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Every year, over 50 million people are injured and 1.35 million die in traffic accidents. Risky driving behaviors are re-
sponsible for over half of all fatal vehicle accidents. Identifying risky driving behaviors within real-world driving (RWD)
datasets is a promising avenue to reduce the mortality burden associated with these unsafe behaviors, but numerous
technical hurdles must be overcome to do so. Herein, we describe the implementation of a multistage process for classifying
unlabeled RWD data as potentially risky or not. In the first stage, data are reformatted and reduced in preparation for
classification. In the second stage, subsets of the reformatted data are labeled as potentially risky (or not) using the Iterative-
DBSCAN method. In the third stage, the labeled subsets are then used to fit random forest (RF) classification models—RF
models were chosen after they were found to be performing better than logistic regression and artificial neural network
models. In the final stage, the RF models are used predictively to label the remaining RWD data as potentially risky (or not).
)e implementation of each stage is described and analyzed for the classification of RWD data from vehicles on public roads
in Ann Arbor, Michigan. Overall, we identified 22.7 million observations of potentially risky driving out of 268.2 million
observations. )is study provides a novel approach for identifying potentially risky driving behaviors within RWD datasets.
As such, this study represents an important step in the implementation of protocols designed to address and prevent the
harms associated with risky driving.

1. Introduction

Each year, globally, traffic accidents result in 1.35 million
deaths and 50 million injuries [1]. In 1998 in the United
States, the National Highway Traffic Safety Administra-
tion (NHSTA) identified that aggressive driving behav-
iors occur in approximately two-thirds of all fatal car
accidents [2]. Since then, multiple studies have corrob-
orated the connection between aggressive driving be-
haviors and fatal car crashes [3–8]. )e AAA Foundation
found that, from 2003–2007, over half of fatal accidents
were the result of aggressive driving behaviors [9]. In
order to reduce the harms of aggressive driving behav-
iors, novel strategies for identifying such driving be-
haviors are required.

)e concept of “aggressive driving” was formally defined
in Meyer Parry’s 1968 work, “Aggression on the Road,” in
which he stated that “the increasing stress involved in
motoring nowadays makes the psychological efficiency of
the driver a more important factor than the mechanical
efficiency of the vehicle he drives” [10]. Looking at several
studies on the topic, there is not a formal consensus on the
definition of aggressive driving, but it ranges from acts of
carelessness and recklessness to “road rage” [11–14]. One
definition which captures these varying conceptions of ag-
gressive driving is as follows: “A driving behavior is ag-
gressive if it is deliberate, likely to increase the risk of
collision, and is motivated by impatience, annoyance,
hostility, and/or an attempt to save time” [15]. Since it is not
usually possible to accurately assess the impatience,
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annoyance, or attitude of drivers at scale, it is generally
simpler to focus on the middle of this definition—driving
behaviors which increase the risk of collision. )erefore, the
term “risky driving” was used in the present study instead of
“aggressive driving.” However, since aggressive driving has
been used in several previous studies, the same terminology
was used when referring to those.

While examples of risky driving, such as tailgating,
running red lights, and speeding, are easily recognized [15],
in practice, identifying real-world risky driving at scale is
complicated by a lack of both data and strategies to properly
assess said data. A video may catch a car running a red light
and a GPS unit may record that its vehicle is speeding, but
the steps required to take available data and identify patterns
of risky driving behaviors require innovative strategies. )is
is especially important when dealing with “big data,” which
is currently limited in the transportation research literature.

With advances in technologies, the ability to collect large
quantities of real-world driving data (RWD, such as the
speed, acceleration, and heading of a vehicle across entire
trips) has greatly increased. )e use of machine learning
strategies to try to identify and classify aggressive driving
behaviors within these large RWD datasets is a field of
budding interest. An array of supervised learning methods
such as linear regression [16, 17], naı̈ve Bayes classification
[18], support vector machines [19], artificial neural networks
[19, 20], dynamic time warping with k-nearest neighbors
[21], random forests [22], and deep learning approaches [23]
has been used to classify RWD data as either aggressive or
not. Unsupervised methods such as k-means [24, 25], self-
organizing maps (a type of unsupervised neural network)
[25], and DBSCAN [26] have been incorporated into ag-
gressive driving classification efforts, as well.

)ese studies represent important advancements in the
efforts to identify aggressive driving from RWD data. Feng
et al. used the measurement of longitudinal jerk in order to
identify aggressive driving behaviors [16]. Wang et al. cre-
ated an index to identify jerky driving movements as po-
tential indicators of aggressive driving [17]. Jahangiri et al.
identified aggressive driving while negotiating turns by
modeling vehicles crossing lane stripes [22]. Several studies
used RWD data collected from smartphones [18, 19, 21, 27].
Hong et al. and Johnson et al. used RWD data from
smartphones to identify aggressive driving styles [18, 21]. Yu
et al. identified the statistical profiles of specific types of
aggressive driving (e.g., weaving, slamming the breaks, etc.)
and used smartphone RWD data to train models to identify
these behaviors [19]. Jeihani et al. leveraged a series of
machine learning strategies to identify observations char-
acterized by sudden changes in statistical profiles (i.e.,
sudden drops in speed and sudden turns) [28].

While these endeavors represent important steps in miti-
gating the harms of risky driving, for agencies and organizations
dedicated to improving traffic safety, these individual studies do
not provide a full account of all the necessary steps (such as
restructuring RWD data for analysis and accounting for the
large size of RWD data via time- and memory-efficient algo-
rithmic choices) to identify risky driving behaviors from RWD
data. Providing a guide to the implementation of risky driving

classification strategies is necessary to ensure that agencies are
empowered to utilize such strategies to improve traffic safety
within their jurisdictions.

)e overall purpose of this study is to demonstrate a
multistage process for classifying observations in a large RWD
dataset as potentially risky or not, using kinematic data only.
We present four distinct stages in which the process is di-
vided: formatting the data for analysis; labeling a subset of the
data as potentially risky or not using unsupervised learning
techniques; training supervised learning models on these
labeled datasets; and, finally, using these models to label the
remaining RWD data as potentially risky or not. At each step,
we provide specific implementation details which can help
inform future strategies for identifying potentially risky
driving behaviors within RWD data. )us, our approach first
seeks to group observations by driving behavior (i.e., left
turns, right turns, accelerating, and merging) and then seeks
to identify outlying observations within each group. Further,
while researchers and agencies may opt to utilize different
specific tools and strategies within each phase of the classi-
fication process, the four overarching phases presented herein
provide a novel approach for implementing risky driving
classification.We note as well that future research should seek
to confirm if the process we employ successfully identifies
observations related to risky driving outcomes such as car
accidents and traffic violations, and we provide recommen-
dations for future steps in the discussion.

2. Data Description and Study Site

Data from the Safety PilotModel Deployment (SPMD) study
were obtained through the Research Data Exchange, via the
U.S. Federal Highway Administration (and is now available
through Data.gov) [29]. Data were collected during the
months of October 2012 and April 2013 in Ann Arbor, MI,
from nearly 3,000 vehicles. For this study, data from the first
week of April 2013 were utilized and were subsetted to only
include data within Washtenaw County (which is, conve-
niently, in the shape of a rectangle).

)is study used basic safety messages (BSMs) trans-
mitted by participating vehicles. BSMs were transmitted at a
rate of 10Hz and contain data on vehicle’s state of motion
(i.e., speed, acceleration, and yaw rate) and location. Spe-
cifically, data from the “BsmP1” file corresponding to April
2013 were used. )is file is 204GB with approximately 1.5
billion observations. For this study, a subset of this file was
used corresponding to four weekdays and two weekend days
in this first week and contained approximately 268 million
observations. Data were stored locally on a PostGreSQL
database and were accessed and manipulated using the R
programming language. For further details about the
“BsmP1” file, the metadata files are referenced [30, 31].

3. Methodology

)e overall goal of this study was to design and present a
protocol for identifying potentially risky driving behaviors
within large RWD datasets. )e primary logic of our ap-
proach is that the data profile of potentially risky driving
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behaviors will look quite similar to the data profile of
nonrisky variations of the same behavior (i.e., a risky left
turn and a not risky left turn will have similar data profiles)
and then that potentially risky behaviors are those which are
least normal for its given behavior (i.e., a potentially risky left
turn would have a data profile which outlies the average data
profile of all left turns in the dataset). As such, the process
was divided into four primary stages: reformatting the
unlabeled BsmP1 data subsets for analysis (one subset for
each day); labeling subsets of the reformatted data as po-
tentially risky or not using the Iterative-DBSCAN (I-
DBSCAN) method; using the labeled subsets to train clas-
sification models (random forest) for each respective day;
and, finally, using the classification models to label the entire
day’s corresponding data. Random forest was chosen after
comparing it with logistic regression and artificial neural
networks.

To begin, the BsmP1 data from April 1–7, 2013, were
stored in seven different PostGreSQL tables, one for each
respective day. Due to a compilation error, the table from
Wednesday, April 3, was not included for analysis within
this study. As such, the six tables of BsmP1 data corre-
sponding to April 1–2 and 4–7 were utilized. We chose to
analyze the data from each day separately for three primary
reasons: first, as a matter of feasibility due to the large size of
the data files; second, to ensure the reproducibility of the
process we employed; and third, because we hypothesize that
driving patterns on weekdays versus weekends are likely
different (due to work commuting), and thus different types
of risky driving behavior may emerge. Regarding the second,
we note that consistent reproducibility—while not a re-
flection of accuracy—is an important feature to establish for
any methodological approach. Regarding the third, we
generated histograms of observations by time of day for both
weekdays and weekends to confirm this hypothesis. Each of
these tables (∼2–5GB) was too large to effectively analyze in
R, and as such, for the first three stages of our process, a
random subset of the data (∼7–10% of full data) for each of
the six days was selected. It was important to ensure that
these random samples contained “full driving trips.” If we
simply pulled random observations, then there would be no
guarantee that continuous sequences of observations would
be extracted—in the stage one description, the importance of
this will be clarified.)e BsmP1 data includes unique vehicle
IDs and, as such, we randomly selected 100 vehicle IDs for
each day (representing ∼7–10% of all vehicle IDs) and then
extracted all observations corresponding to those vehicle
IDs.

3.1. Stage One: Reformatting Subsets. Data were reformatted
to address two issues: first, to ensure the data were in a
format to best identify potentially risky driving; and second,
to reduce the size of the data to improve the runtime fea-
sibility of our labeling method in stage two. Regarding the
first, the BsmP1 data are a set of observations measured at a
rate of 10Hz. What is readily apparent when considering
these data is that the driving behavior of a vehicle cannot be
understood by looking at individual time-point observations.

A single observation does contain information about speed
and acceleration and yaw, but it lacks the context of the full
event it is contained within. As such, part of our refor-
matting process was to take continuous sets of 30 BsmP1
data points and merge them into single observations of
monitoring-period data representing 3-second windows (30
observations of 10Hz data correspond to 3 seconds). Re-
garding the second, these monitoring-period observations
were generated at one-second intervals (1Hz), meaning that
the reformatted datasets contained 10% of the total number
of observations as the original subsets. In Figure 1, we
provide a visual depiction of how time-point observations
(red diamonds) are converted into monitoring-period ob-
servations (blue and green rectangles) for a vehicle moving
at a constant velocity—as can be seen, each monitoring-
period rectangle contains thirty time period diamonds, with
a new monitoring period beginning every ten time period
diamonds.

)e reformatting process for a single subset was as fol-
lows. First, the observations were organized by vehicle ID and
then by time. We did not want to combine data corre-
sponding to different vehicles, nor different trips from the
same vehicle, so we split each vehicle’s data by continuous
trip. Since we sorted the data by time as well, we identified the
start of new trips by jumps in the recorded time between
observations. At this point, the data are divided into indi-
vidual continuous trips.)en, for each of these trips, the time-
point observations are merged such that at intervals of one
second, three second’s worth of data (i.e., thirty observations)
were merged into a single observation. )e time-point data
measures of speed, acceleration, yaw, and heading were
merged to createmonitoring-period data measures of average,
standard deviation, maximum and minimum values of speed,
acceleration, and yaw rate, as well as overall change in heading
and standard deviation of change in heading. An array of the
unique data identifiers for the 30 time-point observations
merged was generated as well. )e reformatted datasets of
monitoring-period data were used in the next stage.

3.2. Stage Two: Labeling the Reformatted Data, an Unsuper-
vised Learning Approach. After reformatting, the data were
ready to be labeled as potentially risky or not. )is task was
completed using an unsupervised learning approach,
through two primary steps: first, by utilizing k-means
clustering algorithm and change in heading thresholds to
subset the data into elementary driving behaviors (EDBs);
and, second, by utilizing the density-based spatial clustering
of applications with noise (DBSCAN) clustering algorithm
in an iterative fashion to identify potentially risky driving
[32]. )e underlying concept behind this approach is that
there is a set of EDBs that occurs (such as accelerating,
making a U-turn, merging onto the highway, etc.) and that
these EDBs will likely have similar statistical profiles to one
another. Potentially risky behaviors, then, were identified as
the data points which were the further outliers from their
prescribed cluster, as identified by running DBSCAN on
each EDB cluster—this is meant to capture abnormal in-
stances of EDMs.

Journal of Advanced Transportation 3



)e first of these two steps was to identify all EDB
clusters within the data. To do this, we first subdivided the
data by speed and change in heading. To divide by speed, we
ran k-means using only the average speed variable to gen-
erate three distinct clusters (low, medium, and high speed).
)e data categorization based on speed has been conducted
as a preparatory step in similar previous studies [17, 24].
)en, the data were further subdivided into five different
turning classes based on change in heading (left and right
turns (change in heading greater than 45 degrees); left and
right curves (change in heading between 10 and 45 degrees);
and straight (change in heading under 10 degrees)). Sub-
sequently, k-means was run on each of these fifteen subsets,
utilizing the sum of squared distances “elbow” method to
identify optimal number of clusters (clustering variables
were: average, maximum, and standard deviation of speed;
average, maximum, minimum, standard deviation, and jerk
of acceleration; and, average, maximum, minimum, stan-
dard deviation, and jerk of yaw rate). )e results of this
round of k-means represent the EDB clusters.

For each of the EDB clusters identified, DBSCAN was
performed iteratively (I-DBSCAN) [26]. )e idea is that,
since the data have been clustered into EDBs, the data are
dense and that each iteration of DBSCAN will cluster most
of the data together. DBSCAN returns n clusters and one set
of noise (i.e., unclustered data). One iteration of I-DBSCAN
is as follows: first, DBSCAN is run on the dataset—the
“elbow” method is utilized to determine the optimal epsilon
parameter; second, the “normal” cluster is identified as the
cluster consisting of at least 90% of the dataset—if no such
“normal” cluster exists, I-DBSCAN is terminated and run
again from the beginning; third, all data identified as noise
are extracted and labeled as potentially risky; fourth, if any
additional clusters have been identified, they are extracted
and labeled as potentially risky—if no such additional cluster
is identified, then it is checked if this is the third such time no
additional cluster has been found and, if so, I-DBSCAN is
terminated and the results are returned; finally, if not ter-
minated, another I-DBSCAN iteration is undertaken uti-
lizing the “normal” cluster as the dataset. In a sense, this
process is like peeling the layers off of an onion, where the
furthest outlying data points are “peeled away” and labeled
as potentially risky and the dense set of data in the middle is

labeled as not potentially risky. After I-DBSCAN has been
run on all the generated EDB clusters, the labeled datasets
are merged back together. After running I-DBSCAN on all
EDB clusters and merging the results, we have labeled the
entire dataset.

In order to complete this entire stage, software is needed
to be written to streamline and automate the process. Since
the “elbow” method utilized within both k-means and
DBSCAN cannot be easily automated, an R script was
written to semiautomate the labeling process as is described.
)e script written walked the user through the labeling
process, prompting the user to input the values for the
“elbow” method when necessary and automating all other
aspects of the process.

3.3. Stage *ree: Predicting Risky Driving, a Supervised
Learning Approach. With the data labeled, the next stage is
to train classification models to identify potentially risky
driving behaviors. First, it was necessary to identify the
optimal classification model to undertake this task. We
opted to compare logistic regression, random forest, and
artificial neural networks.

3.3.1. Logistic Regression. )e logistic regression model is
frequently used across the statistical sciences due to both its
ease of implementation as well as the ability to extract es-
timates of causal relationships (in the form of log-odds
ratios) [33]. Given a dichotomous outcome Y with possible
values of 0 and 1, it is of interest to calculate the probability
(as a value from 0 to 1) that an event occurs (Y � 1), given a
set of known predictors X � x1, x2, . . . , xn􏼈 􏼉. A typical linear
regression model, of which the outcome values range from
−∞ to ∞, is not appropriate for modeling dichotomous
outcomes [33]. As such, the logistic regression model is
defined as follows based upon the logistic distribution:

E(Y | X) �
e
β0+ β1z1+···+βnzn

1 + e
β0+ β1z1+...+βnzn

, (1)

in which E Y|X{ } can be understood as the expected value of
Y given a set of predictors X [33]. A labeled dataset con-
sisting of dichotomous outcome Y and set of predictors X

can be used to fit a logistic regression model, utilizing a
maximum likelihood estimator, to calculate model coeffi-
cients β � β0, β1, . . . , βn􏼈 􏼉. Once a logistic regression model
has been fit, the model can be used to label a dataset con-
sisting m observations of predictors X. For each set of
observations, Xi � x1, x2, . . . , xn􏼈 􏼉, E(Y|Xi) can be calcu-
lated, and this value is then assigned to each observation as
the prediction of the probability that Yi � 1 [33].

3.3.2. Random Forest. )e random forest classification
model is a powerful method to implement a form of “en-
semble learning,” in which many classification trees are
generated and whose outputs are aggregated to generate
classification predictions [34, 35]. Random forest is built
upon the concept of “bagging,” in which n classification trees
are generated independently of one another, each generated

Figure 1: Converting TP data to MP data—using a vehicle moving
at a constant velocity as an example. )e red diamonds represent
TP observations and the blue and green rectangles represent MP
observations. Each MP observation contains 30 TP observations
and a new MP observation begins every 10 TP observations. Of
importance, it is to be noted that there is an overlap in eachMP.)e
fourth, fifth, and sixth monitoring periods are colored green in
order to improve visual readability of the figure—the color dis-
tinction does not hold further meaning.
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using a unique bootstrap sample of the training data set [35].
For binary classification, each of the n trees is considered to
have a vote, and the final classification of the observation is
determined based on majority vote by the n trees. In a
standard classification tree, starting from a root node, each
node is split based upon all predictors included in the model,
but, in random forest, the split decision at each node is made
using a random subsample of the available predictors [35].
As noted by Liaw and Wiener, “this somewhat counterin-
tuitive strategy turns out to perform very well compared to
many other classifiers, including discriminant analysis,
support vector machines, and neural networks, and is robust
against overfitting” [35].

As such, given a dichotomous outcome Y with possible
values of 0 or 1 and the training set ofm vectors of predictors
X, n classification trees are generated through the method
described above. After being trained, predictions are gen-
erated as follows: each of these trees, ft, given a new set of
predictors X′, returns a value of either 0 or 1, denoted as
ft(X′) � 0, 1{ }. )e result from each individual tree is
considered a vote. )e result, either 0 or 1, which gets the
most votes, V, is returned as the predicted value Y′ for the set
of predictors X′. )is can be understood mathematically as
follows:

V �
1
n

􏽘

n

i�1
fi X′( 􏼁⟶ Y′ �

V< 0.5, 0

V≥ 0.5, 1
.

⎧⎨

⎩ (2)

3.3.3. Artificial Neural Network. Artificial neural networks
arose in response to a digital conundrum: computers are able
to solve mathematical computations at a rate that far exceed
human capacity, but, simultaneously, cannot solve complex
problems that humans are able to do so instantaneously [36].
)e overarching concept is that the neural architecture of the
human brain is well designed for answering complex
questions, and as such, an algorithm replicating this ar-
chitecture can similarly answer. For this project, we con-
sidered a feed forward single hidden layer neural network
[37]. In such an architecture, there are three layers of
neurons: the input layer, hidden layer, and output layer. )e
input layer corresponds to the input variables (i.e., one
neuron for each variable). Each variable in the input layer is
connected by a weighted flow, w, to each of the hidden layer
neurons [37]. We used a grid-search approach to determine
the optimal number of hidden layer neurons by ranging
from 1 to the number of neurons in the input layer. Each of
the hidden layer neurons is connected by a weighted flow, β,
to the single output layer neuron [37]. As such, given n input
variables X � x1, x2, . . . , xn􏼈 􏼉, m hidden neurons, dichoto-
mous outcomeY, and linear activation function g, the neural
network can be defined as follows:

G(X) � 􏽘
m

i�1
βig wi · X + bi( 􏼁, (3)

where wi � (wi1, wi2, . . . , win)T is the vector of flows con-
necting the n input neurons to the ith hidden neuron, βi is the
flow connecting the ith hidden neuron to the single output

neuron, and bi, is the bias associated with the ith hidden
neuron [37]. Given a sample with L total observations, each
with predictor sets Xi and dichotomous outcome Yi, the
values of wi, βi, and bi are found by minimizing the distance
between the model output and the actual outcome value, as
follows [37]:

􏽘

L

i�1
G Xi( 􏼁 − Yi. (4)

3.3.4. Evaluating Best Model Fit. In order to evaluate which
of these three modeling approaches is best suited for pre-
dicting potentially risky driving behaviors, we ran 5-fold
cross validation on the labeled subsets. In this process, the
dataset is split into 5 groups. For each combination of four
groups, the selected four groups are used to train the
classification model and then we assess how well the model
does at identifying potentially risky driving within the fifth
group. )e true positive rate and false positive rate of each
iteration are calculated in order to create our primary
evaluation metric, the area under the receiver operating
curve (AUC). We repeated these 5-fold validations 25 times
for each of the three classification models and extracted the
average AUC scores and corresponding receiver operating
curves. As a secondary outcome, runtime was extracted as
well. As shall be discussed in the results, the random forest
classification model outperformed others.

After it was determined that random forest was the best
choice of classification model, a random forest model was fit
for each of the six days of data (April 1–2 and 4–7).

3.4. Stage Four: Labeling All the Data. As the random forest
models for each of April 1–2 and 4–7 were trained on subsets
of BsmP1 data from each of those days, the random forests
models were then used to label all of the data in each of these
datasets. To do this, data were extracted from each of these
datasets by vehicle ID, converted into monitoring-period
data format (using the same procedure described in stage
one), and then labeled utilizing the respective random forest
model. )ese labeled datasets were then saved in the da-
tabase by day. At this point, all of the BsmP1 data, refor-
matted into monitoring-period format, for April 1–2 and
4–7, were labeled as potentially risky or not. Since each
monitoring-period observation included a reference to the 30
time-point observations merged to created it, the option is
also then available to label the original BsmP1 observations
as potentially risky or not (risky if they appear in any
monitoring-period observations labeled as risky). As an
additional analysis, we labeled each daily dataset with each of
the other 5 random forest models (i.e., we labeled the April 1
dataset with each of the April 2 and April 4–7 datasets). We
then calculated the proportion of the potentially risky ob-
servations observed by the daily model (i.e., the April 1st
model labeling the April 1st dataset), which are also iden-
tified as risky by each of the other day’s models. Finally, to
better characterize differences between observations labeled
as potentially risky and those that are not, we generated
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histograms of the distribution of two variables: acceleration
jerk (derivative of acceleration) and yaw jerk (derivative of
yaw). )ese values were calculated by comparing the first
and last time point of each monitoring period. )ese var-
iables were chosen because we hypothesize that risky driving
behaviors will often be characterized by sudden changes in
movement, which may be captured by changes in yaw and
acceleration. Given large size of the datasets, we present the
histograms with data corresponding to April 1.

4. Results

BsmP1 data were subsetted by calendar day, with a total of
six subsets corresponding to April 1–2 and 4–7, 2013 (see
Table 1 for number of data points in each table and cor-
responding number of vehicles). For analysis, 100 vehicle
IDs were randomly selected from each day and all data
corresponding to each vehicle ID and respective day were
extracted (see Table 1 for size of 100 vehicle random sample).
Due to technical database issue, the data corresponding to
April 3 was not used. We had hypothesized, as well, that
weekday and weekend driving patterns would be distinct,
with weekday driving patterns being defined by peak driving
activity during the morning and evening. In Figure 2, we
show histograms of weekday and weekend driving obser-
vations by time of day, confirming this hypothesis.

4.1. StageOne: Reformatting theData. Each of the six subsets
was converted from time-point observations into monitor-
ing-period format. )is resulted in the size of the datasets
being reduced by an order of magnitude (see Table 2 for
number of observations in each table before and after
conversion, as well as the number of distinct continuous
driving trips identified within each sample).

4.2. Stage Two: Labeling Subsets with I-DBSCAN. )e clus-
tering protocol described was applied separately to each of
the size reformatted datasets to label all points as either
potentially risky or not. )e proportion of each dataset
labeled as potentially risky ranged from 8.25% to 10.0%,
indicating that the clustering protocol behaved in a con-
sistent fashion (see Table 3 for the crude number of data
points and the proportion of data points labeled as poten-
tially risky in each dataset).

4.3. Stage *ree: Fitting Random Forest Models. With the
labeled data in hand, we then compared the performance of
three different classification models at correctly identifying
potentially risky driving points using 5-fold cross validation.
Overall, we found that random forest outperformed both
logistic regression and artificial neural network (see Figure 3
for AUROC of each model and Table 4 for mean AUC score
and runtime of each classification model).

After identifying random forest as the best classification
model, we fit distinct random forest models to each of the six
labeled datasets. )ese random forest classification models
correspond to each of the six days.

4.4. Stage Four: Labeling All the Data. )e six random forest
models fitted in the prior stage were then used to label all of
the data in the PostGreSQL database corresponding to the
same day. Data were extracted by day and by vehicle,
reformatted into monitoring-period structure, labeled using
the corresponding random forest model, and then inserted
into a new PostGreSQL table corresponding to the date of
the observation. Table 5 shows the size of the original da-
tabase tables, the size of the new reformatted, labeled tables,
and the proportion of the entries labeled as potentially risky.
In Figure 4, we present two heat maps corresponding to data
from 250 randomly selected vehicles: one of all observations
for these vehicles (left) and the other of the observations
labeled as potentially risky.

Next, we sought to determine the performance of cross-
applying each random forest model on each of the other
datasets. In Table 6, we present the proportion of poten-
tially risky driving behaviors that the same-day model
originally found that the cross-day model also found. For
example, the April 6 random forest model labeled 223,075
of the April 6 observations as potentially risky—the April 5
random forest model also labeled 72.6% of those 223,075
observations as potentially risky. Overall, the cross-day
model always labeled at least 46.6% (ranging up to 80.2%)
of the observations that the same-day model had labeled as
potentially risky. )is provides an indication that different
potentially risky driving events occur across different days,
and thus separate-day model training seems to be capturing
those differences. )ere appears to be substantial variations
by model and day, and thus future research efforts should
seek to better understand these variations and improve
upon them.

Finally, we sought to characterize differences between
potentially risky and not potentially risky driving observa-
tions. We hypothesized that some risky driving events would
be characterized by more sudden changes in motion and,
thus, that the change in acceleration (acceleration jerk) and
in yaw rate (yaw jerk) would, on average, be greater than that
on nonrisky events. To assess this, in Figure 5, we present
histograms of the distribution of the logarithm of acceler-
ation and yaw jerk for both potentially risky and not po-
tentially risky observations from April 1. Plots indicate that
risky driving observations tended to be characterized by
greater yaw and acceleration jerks. Given the hypothesis that
risky driving behaviors are often characterized by sudden
changes in movement, this provides initial validation that
our approach appropriately identified such observations.

5. Discussion

Here we have presented amultistage process for taking a large,
unlabeled RWD dataset and identifying observations repre-
senting potentially risky driving behaviors. Modern techno-
logical advancements have made bountiful data accessible to
transportation researchers, but approaches and solutions to
work with these data are requisite if we are to make mean-
ingful improvements to transportation safety. We have shown
how unsupervised learning methods—k-means, DBSCAN,
and principal component analysis—and supervised learning
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methods—logistic regression, random forests, and artificial
neural network—may be applied in a systematic fashion to
identify potentially risky driving behaviors within RWD data.

While not all RWD datasets will be structured identically, the
four stages and details of their implementation provide
transportation researchers and professionals the framework
necessary to replicate this process and identify potentially
risky driving within their own datasets.

While the process defined provides a procedure to
identify potentially risky driving behaviors, there are
immediate barriers to implementation that must be
addressed if such a method is to be made more uni-
versally available. In order to undertake the stages as
defined, our research team developed software tools in
R. DBSCAN, principal component analysis, and k-means
all require human interface to identify function pa-
rameters (via the “elbow” method), and given that these
algorithms needed to be run many times, software which
streamlined this process for our team aided in com-
pleting this project. As such, there is a need for software
solutions which streamline the risky driving identifica-
tion process. )e steps outlined in this paper provide a

Table 1: Subsetting the BsmP1 data.

Date Database size1 Number of vehicles 100-vehicle sample size1

Mon, April 1, 2013 44.5 1,395 3.61
Tue, April 2, 2013 51.4 1,418 3.03
)u, April 4, 2013 50.0 1,430 3.27
Fri, April 5, 2013 50.0 1,405 2.97
Sat, April 6, 2013 39.7 1,133 3.37
Sun, April 7, 2013 32.6 1,072 3.14
1Number of observations, in millions.
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Figure 2: Histograms of observations by time of day for both weekdays (a) and weekends (b).

Table 2: Reformatting the data.

Date Dataset size prior to conversion Dataset size after conversion Distinct vehicle trips
April 1, 2013 3.61 million 291,155 1,383
April 2, 2013 3.03 million 257,752 1,350
April 4, 2013 3.27 million 277,634 3,085
April 5, 2013 2.97 million 250,467 1,225
April 6, 2013 3.37 million 203,073 1,773
April 7, 2013 3.14 million 212,488 811

Table 3: Labeling risky driving data points.

Date Potentially risky data
points

Proportion of dataset
(%)

April 1,
2013 24,021 8.25

April 2,
2013 23,063 8.95

April 4,
2013 26,296 9.5

April 5,
2013 25,227 10.0

April 6,
2013 19,672 9.69

April 7,
2013 19,666 9.26
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novel approach for the implementation of such software
solutions.

)e applications of this method are immediate. By
identifying potentially risky driving behaviors in RWD data,

we can identify when and where potentially risky driving
behaviors are most concentrated. )is will provide trans-
portation agencies real-time, actionable information to
improve traffic safety within their given jurisdictions. It also

Table 4: Mean AUC score and runtime.

Model Mean area under ROC curve (AUC) Runtime for single 5-fold iteration (s)
Logistic regression 0.731 7.3
Random forest 0.982 87.6
Artificial neural network 0.927 483.0

0.0

0.0

0.2

0.4

0.6

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 ra
te 0.8

1.0

0.2 0.4
False positive rate

Average ROC curves

0.6 0.8 1.0

Logistic regression
Random forests
Artificial neural network

Figure 3: Mean ROC curves for 5-fold cross validation using logistic regression, random forest, and artificial neural network.

Table 5: Risky driving data propositions.

Date Original database size Labeled, reformatted database size Proportion labeled potentially risky (%)
April 1, 2013 44.5 million 3.92 million 7.10
April 2, 2013 51.4 million 4.32 million 7.54
April 4, 2013 50.0 million 4.60 million 7.93
April 5, 2013 50.0 million 4.47 million 8.90
April 6, 2013 39.7 million 2.92 million 7.62
April 7, 2013 32.6 million 2.43 million 6.89

Figure 4: (a) Heatmap of all observations for 250 randomly selected vehicles. (b) Heatmap of all of these observations that were labeled as
potentially risky.
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provides a way to measure the effectiveness of safety
countermeasures (i.e., how much risky driving has been
reduced after implementation of a desired countermeasure).

A primary limitation of this work is in regard to
whether we have truly identified risky driving behaviors or
not. )e general idea is that, through k-means, we have
identified clusters of each elementary driving behavior
(EDB) and that potential risky driving points, identified
using DBSCAN, are those observations which outlie their
given cluster. We have assumed that risky driving be-
haviors will appear similar to their nonrisky counterparts
(i.e., the macro-profile of a nonrisky left turn and a risky
left will be very similar), but that when comparing ob-
servations of the same EDB, those risky driving behaviors
will be identifiable by outlying statistics (i.e., a risky left
turn may be identified by a greater acceleration than the
average left turn). Future research steps should be taken to
assess the external validity of the findings of this method.
While we displayed that on average potentially risky
driving observations labeled by our approach were
characterized by higher yaw and acceleration jerk, future
research should also seek to characterize individual EDB
to better understand how the statistical profiles of po-
tentially risky data points differ from those not labeled as
such. Another limitation of the study was that the models
developed were dependent on specific days. Separate-day
models were trained, and it was shown that a model
trained using a specific day can capture a minimum of
46.6% (up to 80.2% depending on the day) of potentially

risky driving events on a different day. )is raises a
practical consideration in real-world use cases. Future
work could focus on developing models for specific days
(e.g., Mondays) across different weeks and investigate if,
for example, a Monday model could consistently identify
different potentially risky events if tested on a different
Monday. A hypothesis to explore is that risky driving
events are different (to some degree) across different days
(i.e., Monday vs Friday) of week but very similar across
same days of different weeks (Monday week 1 vs Monday
week 2).

6. Conclusion

Overall, this study provides multiple contributions to the
advancement of risky driving classification. )e overarching
steps outlined provide a novel approach by which RWD data
can be formatted for and how unsupervised and supervised
machine learning methods can be applied to the identifi-
cation of potentially risky driving behaviors. Further, we
have shown specifically how k-means, DBSCAN, and ran-
dom forests may be applied in this endeavor. We evaluated
the predictivity of random forests (in addition to logistic
regression and artificial neural network), finding it to be
highly sensitive and specific in predicting potentially risky
driving behaviors. In sum, we have provided a meaningful
process for the implementation of a risky driving classifi-
cation program, a necessary tool in the efforts to improve
traffic safety globally.

Table 6: Cross-classifying potentially risky driving behaviors ∗.

Dataset labeled
April 1 (%) April 2 (%) April 4 (%) April 5 (%) April 6 (%) April 7 (%)

Random forest models

April 1, 2013 49.1 65.7 47.1 46.6 52.8
April 2, 2013 52.0 51.8 69.2 67.6 72.9
April 4, 2013 59.3 49.2 47.7 50.0 57.0
April 5, 2013 56.3 73.6 56.4 72.6 80.2
April 6, 2013 50.6 69.0 54.4 69.4 73.4
April 7, 2013 50.4 65.7 53.7 68.8 66.8

∗Percentages represent the proportion of the originally labeled observations (by the same-day model) that the cross-day model also identified. We note that
all cross-classifications labeled a similar proportion of each dataset as potentially risky (∼5–10%).
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Figure 5: Histograms of the logarithm of yaw jerk (left) and acceleration jerk (right) for both potentially risky labeled observations (top) and
not potentially risky labeled observations (bottom) for all observations recorded on April 1.
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