constraints and used
competitive meme algorithm to solve the model.

Scholars have also conducted research on the time-
varying characteristics of urban road networks, which lead to
the uncertainty of the travel time of cold chain transport
vehicles.-eymainly studied the shortest problem with time
variation, such as section impedance (trip time or trip cost)
and usually used deterministic time-dependent functions to
represent section impedance. Yang et al. [12] built the
simulated annealing algorithm to solve the vehicle path
problem under time-varying conditions. Li et al. [13] pro-
posed a new method to deal with the general time-varying
travel agent problem and conducted modeling and solution
derivation. Li [14] discussed a class of travel planning
problems under time-varying conditions. Shi et al. [15]
analyzed the time-varying characteristics of a transport
network, built a simulation model under time-varying
conditions, and used a hybrid genetic algorithm to solve the
model. Zhang et al. [16] examined the scheduling problem of
product distribution vehicles in a multi-temperature area
under a time-varying road network environment, estab-
lished a mathematical optimization model with a minimum
total distribution cost, and used the solution model of the
simulated annealing algorithm.

In summary, existing research results provide a good
basis for the in-depth study of urban cold chain

transportation under time-varying network conditions.
However, there are still the following deficiencies. First,
existing literature concentrated on the two-layer, time-
varying network problem. Second, most existing studies
focused on themathematical model and solving algorithm of
the vehicle path optimization problem in an urban road
static network. -e research on vehicle path optimization in
an urban road dynamic network focused on road congestion
avoidance and the shortest problem with time variation,
such as section impedance (trip time or trip cost). In view of
these research deficiencies, the main contributions of the
paper are summarized as follows: (1) the urban cold chain
transport path model constructed in this study involves a
three-layer network, that is, supplier-distribution center-
customer. (2) -e real-time situation of urban roads is re-
ported based on the big traffic data of Baidu smart map
(China Urban Congestion Index), and the dynamic vehicle
path optimization model and solving algorithm under urban
time-varying network conditions are established to provide a
decision-making reference for cold chain enterprises as they
implement urban cold chain transportation.

-e rest of the paper is organized as follows. Section 2
presents the analysis and hypothesis of urban cold chain
transportation under time-varying network conditions and
introduces the cold chain vehicle travel time analysis. Sec-
tion 3 take the lowest total cost as the objective function to
establish an urban cold chain transportation model under
the condition of time-varying traffic network conditions. In
Section 4, an artificial immune particle swarm optimization
(AI-PSO) model is designed. Section 5 presents the design of
Xiamen cold chain transportation as an empirical analysis,
uses the optimization algorithm to solve the case in two
stages of “static optimization” and “dynamic optimization,”
and discusses the calculation results. -e article is sum-
marized in Section 6.

2. Problem Description and Assumptions

-e urban cold chain transportation network involves
suppliers, distribution centers, and customers. -e distri-
bution centers collect the demand information of customers
and send this information to the suppliers. -e supplier
needs to meet time window requirements to provide service
to the distribution centers.-e distribution centers also need
to meet time window requirements to provide delivery
service to the customer, and time penalty costs are incurred
for any deviation from the time window.-e driving route of
the supplier and distribution centers is determined. On the
premise of satisfying the target of distribution centers and
providing customer satisfaction, the required distribution
business is completed with the lowest total cost and the least
deviation from the time window.

2.1. Model Assumptions

(1) One supplier, multiple distribution centers, and
multiple customers are located in different regions of
the same city.
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(2) With regard to the supply of distribution center, no
commodity allocation exists between distribution
centers.

(3) With regard to the supply of customers by the
distribution centers, no commodity allocation exists
between customers.

(4) When the vehicle is not fully loaded, the commodity
demand required by the distribution center is less
than the carrying capacity of the supplier’s vehicle. A
vehicle can complete the distribution tasks required
by multiple distribution centers. -e demand for
goods required by stores is smaller than the carrying
capacity of vehicles in the distribution center, and
one vehicle can complete the distribution tasks re-
quired by multiple stores.

(5) Suppliers adopt a vehicle distribution strategy for
distribution center or store service; that is, each
distribution center or store can be serviced by
multiple distribution vehicles, and all service points
can be served.

(6) -e delivery vehicles have different models, and the
delivery task on each line is only undertaken by one
vehicle.

(7) -e freight rate per unit of the distribution vehicle is
independent of the vehicle type and is the same.
Time-varying events, such as accidents, traffic jams,
weather conditions, and other emergencies, that
occur during the journey should be considered.

(8) It is assumed that the statistical law o of the time of
vehicles passing through each section in the traffic
network is known; the time of vehicles passing
through section (O, D) follows the normal distri-
bution N(μOD, σ).

2.2. Travel Time Analysis of Cold Chain Vehicles under Time-
Varying Network Conditions. Suppose that m parallel paths
exist between an OD pair in the urban traffic network. Path
length Dij and driving speed Vi affect the travel time of each
path t(y), and congestion coefficient β directly affects driving
speed Vi. Owing to the time-varying characteristics of the
urban traffic network, a sudden traffic event occurs at point
A when the vehicle travels to point Ton a certain OD path i,
as shown in Figure 1.

-e capacity of TA of the road section will inevitably
decrease, resulting in a change in vehicle travel time from
t(y) to t(s). -e travel time function of route i is

t(y) � t(y)OT + t(y)TA + t(y)A D � t(y)OT

+ t(s)TA + t(y)A D.
(1)

If similar situations occur in multiple OD sections, then

t(y) � 􏽘 t(y) + 􏽘 t(s). (2)

If t(y) is the driving time of vehicles on road r without
congestion, then

t(y) �
Lir

Vir

, (3)

where Lir represents the length of section r on route i

without congestion ∀i; r and Vir represents the speed at
which no congested section i exists on route r, ∀i; r.

Assuming that the vehicles can reach normal driving
speed Vi on a road without congestion, steering coefficient μ
is used to measure the actual driving difficulty of the road.
-erefore, vehicle speed Vir is related to the number of left
and right turns and the number of crossings.

μ �
3μL + μR + 2μC( 􏼁

Lir

,

Vir � Vi ×(1 − 0.1μ),

(4)

where μ represents the steering coefficient, μL is the number
of left turns, μR represents the number of right turns, and μC

is the number of crossings [17].
Assuming that the vehicle’s driving speed in the con-

gested section m is Vim, the vehicle’s driving speed Vim is
related to the times of crossing and congestion coefficient β.

Vim � Vi ×(1 − 0.1μ) × β, (5)

where congestion coefficient β is inversely proportional to
the capacity of path i. -is study assumes that congestion
coefficient β is related to accident θ1h, traffic jam θ2h (in this
paper, traffic congestion is assumed to be the inverse of the
real-time traffic congestion index), vehicle performance θ3h,
weather condition θ4h, and other emergencies θ5h. -eir
influence on speed is divided into five grades: normal
(h � 1), mild (h � 2), medium (h � 3), severe (h � 4), and
very severe (h � 5), i.e., β � θ1h × θ2h × θ3h × θ4h × θ5h,

h ∈ 1, 2, . . . , 5{ }.

3. Building the Model

-e reliability of cold chain distribution service is an in-
dicator of the service level of urban cold chain logistics. In
the process of urban cold chain logistics operation, the cold
chain logistics distribution network is the core to improve
the reliability of urban cold chain service, so it is particularly
important to choose the appropriate cold chain logistics
center and scientific transportation network.

TO A D

t(y)

t(s)

Figure 1: Diagram of the network of traffic emergencies en-
countered during vehicle driving.
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3.1. Service Reliability Analysis. A customer satisfaction
model is constructed based on supply chain theory. Service
reliability is a function of service time t. -e fuzzy number is
a convex fuzzy set defined in the real number domain, and
commonly used fuzzy number functions include triangular
and trapezoidal fuzzy numbers. -e membership functions
of triangular and trapezoidal fuzzy numbers are shown in
Figure 2.

Trapezoidal fuzzy number tk � (ek, ek
′, lk′, lk) is adopted

in this study. Customer Bi receives the highest reliability of
cold chain material service within time window (ek

′, lk′), and
the quantization is 1. -e receipt of cold chain supplies
within (ek, ek

′) or (lk′, lk) is acceptable, but the satisfaction
decreases with time. When time window (ek, lk) is exceeded,
the satisfaction is quantified as 0. -erefore, the time tk for
customer Bi to receive the goods and materials is expressed
as η(tk) by the membership function of the trapezoidal fuzzy
number.

η tk( 􏼁 �

0, tk < ek,

tk − ek

ek
′ − ek

, ek ≤ tk < ek
′,

1, ek
′ ≤ tk ≤ lk′,

lk − tk

lk − lk′
, lk′ < tk ≤ lk,

0, tk > lk.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

On the basis of the membership function of trapezoidal
fuzzy number tk � (ek, ek

′, lk′, lk), the optimization objective
of transportation time is transformed into the optimization
objective of service reliability. Considering the particularity
of urban cold chain logistics, customer Bi receives cold chain
materials within the specified time window. When the time
is earlier than ek, the vehicle needs to wait, resulting in
waiting costs. If the time is later than lk, sales will be affected,
resulting in opportunity loss. However, in the process of the
vehicle, accidents, vehicle performance, traffic, weather
conditions, or other emergencies (e.g., time-varying factors)
affect vehicle moving speed, and vehicle traffic time changes
from t(y) to t(s), leading to the delayed delivery of cold chain
goods delivered to the customer. -is delay affects the ve-
hicle utility curve, and the service reliability curve changes. If
the service reliability maximization goal is not achieved, then
the model will be re-analyzed, and real-time optimization of
the vehicle travel path will be performed.

Except for cold chain distribution, the reliability of other
cold chain logistics links in the cold chain logistics operation
is assumed to be 1. Cold chain distribution factors affect the

reliability of the entire cold chain logistics service. -e re-
liability of the service of the cold chain logistics center refers
to the probability of delivering cold chain products to
customers within a specified time under certain conditions
(P(s)ij) [18]:

P(s)ij � p ek ≤ t(s)ij ≤ lk􏼐 􏼑,

� p
ek ≤ dij

V(s)ij ≤ lk
􏼠 􏼡,

� p
dij

lk
≤V(s)ij ≤

dij

ek

􏼠 􏼡 � 1 − FVij

dij

lk
,
dij

ek

􏼠 􏼡.

(7)

-en, according to formula (7), the calculation formula
of the reliability of the distribution center for multiple
customer services is

P(s) �
􏽐i∈M􏽐j∈MQijP(s)ij

􏽐i∈M􏽐j∈MQij

�
􏽐i∈M􏽐j∈MQij 1 − FVij dij/lk, dij/ek􏼐 􏼑􏽨 􏽩

􏽐i∈M􏽐j∈MQij

.

(8)

For conciseness, the representation of the reliability of
cold chain logistics services in this model is presented in
Table 1.

3.2. OptimizationModel of Urban Cold Chain Transport Path
under Time-Varying Network Conditions. Assuming that G

is a set of suppliers, g � 1, . . . , f. M is a set of cold chain
distribution centers i � 1, . . . , m. N is the customer set,
j � 1, . . . , n. Suppliers who import cold chain goods need to
supply n customers through the cold chain logistics distri-
bution center after storage and cooling distribution. Static
and dynamic optimization are considered in accordance
with the time window requirements of each distribution
center and customer. -e model is as follows: supplier
(dock)⟶ distribution center⟶ customer (Figure 3).
First, the distribution center is determined. A total of m

alternative distribution centers exist, and m0 needs to be
determined from the alternative distribution centers. Sec-
ond, the customers of the distribution center are deter-
mined, and the transportation route from the supplier
(terminal) to the distribution center is planned. -ird, the
transportation route from the distribution center to the
customer is set to guarantee the lowest total cost.

3.2.1. Model Parameters. -e symbols of the urban cold
chain vehicle path optimization model are summarized in
Table 2.
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􏽘
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bijQij ≤Q0, where : i � 1, 2, . . . , m; j � 1, 2, . . . , n, (16)

η (tk)

1

ek tk0 lk tk

(a)

η (tk)

1

ek e′k l′k lk
tk

(b)

Figure 2: Membership function diagram of triangular and trapezoidal fuzzy numbers. (a) Graph of triangular fuzzy membership function.
(b) Diagram of trapezoidal fuzzy membership function.

Table 1: Symbol of logistics service reliability.

Notation Definition
dij -e distance between distribution center i and customer j

Vij -e travel speed from distribution center i to customer j

FVij

-e distribution function of driving speed from distribution center i to customer j. Driving speed is affected by accidents,
weather conditions, traffic jam, vehicle performance, and other emergencies, and travel speed conforms to the normal

distribution
P(s) -e reliability of logistics service in the distribution center
P(s)ij -e reliability of distribution center i in terms of providing logistics service to customer j
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􏽘

f

g�1
􏽘

m

i�1
Zgi − 􏽘

n

j�1
bij ≤ 0, where : i � 1, 2, . . . , m, (17)

t(y)gi �
egi

v(y)gi

, (18)

t(s)gi �
egi

v(s)gi

, (19)

t(y)ij �
dij

v(y)ij

, (20)

t(s)ij �
dij

v(s)ij

, (21)

Customer
Customer

Customer

Customer Customer

Customer

Customer

Customer

CustomerCustomer

Customer

Customer

Customer
Customer

Port

Customer

Customer

Customer

Customer

Distribution centre
Distribution centre

Distribution centre
Distribution centre

Figure 3: Topology diagram of supplier-distribution centers-customer network.
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Zgi �
1, indicates that theg − th supplier delivers to the i − th cold chain distribution center,
0, otherwise,

􏼨 (22)

bij �
1, the i − th cold chain distribution center to the j − th customer,
0, otherwise.

􏼨 (23)

3.2.2. Urban Cold Chain Transport Path OptimizationModel.
-e model is built as follows.

Formula (9) is the objective function that represents the
minimum total cost of cold chain goods from the supplier to
the customer through the distribution center. Formula (10)
presents the total time required for the cold chain goods to
be transported from suppliers to customers. Formula (11)
indicates that m0 cold chain distribution centers are selected
from m alternative cold chain distribution centers. Formula
(12) represents the supply and demand relationship of n

pairs between the cold chain distribution center and the
customer. Formula (13) shows that each customer can only
be served by a single cold chain distribution center. Formula
(14) indicates that, for each cold chain distribution center
selected, the corresponding distribution relationship is
limited. Formula (15) shows that the distribution amount
from the supplier to the cold chain distribution center is
equal to the sum of the cold chain distribution center to
customer delivery volume. Formula (16) indicates that the
total delivery quantity of each cold chain distribution center
does not exceed the upper limit Q0. Formula (17) represents
the corresponding customer of the cold chain distribution

center, and in all cases, a cold chain distribution center is
selected and customers are present. Formula (18) represents
the estimated driving time from supplier g to cold chain
distribution center i. Formula (19) represents the estimated
driving time from cold chain distribution center i to cus-
tomer j. Formula (20) denotes the actual driving time from
supplier g to cold chain distribution center i. Formula (21)
provides the actual driving time from cold chain distribution
center i to customer j. Formulas (21) and (23) are decision
variables.

4. Optimization Algorithm Design

In this paper, the decomposition method is used to de-
compose the urban cold chain transportation path opti-
mization problem into two interconnected sub problems.
First, this paper solves the problem of customer attribution
positioning. -en, the optimal solution of the second sub-
problem is based on the optimal solution of the first sub-
problem. Finally, according to the above solution, the
objective solution of urban cold chain transportation path
optimization is obtained. -e problem is solved by

Table 2: Notation for the model.

Notation Definition
Qgi -e volume of transportation from supplier g to distribution center i

Qij -e volume of delivery from distribution center i to customer j

cgi -e unit freight rate from supplier g to distribution center i

cij -e unit freight rate of the product from distribution center i to customer j

egi -e distance between supplier g and distribution center i

dij -e distance between distribution center i and customer j

Q0 -e upper limit of the quantity distributed by the distribution center
fi -e cost of leasing or building the distribution center in i places
vi -e unit variable cost of distribution center i

wi -e actual transfer quantity of distribution center i

t0 -e unit laytime
Ti -e time when the transport vehicle arrives at distribution center i

Ai -e earliest service time of distribution center i

Bi -e latest service acceptance time of distribution center i

tj -e time when the vehicle arrives at customer j

aj -e earliest time for the customer to accept the service
bj -e latest time for the customer to accept the service
c1 -e unit penalty cost of reaching the distribution center i earlier than Ai

c2 -e unit penalty cost of arriving at distribution center i later than Bi

c3 -e unit penalty cost of reaching customer j earlier than aj

c4 -e unit penalty cost for reaching customer j later than bj

δ -e consumption of vehicle refrigeration cost per unit time
P -e average unit value of cold chain goods
θ -e coefficient of spoilage rate in the transportation of cold chain goods
q -e capacity ceiling of the construction or leasing of the cold chain distribution center
v v is the average speed of imported fruit cold chain distribution vehicles
h -e unit freight of imported fruit

Journal of Advanced Transportation 7



MATLAB programming and artificial immune particle
swarm optimization algorithm [19].

4.1. Vehicle Travel Time Calculation. In the path model with
a time-varying network and symmetry, the travel time of
section (bi, bj) is expressed as t(y)ij � dij/v(y)ij, where v(y)ij

is the estimated average driving speed of section (bi, bj).
However, in the time-varying network model, vehicle travel
time is affected by time-varying factors, such as accidents,
vehicle performance, traffic congestion, weather conditions,
and other emergencies. Assuming that the departure time is
t0 and the distance is dij, according to Figure 1, the driving
speed of vehicles is affected by time-varying factors during
the driving process of vehicles on section (O, D) [20]. In this
paper, section (O, D) is divided into multiple sub-sections. If
sub-section TA is the k segment, then the actual running
speed will be v(s)kij, and the corresponding starting time
interval will be [tk, tk+1]. -e calculation flow of arrival time
and travel time can be expressed as follows:

(1) Determine the value of k in accordance with
t0 ∈ [tk, tk+1], obtain the corresponding v(s)kij,
assigndij⟶ d, and calculate t′ � (t0 + d/vk

(s)ij).
(2) If t′ ≤ tk+1 is true, output arrival time t′ and travel

time t′ − t0, and end the loop. Otherwise, proceed to
Step (3).

(3) Update dij − vk
(s)ij(tk+1 − tk)⟶ d, calculate t′ �

tk+1 + d/vk+1
(s)ij, update k + 1⟶ k, and return to Step

(2).

4.2. Artificial Immune Particle Swarm Optimization. In this
study, artificial immune particle swarm optimization (AI-
PSO) is introduced to solve the proposed mathematical
model. -e artificial immune algorithm introduces the di-
versity of biological immune characteristics and immune
memory into the algorithm, maintains the diversity of
population particles, and can solve the problems of pre-
mature convergence, low search accuracy, and poor local
search capability of the traditional immune algorithm so that
the optimization results can meet practical requirements
[21].

4.2.1. Production of the Initial Antibody Group. -e initial
antibody group is selected from the memory bank when this
bank is not empty. Otherwise, the initial antibody group is
generated randomly in the feasible solution space. A simple
coding method is used in this study. Each site selection
scheme can form an antibody of length p (p represents the
number of distribution centers), and each antibody repre-
sents the sequence of demand points of the selected cold
chain distribution centers. -is work considers a problem
involving 31 customers, where 1, 2, . . ., 31 represents the
customer serial number. Four of them are selected as dis-
tribution centers. Antibody (12, 18, 25, 27) represents a
feasible solution, which means that 12, 18, 25, and 27 are
selected as distribution centers.

4.2.2. Multiplicity Evaluation of Solutions. Suppose that the
immune system consists of a antibodies with a gene of length
A.-e following terms are defined:

(1) Diversity. An effective metric to measure and evaluate
the differences among individuals must be developed
to maintain or expand the diversity of individuals in
population evolution. Average information entropy
H(a), which is used tomeasure the difference between
individuals [22]. It is expressed as H(a) � (1/A) 􏽐

A
i�1

Hi(a). Hi(a) is the information entropy of the ith
gene, and it is defined as Hi(a) � − 􏽐

a
j�1 pjilog

pji

2 ,
where pji is the probability of the j(j � 1, 2, 3, . . . , S)

symbol appearing on locus i; that is, pji �

(the total number of jth symbols on i/a).
(2) Similarity. -e affinity between antibodies is calcu-

lated using the R bit continuous method, which is a
partial matching rule. First, R is determined to
represent the threshold of the degree of affinity. A
high degree of similarity between antibodies is de-
termined by the presence of a high R or continuous R

bits in the two codes; otherwise, it means two dif-
ferent individuals. Sv, s � (kv, s/L), where kv, s

represents the same digit number of antibody v and
antibody s and L represents the length of a general
antibody [23]. If the two antibodies are (5, 2, 7, 18, 6,
19, 16, 10, 12) and (11, 8, 7, 26, 6, 19, 21, 9, 15), then
centers 7, 6, and 19 are the same. kv, s � 3, and length
L is 9. -erefore, the similarity degree is 1/3. -is
similarity is calculated using the similarity in data
mining [24].

(3) Antibody Concentration. -is concentration refers to
the proportion of similar antibodies in the pop-
ulation (calculated using the R bit continuous
method mentioned above); that is, Cv � (1/N)

􏽐j∈NSv, s, where Sv, s �
1 Sv, s>T

0 Sv, s<T
􏼨 , T is a pre-

determined threshold, Cv is the concentration of
antibody v, n is the total number of antibodies, andN

is the collection of antibodies [25].
(4) Expected Reproduction Rate. -e expected reproduc-

tion rate of each individual in the population is de-
termined by the affinity (Av) between the antibody
and the antigen and the concentration (Cv) of the
antibody. P � a(Av/􏽐 Av) + (1 − a)(Cv/􏽐 Cv),
where a is the diversity evaluation parameter (usually
0.95). -e equation indicates that the individual
concentration is inversely proportional to the expected
reproduction rate, and the individual affinity is directly
proportional to the expected reproduction rate.

(5) Immune Memory Unit. -e addition of a certain
number of antibodies with high antigen affinity in
the memory unit is conducive to the updating of the
memory unit. DSY(Xj) � (􏽐

A+a
i�1 |f(xj) −f(xi)|/

􏽐
A+a
j�1 􏽐

A+a
i�1 |f(xj) − f(xi)|) andAf � (1/a) 􏽐

a
i�1

f(xi), where DS Y is the concentration selection
probability of the antibody and Af is the average
fitness [26].
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(6) Aggregate Fitness. Aggregate fitness is a modification
of fitness′ � fitness · exp(φ · Cj). -e probability of
antibody selection is proportional to polymeric fit-
ness when selection is performed. When the con-
centration is constant, the higher the fitness is, the
greater the probability of being selected is. However,
when the fitness is constant, the higher the antibody
concentration is, the lower the probability of selec-
tion is [27].

4.2.3. Artificial Immune Particle Swarm Optimization (AI-
PSO) Algorithm Flow. -e AI-PSO solution to urban cold
chain transport path optimization can be summarized in the
following steps. -e pseudocode of the AI-PSO algorithm is
shown in Algorithm 1.

5. Example Analysis

In this paper, Xiamen Dongdu Port is used as the distri-
bution center, and 31 customers in Xiamen Island are se-
lected as the distribution points.

5.1. Instance-Related Data. -is study uses the MATLAB
program to calculate and simulate the cold chain distribu-
tion network of imported fruit in Xiamen Island.-is region
has one supplier (Dongdu Port) and 31 customers. In
consideration of the various factors of cold chain urban
transportation vehicle distribution, the service time of the
model is set to 6:00 am to 12:00 am. And 6:00 am is the
earliest service time of the distribution center, and the time is
set as 0. In accordance with the traffic law of Xiamen City,
the traffic jam time is set from 7:00 am to 9:00 am, and the
rest time is the normal driving time. Speed is related to
accidents, traffic jams, weather conditions, vehicle perfor-
mance, and other emergencies. AI-PSO is used to solve the
urban cold chain transport optimization model, and the
relevant parameters are shown in Table 3.

Four distribution centers are selected to provide dis-
tribution services to the 31 customers.-e coordinate matrix
of suppliers, distribution centers, and customers is shown in
Table 4, and the spatial layout is shown in Figure 4. -e
customer’s time window was obtained by investigating the
cold chain operation center of imported fruit in Xiamen Free
Trade (experimental) zone. If the customer is selected as a
distribution center, the customer’s time window is the time
window for the distribution center to accept shipments from
the supplier.

In this study, MATLAB R2014b programming software
is used to solve the model, and the basic information of the
platform is shown in Table 5. In the path optimization study,
population size M� 200 and the maximum number of it-
erations Tmax� 100. Memory storage capacity Over-
best� 10, cross-probability pcross� 0.5, and mutation
probability P� 0.4. In the particle swarm algorithm, inertia
weight wstart� 0.9, wend� 0.4, and learning factor
C1 �C2 �1.5.

5.2. Static Optimization Phase. AI-PSO is adopted in ac-
cordance with the known information, and the time window
requirements of the distribution centers and users are
combined to determine the customer ownership in a static
environment. -e analysis results are shown in Figure 5, and
the corresponding customer information is shown in
Table 6.

-e pre-optimization stage distribution model in a static
environment is determined in accordance with the known
information, and the AI-PSO solution is adopted. Supplier A
services distribution centers B21, B27, B24, and B28. -e
total vehicle mileage is 82.173 km, and the average service
reliability of the supplier and each distribution center is
0.8787. -e five urban cold chain transportation routes,
costs, vehicle driving distance, and service reliability in the
static environment are shown in Table 7.

-e convergence curve of AI-PSO in the static envi-
ronment is shown in Figure 6, and the minimum cost of the
objective function is 57,613.91 yuan.

5.3. Dynamic Real-Time Optimization Phase. When the
factors change, continued implementation of the optimi-
zation scheme in the static environment results in a failure to
meet the service reliability target of the supplier or part of the
distribution center. -e real-time change in the congestion
index from 8:00 a.m. to 18:00 a.m. on November 20, 2019,
obtained with BaiduMap intelligent traffic software is shown
in Figure 7. According to Baidu traffic big data, the accident
coefficient of Xiamen is 0.846, and the coefficient of other
emergencies is 0.995. -e weather information in Xiamen is
from China Meteorological Administration. November 20,
2019, was a sunny and cloudy with a temperature of
16°C–22°C and wind force of 5–6 turning to 3–4. -e
weather condition coefficient is set to 0.990. According to the
on-board database, the vehicle performance coefficient is
0.999.

In accordance with the road characteristics in Xiamen,
the driving steering coefficient is assumed to be 1. According
to formula (5), the actual driving speed of the vehicle
changes correspondingly. On this basis, the AI-PSO method
is adopted to determine the customer ownership in the
dynamic environment on the premise of meeting the re-
quirements of the fuzzy time window. -e analysis results
are shown in Figure 8, and the corresponding customer
information is shown in Table 8.

In accordance with the change information, a transport
model of the real-time optimization stage under the con-
dition of time-varying network conditions is built, and the
AI-PSO solution is adopted.-e results show that supplier A
services distribution centers B16, B24, B27, and B28. -e
total vehicle mileage is 283.832 km, and the average service
reliability of the supplier to each distribution center is
0.8557. -e five urban cold chain transportation routes,
costs, vehicle driving distance, and service reliability in the
dynamic environment are shown in Table 9. -e conver-
gence curve of AI-PSO in the static environment is shown in
Figure 9, and the minimum cost of the objective function is
RMB 58101.23.
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5.4. Analysis of Experimental Results. -e traditional particle
swarm optimization (PSO) and mixed particle swarm op-
timization (GA-PSO) programs are also written using
MATLAB R2014b to verify the effectiveness of the urban
cold chain transport path optimization algorithm under a
time-varying network. Hybrid particle swarm optimization
(MSO) abandons the traditional particle swarm optimiza-
tion (PSO) method of updating the particle position by
tracking the extreme value, but it introduces a crossover and
mutation operation in the genetic algorithm and searches for
the optimal solution through the crossover between indi-
vidual and population extreme values of the particle and the
way of the particle’s own variation. A comparison

experiment is conducted with the AI-PSO algorithm
designed in this paper. Under the same experimental con-
ditions, the cold chain transport path, distance, cost, and
service reliability under a static environment are calculated,
and the results of the three methods are shown in Table 10.
-e transport path, distance, and cost of the cold chain
under a dynamic environment are shown in Table 11.

As can be seen from Table 10, in the result of the two-
layer model of the optimal path for vehicles under the GA-
PSO algorithm with urban cold chain transportation cost as

Input: set population sizeM� 200 and the maximum number of iterations Tmax� 100. Overbest� 10, cross-probability pcross� 0.5,
and mutation probability P� 0.4. In the particle swarm algorithm, inertia weight WSTART� 0.9, Wend� 0.4, and learning factor
C1 �C2 �1.5.
Output: particle position matrix Xn(n−1), velocity matrix Vn(n−1)

Antigen recognition, fitness calculation to determine Pbest and Gbest
procedure AI-PSO
for each particle i

Initialize velocity Vi and position Xi for particle i

Evaluate particle I and set Pbesti � Xi

end for
Gbest � min Pbesti􏼈 􏼉

Cluster center coding and particle clustering division are carried out;
According to the corresponding clustering division, the new clustering center is calculated and the particle fitness is updated;
while not stop
for i � 1, . . . , n

Initialize velocity Vi and position Xi for particle i

Evaluate particle i

if fit(Xi)< fit(Pbesti)
Pbesti � Xi

if fit(Pbesti)< fit(Gbest)
Gbest � Pbesti

End for
End while
Print Gbest
End procedure

ALGORITHM 1: AI-PSO algorithm pseudocode.

Table 3: Setting of the correlation coefficient.

c 30 yuan/t/km
p 18 yuan/kg
θ 0.02
v(y) 30 km/h
mo 4
to 0.25 h
δ 100 yuan/h
c1 100 yuan/h
g 1
vi 6 yuan/t
fi 7000 yuan
Qo 60 t
c2 300 yuan/h
c3 60 yuan/h
c4 200 yuan/h
φ 0.5

5

10

25

30

15

20

35

40

45

B1SC

B2
B3

B4

B5

B6
B7

B8

B9
B10

B11

B12

B13

B14

B15

B16

B17

B18 B19

B20

B21

22

B23

B24

B25

B26

B27

B28

B29

B30

B31

5 10 25 3015 20 35 40 45

Figure 4: Spatial layout of suppliers and customers.
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the objective function, the supplier needs to send five A cars,
one C car, and one D car to carry out distribution for the
four distribution centers. -e four distribution centers need
to send three A cars, three B cars, one C car, and two D
refrigerated transporters to distribute to 27 customers.
Compared with GA-PSO and PSO, AI-PSO has differences
in vehicle selection, but they are not considerable. In terms
of program running time, PSO and GA-PSO require 40.1203
and 33.2169 s, respectively, to converge. AI-PSO requires
31.3470 s to converge, which is 21.88% more efficient than
PSO. In terms of the total cost, PSO has the lowest total cost,
but its average service reliability is also the lowest (only
0.8319). -e total cost and total distance of the AI-PSO
algorithm are slightly increased, but the average service
reliability is improved. -e average service reliability of the

Table 4: Coordinate positions of suppliers and customers, quantity demanded, and time window.

Supplier Coordinate (km) Customer Coordinate (km) Quantity demanded (T) Time window (MIN)

A (5, 19)

B1 (18, 21) 2.44 (0, 10, 30, 40)
B2 (13, 28) 4.96 (0, 15, 50, 70)
B3 (6, 24) 3.84 (0, 20, 40, 60)
B4 (42, 16) 9.10 (0, 10, 20, 30)
B5 (20, 30) 6.31 (0, 30, 60, 90)
B6 (11, 16) 1.72 (0, 40, 90, 130)
B7 (5, 15) 5.09 (0, 10, 20, 30)
B8 (13, 24) 10.33 (0, 15, 45, 60)
B9 (21, 28) 2.53 (0, 10, 50, 60)
B10 (18, 25) 4.64 (0, 10, 30, 40)
B11 (23, 10) 5.00 (0, 5, 15, 20)
B12 (25, 30) 7.11 (0, 30, 60, 70)
B13 (12, 36) 1.69 (0, 20, 60, 90)
B14 (15, 19) 3.00 (0, 10, 20, 30)
B15 (16, 41) 3.21 (0, 10, 30, 40)
B16 (15, 7) 4.06 (0, 40, 80, 120)
B17 (10, 14) 7.82 (0, 15, 30, 45)
B18 (23, 24) 9.66 (0, 60, 90, 120)
B19 (27, 21) 2.02 (0, 15, 45, 60)
B20 (8, 32) 5.31 (0, 10, 60, 70)
B21 (14, 23) 7.50 (0, 25, 55, 80)
B22 (4, 42) 6.00 (0, 20, 40, 60)
B23 (2, 18) 10.89 (0, 5, 20, 30)
B24 (27, 28) 4.55 (0, 20, 60, 80)
B25 (25, 15) 1.36 (0, 10, 30, 45)
B26 (11, 11) 5.94 (0, 5, 25, 40)
B27 (6, 17) 6.20 (0, 25, 55, 80)
B28 (7, 39) 4.33 (0, 15, 45, 60)
B29 (27, 32) 6.50 (0, 20, 40, 60)
B30 (10, 10) 2.44 (0, 35, 70, 105)
B31 (1, 24) 7.19 (0, 20, 80, 100)
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Figure 5: Customer ownership in a static environment.

Table 5: Experimental test environment.

Computer models RedmiBook 14
Operating system Windows 10 64-bit (DirectX 12)
CPU Intel (R) i7-10510H CPU @ 1.80GHz
Computer memory 8G (DDR4 2666MHZ)
Hard disk 512G

Table 6: Service object information of the supplier and distribution
center in a static environment.

Service outlets Service object
A B21, B27, B24, B28
B21 B1, B2, B8, B10, B11, B14, B21
B24 B4, B5, B9, B12, B19, B18, B24, B25, B29
B27 B3, B6, B7, B16, B17, B23, B26, B27, B30, B31
B28 B13, B15, B20, B22, B28
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Figure 6: Convergence curve of AI-PSO in a static environment.
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Figure 8: Customer ownership in a dynamic environment.

Table 7: Cold chain transport path, distance, cost, and service reliability in a static environment.

Service outlets Shipping lines Number and model of vehicle Total cost Total distance Service
reliability

A A-B28-B24-B21-B27-A 5A+ 1C+ 1D 26430.624 82.173 0.9072
B21 B21-B8-B2-B10-B1-B11-B14-B21 1A+ 1C 6730.207 43.493 0.8827
B27 B27-B23-B31-B3-B6-B17-B16-B26-B30-B7-B27 1A+ 1B+ 1D 8398.512 51.856 0.8196
B24 B24-B29-B12-B5-B9-B18-B25-B19-B4-B24 1A+ 1B 10631.291 69.102 0.8477
B28 B28-B20-B13-B15-B22-B28 1B+ 1D 5423.274 35.415 0.9362
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AI-PSO algorithm is 0.8787. -e test algorithm achieves the
desired effect in the static environment.

As shown in Table 11, in the result of the two-layer
model of the optimal path for vehicles under the GA-PSO
algorithm with urban cold chain transportation cost as the
objective function, the supplier needs to send five A cars, one
C car, and one D car to carry out distribution for the four
distribution centers. A total of three A, three B, one C, and 1

D refrigerated transport vehicles are sent to the four dis-
tribution centers to deliver to 27 customers. Compared with
GA-PSO and PSO, AI-PSO has no difference in vehicle
selection. In terms of program running time, PSO and GA-
PSO take 41.0860 and 33.9370 s, respectively, to converge.
AI-PSO takes 32.6719 s to converge, which is 20.48% more
efficient than PSO. In terms of the total cost, GA-PSO has the
highest total cost. AI-PSO has the lowest total cost, but its

Table 8: Service object information of suppliers and distribution centers in a dynamic environment.

Service outlets Service object
A B16, B24, B27, B28
B16 B11, B16, B25, B26, B30
B24 B1, B5, B4, B9, B10, B18, B19, B24, B29
B27 B3, B6, B7, B8, B14, B17, B21, B23, B27, B31
B28 B2, B13, B15, B20, B22, B28
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Figure 9: Convergence curve of AI-PSO in a dynamic environment.

Table 9: Cold chain transport path, distance, cost, and service reliability in a dynamic environment.

Service outlets Shipping lines Number and model of vehicle Total cost Total distance Service
reliability

A A-B27-B16-B24-B28-A 5A+ 1C+ 1D 27371.62 80.802 0.8949
B16 B16-B11-B25-B26-B30-B16 1B 5660.207 35.735 0.9359
B24 B24-B18-B9-B10-B1-B5-B19-B4-B29-B24 1A+ 1B 11325.199 80.736 0.8260
B27 B27-B17-B6-B14-B21-B8-B3-B31-B23-B7-B27 2A+ 1D 7420.925 42.335 0.7996
B28 B28-B20-B2-B13-B15-B22-B28 1B + 1C 6323.274 44.224 0.8219

Table 10: -ree methods are used to calculate the results in the static environment.

Algorithm Total cost (yuan) Total distance (km) Average service reliability Running time (s) Total number of
vehicles and models

computation
complexity

AI-PSO 57613.908 282.039 0.8787 31.3470 8A+ 3B + 2C+ 3D O (N2)
GA-PSO 57752.342 297.634 0.8401 33.2169 8A+ 4B + 1C+ 2D O (N2)
PSO 56319.591 268.352 0.8319 40.1203 8A+ 3B + 3C+ 2D O (N2)
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average service reliability is 0.8557, which is between the
values for PSO and GA-PSO. Although the average service
reliability of the AI-PSO algorithm is not the highest, its total
cost and total distance are the lowest. In the dynamic en-
vironment, the test algorithm also achieves the expected
results, and the optimization scheme of the urban cold chain
transportation path based on the AI-PSO algorithm is in line
with the requirements of the economy and service reliability.
-e proposed algorithm could obtain better objective
function values than the other two algorithms in both static
and dynamic environments, which indicates that the pro-
posed algorithm is feasible and effective under different
optimization objectives.

Comparison of Tables 10 and 11 indicates that, with
the AI-PSO algorithm, the total distribution cost in the
static environment is 57613.908, and the total distribu-
tion cost in the dynamic environment is 58101.23 (an
increase of 0.85%). In the static and dynamic environ-
ments, the total distribution distance is 282.039 and
283.832, respectively, with an increase of 0.67%. -e
average service reliability of delivery in the static and
dynamic environments is 0.8787 and 0.8557, respec-
tively, with a reduction of 2.62%. -is result shows that
the time-varying network environment increases the
distribution cost and reduces the average service reli-
ability of cold chain logistics enterprises. To avoid the
influence of time-varying network conditions on urban
distribution, urban cold chain logistics and trans-
portation enterprises should establish a reasonable ser-
vice time for distribution service and a reasonable time
window for cold chain demand customers. -e calcu-
lation results show that taking the service reliability as
the optimization goal increases the distribution cost to a
certain extent, and the improvement of the service re-
liability of cold chain logistics enterprises will increase
the distribution cost to some extent. Cold chain logistics
enterprises should explore differentiated customer
management in the delivery process based on the
characteristics of customers and adopt hard time window
service for important customers, and soft time window
service for other less important customers.

6. Conclusion

According to the characteristics of strong time requirement
of urban cold chain transportation, the main factor affecting
the timeliness of cold chain is customer ownership. In this
study, the time window constraint of trapezoidal fuzzy
membership function is introduced in this study. -e urban
transit section involved time-varying factors in the process

of change and led to a time delay problem. On the basis of
service reliability maximization, an optimization model of
urban cold chain transportation path under time-varying
network conditions was constructed. AI-PSO was used to
solve the model in two stages, namely, cold chain trans-
portation path optimization under a static environment and
real-time cold chain transportation optimization under a
dynamic environment. After research, the following con-
tributions have been made:

(1) -e urban cold chain transport path model con-
structed in this paper involves a three-layer network,
namely, supplier-distribution center-customer.
Firstly, the location of the distribution center and the
transportation path from the supplier to the distri-
bution center are solved according to the model.
Secondly, the customer attribution is determined
and the transportation path from the distribution
center to the customer is solved according to the
customer attribution result.

(2) In the dynamic optimization stage, this paper used
Baidu Map traffic big data (China Urban Traffic
Congestion Index) to reflect the time-varying
characteristics of urban road network and solved the
urban cold chain transport path under the time-
varying network conditions. Compared with the
optimization of cold chain transportation path in the
static environment, the results of the dynamic en-
vironment showed that the model could obtain the
optimal distribution path with the lowest cost and
adjusted the urban cold chain transportation path
according to the real-time traffic information to
avoid traffic congestion.

In the field of transportation, big data has begun to play
an increasingly important role, and the role of big data in
urban traffic management is gradually emerging. However,
how to effectively distinguish and scientifically and ratio-
nally use data is a test of the wisdom and vision of decision
makers. -e model and algorithm presented in this paper
can provide methodological support and a scientific refer-
ence to decision-makers of cold chain enterprises as they
plan their transportation paths.

In fact, the traffic flow of urban roads is greatly different
from that of expressways, and the measurement of vehicle
arrival on the middle section of urban roads will also be
seriously interfered by upstream signal lights and upstream
bus stops. If the road is not long enough, it may also be
disturbed by downstream traffic facilities. Wang [28] found
that the number of vehicles arriving at a certain time interval
on a road section was taken as a random number, and its

Table 11: -ree methods are used to calculate the results under a dynamic environment.

Algorithm Total cost (yuan) Total distance (km) Average service reliability Running time (s) Total number of
vehicles and models

Computation
complexity

AI-PSO 58101.23 283.832 0.8557 32.6719 8A+ 3B+ 2C+ 2D O (N2)
GA-PSO 61433.02 306.947 0.8625 33.9370 8A+ 3B+ 2C+ 2D O (N2)
PSO 58891.52 296.580 0.8466 41.0860 8A+ 3B+ 2C+ 2D O (N2)
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statistical law could be described by three kinds of discrete
distributions depending on different situations: Poisson
distribution when traffic density is small. When the vehicle
density is too large, it is binomial distribution. Negative
binomial distribution is used for other cases and those af-
fected by rush hour. However, for the convenience of solving
the model in this paper, it is assumed that the time of the
vehicle passing through section (O, D) follows normal
distribution N(μO D, σ), which is far from the actual situ-
ation. Future research in this field still needs efforts. Also this
study does not consider the time-varying demand of cus-
tomers, nor does it discuss the reverse logistics problems
involving customers’ returned goods and materials. More-
over, vehicle scheduling problems, such as the random time-
varying characteristics of urban road networks, road section
failure, and traffic avoidance based on real-time traffic in-
formation, are not included and thus need to be further
studied.
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