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Real-time crash prediction helps identify and prevent the occurrence of traffic crash. For years, various real-time crash prediction
models have been investigated to provide effective information for proactive traffic management. When building real-time crash
prediction model, a suitable variable space together with a specific time interval for traffic data aggregation and an appropriate
modelling algorithm should be applied. Regarding the intercorrelation problem with variable space, comprehensive real-time
crash prediction model considering available traffic data characteristics in applicable circumstances needs to be explored. Taking
Xi’an G3001 Expressway as study area, real road traffic and accident data during the period from January 2014 to January 2019 on
this expressway are applied for real-time crash prediction. To better capture traffic flow characteristics on expressway and improve
the practicality of real-time crash prediction model, two new variables (segment difference coefficient and lane difference co-
efficient) describing the smoothness and continuity of traffic flow in spatial dimension are developed and incorporated in building
the crash prediction model to solve the intercorrelation problem with variable space. Random forest (RF) is then adopted to
specify the quantitative relationship between specific variable and crash risk. Real-time crash prediction model based on support
vector machine (SVM) using new composed variable space is built. ,e results show that simplified variable space could
contribute to the same classification power in currently used real-time crash predictionmodels compared with traditional variable
space. Moreover, the prediction model based on SVM reaches an accuracy level of 0.9, which performs better than other currently
used prediction models.

1. Introduction

Expressway safety has remained as a major concern in traffic
system management. With higher operating speed, crashes
on expressway are more likely to lead to huge life and
property loss compared with other types of road [1].
According to preliminary estimates from National Highway
Traffic Safety Administration (NHTSA), 36120 people died
in motor vehicle crashes on highway in USA in 2019 [2]. ,e
increasing need to reduce traffic fatalities and injuries has
prompted research on proactive traffic management strat-
egies for crash prevention. With the advancement of
transportation information systems and traffic sensing

technology, real-time crash prediction on expressway re-
ceives much attention from transportation professionals as it
is regarded as a promising solution to road safety issues.
,rough predicting the time and location of possible crash
occurrences in real time, proactive traffic management
strategies can be applied to prevent crashes in time and
improve traffic safety. Moreover, with the rapid develop-
ment of autonomous vehicle techniques, it is important to
accurately identify unsafe traffic condition to ensure the fast
reaction of these new techniques and improve the proactive
safety control of traffic systems [3].

For years, a wide array of attempts have been made for
real-time crash prediction making use of multisource data.
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Prediction models using traditional statistical methods such
as logistic model [4] and log linear model [5] or machine
learning methods such as support vector machine [6] and
random forest [7] have been explored. Although statistical
methods provide better interpretation for contributing
factors, machine learning methods are proved to have higher
prediction accuracy [8]. While developing crash prediction
model, one critical step is to identify contributing factors
related to the occurrence of crash. In previous studies,
variables including road geometric alignment factors, traffic
condition-related factors, and environment related factors
were considered [9–13]. Although these variable systems
cover most of factors that may contribute to crash occur-
rence, there still exists intercorrelation or redundant vari-
ables problem with variable space when building real-time
crash prediction model. Moreover, within traffic condition-
related factors, variables such as vehicle count, occupancy,
and velocity are commonly adopted [14–16], while variables
describing traffic flow continuity characteristics are less
considered [6].

,is paper therefore aims to investigate the performance
of real-time crash prediction model using machine learning
methods on freeways incorporating traffic flow continuity
parameters considering the intercorrelation problem with
variable space. Traffic and crash data collected on Xi’an
G3001 Expressway from January 2014 to January 2019 are
applied. ,rough a comprehensive analysis towards existing
variables adopted in related work, two new variables’ traffic
flow continuity characteristics were introduced to address
the previous mentioned problems. Support vector machine
(SVM) is applied to build the crash prediction model
considering its better performance in low data volume
circumstance. ,en variable selection results and crash risk
prediction results are discussed and prediction results of the
model built in the present work are compared with currently
used prediction models by ROC curves.

2. Literature Review

In recent years, with large development in real-time road
network supervision system, adequate traffic data could be
used in crash prediction, and various crash prediction
models have been built to provide effective information for
proactive traffic management. In related works, variable
space is commonly used as the prerequisite of building real-
time crash risk prediction model, which is defined as a set
composed of predisposing factors of traffic accidents such as
vehicle counts, velocity, and weather conditions [17]. Var-
iables adopted in related studies could be roughly divided
into three categories. ,e first category includes average
velocity, vehicle count, velocity variation, velocity standard
deviation, and occupancy. ,ese data are usually obtained
from both upstream and downstream detectors of crash
position [14–16], representing real-time traffic condition in a
certain time interval and its dynamic characters. ,e second
category includes differences of vehicle counts, occupancy,
and velocity between adjacent lanes and so forth, which
describe vehicles’ lateral movements [5, 10, 18, 19]. Variables
in both the first and second categories are considered as

critical parameters in predicting real-time crash risk, and the
importance of these variables has been proved. However,
compared with variables in the first category, variables in the
second category are less used due to the fact that traffic data
from different lanes cannot always be specified by detectors.
,e third category includes vehicles’ safe stopping distance
[20], traffic state of free or congested flow [10, 15, 18],
highway geometric alignment such as segment length and
surface width [11, 21], and weather conditions [12, 22],
which can be summarized as environmental or special
factors that may influence traffic safety. Compared with
variables in the first two categories, variables in this category
are proved to be less important in forecasting real-time crash
risk.

As can be concluded from related researches, variables
used in real-time crash prediction models are basically
selected following the comprehensive principle, and a
systematical variable space does show some superiority in
real-time crash risk forecasting accuracy. However, a large
variable space may also lead to inefficiency in data analysis.
Redundant variables may cause overfitting issues and in-
crease the computational complexity [15]. Besides, some
variables are intercorrelated, for instance, velocity, vehicle
count, and occupancy, which may affect the accuracy of
prediction results. Moreover, among variables adopted in
existing works, variables describing traffic flow continuity
are proved to be critical and significant in forecasting real-
time crash risk [9, 10, 16, 19, 21, 23, 24]. ,erefore, if a
systematic but well-specified variable space (with inner
independent variables and no redundant variables) in-
cluding appropriate traffic flow continuity variables can be
built, higher efficiency and practicality for real-time crash
prediction can be obtained.

To forecast the real-time crash risk, traffic data collectedwill
be aggregated using specific time interval. Together with the
variable space and appropriate modelling algorithm, crash-
prone traffic conditions can be successfully distinguished from
normal traffic conditions [17]. ,e length of time interval
adopted in related works varies in a wide range. Although some
researchers applied highly disaggregated time intervals such as
30 seconds and 1min, it is commonly accepted that time
intervals of 5–10 minutes before the crash perform better than
these highly disaggregated ones [12, 14, 15, 21]. Besides,
5–10-minute time interval is also sufficient for the traffic
management center to analyze, react to, and announce warning
information to the drivers [22]. However, inmany countries, or
expressway out of urban area, traffic data aggregated in less
than 10minutes may not be available, owing to the shortage
and inferiority of traffic supervision facilities. Moreover, the
reported time and location of a certain crash depend on the
subjective volition of the policeman reaching the crash site [23].
As a result, theremight be a larger error between reported crash
time and the actual time when using a relatively smaller time
interval. From another aspect, dealing with traffic data in
abovementioned precision level will lead to high cost and
redundant work in some circumstances. For instance, pre-
dicting crash risk in small time interval may cause frequent
warning, and it is not realistic to send policemen to every
potential accident point. In fact, if a larger time interval can be
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applied with a reasonable prediction accuracy, the application
scope of real-time crash prediction model can be broadened.
Some researchers applied longer time traffic data such as
20–40mins [15, 25] or 1 hour [26–28] before crash and also
obtained reasonable prediction results.,at is to say, if proper
classification algorithm can be adopted when a longer time
interval is applied, prediction accuracy can also be guaranteed.

On the basis of variable space, appropriate method
should be applied to select significant variables when
building real-time crash risk prediction model. Traditional
variable selection methods can be summarized as two types:
approaches based on engineering practice and statistical
approaches such as logistic regression [29, 30]. With the
rapid development of artificial intelligent methods, more
robust and intuitive approaches such as classification tree
and random forest are introduced to rank the importance of
each variable [6, 24]. ,ough artificial intelligent methods
have some natural advantages, traditional methods have not
been replaced as the key point of variable selection is to make
sure variables selected are independent and significant.

Once variable space is decided, real-time crash risk pre-
diction model should be built based on appropriate algorithm.
Modelling methods employed in recent decades can be divided
into two categories: traditional algorithms based on mathe-
matical statistics and modern approaches represented by ar-
tificial intelligence and data mining techniques. Typical
statistical methods found in related studies mainly include
matched case-control logistic regression [4, 10, 16, 18], ag-
gregate log linear model [5], and Bayesian statistics
[3, 9, 14, 19]. Algorithms based on neural networks [31, 32],
fuzzy logic method [20], classification trees [33], machine
learning [6, 9, 34], and deep learning [8, 35–37] are encom-
passed in modern methods. Regarding the intercorrelation
problem of traffic variables, statistical approaches usually delete
the intercorrelated variables during modelling process [14]. As
a contrast, modern approaches perform better in accommo-
dating correlated variables. However, some of the modern
approaches such as neural network based modelling method
have higher demand in data sources which may not always be
available. ,erefore, an appropriate modelling method con-
sidering the intercorrelation problem, volume of available data,
calculation complexity, and predicting accuracy comprehen-
sively is expected.

Based on all these considerations, this study attempts
to explore the performance of real-time crash prediction
model on freeways using machine learning methods when
considering traffic flow continuity characteristics. ,is
attempt would also address the existing intercorrelation
problem with variable space and the circumstance that
only longer time interval can be applied for data aggre-
gation. ,is paper is organized as follows: Section 3 de-
scribes the study area and the collected data. Section 4
presents the variable selection process through a com-
prehensive analysis towards existing variables adopted in
related work and proposing new variables. Section 5 in-
troduces the methodology applied for building real-time
crash prediction model. Section 6 summarized the model
performance and modelling results. Finally, Section 7
summarizes and concludes this paper.

3. Study Area and Data Collection

In this article, Xi’an G3001 Expressway was selected as
targeted road, which steps over several districts as depicted
in Figure 1. As can be seen, G3001 is divided into 11 basic
segments by intersected highways. Traffic detectors are
deployed at middle positions of these basic segments. De-
tectors used for data collection are video cameras. ,erefore,
G3001 was divided according to positions of detectors, using
adjacent detectors as the start and end points of a specific
segment. In this way, segment length varied in certain range,
and it would be reasonably considered as a variable. Traffic
and crash data on G3001 from January 2014 to January 2019
were collected by Shaanxi Transportation Department. Data
obtained from Shaanxi Transportation Department are well
aggregated by vehicle type. Traffic data were given in 1 h time
interval, including vehicle count in each lane, vehicle type,
and average velocity. During this time period, 575 crash
cases were obtained, and 110 special cases (35 drunk driving
cases, 7 drug driving cases, 39 fatigue driving cases, and 29
vehicle broke down cases) considered being unpredictable
were excluded. Among these data, 350 cases were randomly
selected as training data and 115 cases were settled as
verification data. In each of the abovementioned cases,
corresponding upstream and downstream traffic data in one
hour prior to the crash were extracted as crash dataset.

Besides crash dataset, noncrash dataset should also be
prepared for building the crash prediction model. Non-
crash dataset refers to extracted upstream and down-
stream traffic data in normal traffic conditions in the same
road segments and also the same time periods to specific
crash cases. Based on crash dataset, noncrash dataset was
selected according to case-control sampling design. In this
design method, the best ratio between crash data volume
and noncrash data volume is 0.2 [15, 29, 38].,erefore, for
each crash dataset, five corresponding noncrash cases
were randomly selected in the same segment and during
time in the same month, where no crash occurred within
one hour of the original crash time.

According to related works, public real-time traffic
data from government department was the main data
resource used in building real-time crash prediction. In
the present work, traffic data and accident data obtained
from Shaanxi Transportation Department and traffic data
were given in 1 hour. Due to this data limitation, the raw
traffic data were aggregated to 1-hour interval to obtain
averages, standard deviations, and coefficient of variations
prior to accident occurrence. Such intervals may be too
large to capture short-term variations [26]; however, to
the best of our knowledge, this is one of the first attempts
to utilize traffic flow continuity description variables in-
stead of traditional traffic condition-related variables
(vehicle count, occupancy, and velocity) when building
real-time crash prediction model. Traffic flow continuity
characteristics in spatial dimension may not be well
captured in a too-short-term situation. Besides, it can be
concluded from previous studies that reasonable pre-
diction results can be obtained even when a time interval
of 1 hour is applied [26–28].
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4. Variable Selection

Variables used in building real-time crash risk estimation
models were mainly selected based on comprehensive and
practical principles. ,ese variables should be independent
from each other and comprehensive enough to accommo-
date all aspects related to occurrence of traffic crash. Besides,
data collected from real roads vary from different resources,
which were depicted as detectors. ,erefore, selected vari-
ables should also be suitable for collected data. As can be
concluded from previous studies, variables related to traffic
condition, geometric alignment, and environment areas
were always considered. Specific variables considered in
related works [10, 16, 19, 21] are summarized in Table 1.
Further explanation about the importance of each variable is
provided as follows.

In the abovementioned studies, crash risk was analyzed
using algorithms including Genetic Programming (GP)
method, Binary Logit (BL) model, Multinomial Logit
(MNL), model and Bayes model. ,e importance of certain
variable towards crash risk can be obtained through the
values of Gini indexes, which provides a solid basis in
building variable space in this study. On the basis of
comprehensive variable coverage selected from related re-
search, variables’ importance represented by Gini indexes
can help further exclude the variables with no or low impact
on crash risk. In the present work, 4 qualitative description
indicators were applied to analyze the variables’ importance
in different variable space in a unified system. In the pro-
posed evaluation system, “VI� very important” means that
the variable belongs to the ranking range of 0–25%. Simi-
larly, “IM� important” and “CO� common” represent
ranking ranges of 25–50% and 50–75%, respectively. ,ose

in ranking range of 75–100% and not selected were at-
tributed to “NC� not chosen.” While the importance of the
variable in different variable space cannot be compared
directly, the rank of a variable’s Gini index in a certain
variable space is horizontally comparable, which represents
the importance of the variable. For instance, in Xu’s work in
2013 [16], 28 candidate variables were considered, 12 of
them were used in uncongested traffic situation, while 8 of
them were applied in congested traffic situation when
building estimation model cooperating Genetic Program-
ming (GP) method. ,erefore, the importance level of each
variable is summarized in Table 1 by different situations and
different methods.

Considering variables related to traffic conditions, oc-
cupancy and velocity were significantly important; in par-
ticular, OCCup, OCCdo, Vup, Vdo, and Std. Vdo have the
highest selection rate. Further, other variables belonging to
occupancy and velocity were more or less considered in
different models, except Dif. OCCup. In vehicle count, only
VCup and VCdo were selected, showing less importance
compared with occupancy and velocity related ones. Among
geometric alignment related variables, SL was recognized as
themost important one.MA andDAwere also considered as
relatively important. Regarding environment related vari-
ables, WC was treated as important one.

Analysis in Table 1 and in the above paragraph provides
a baseline of variable selection in this research.,ere are two
more concerns that need to be addressed when deciding the
most important variables. First, as indicated in related re-
search [16, 19, 21], the variable space needs to be simplified,
since the complexity of variable space leads to heavy work
load and less practicality. Moreover, while most of these
works concentrated on simplifying the variables using
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Figure 1: Research objective G3001 and detectors distribution.
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mathematical methods, the innercorrelations among vari-
ables were less considered. Regarding such situation, de-
signing new parameters using existing variables can provide
a reliable solution to these problems. To address these issues,
variable occupancy could be used, as calculated in the fol-
lowing equation [39]:

OCC �
1
L



n

i�1
li∝ k �

VC
V

. (1)

In equation (1), li refers to the length of a certain vehicle
in a specific road segment and L refers to the length of this
segment. From this equation, definition of occupancy
(OCC) follows the same baseline of density (k) definition,
where k is proportional to vehicle count (VC) and inversely
proportional to velocity (V). As a result, the connection
among OCC, VC, and V is found, which could provide
accordance when designing new variables. Usually, variables
OCC, VC, and V are used to describe the real-time traffic
condition (free flow or congestion) of a certain road segment
[21]. As can be seen from Table 1, the standard deviations of
OCC, VC, and V for upstream and downstream occupancy
as well as the difference of OCC, VC, and V between up-
stream and downstream show great importance. Variables
including Std. VCup, Dif. VCup, Std. OCCup, and Dif. OCCup
represent the traffic flow stability in a certain road segment
or a cross section [6]. To be more specific, these variables
mainly reflect the stability of traffic flow in spatial dimen-
sion. In spatial dimension, traffic flow stability is reflected in
two directions, movements between adjacent lanes and
movements between upstream and downstream in segment
at certain length. According to the abovementioned con-
tents, two new variables describing the stability of traffic flow
in spatial dimension are developed taking the connection
among OCC, VC, and V as reference. ,e first variable is
segment difference coefficient (Dif. DEup-do), which de-
scribes traffic density variation along a certain segment
through aggregating VCdo, Vdo, VCup, Vup, and SL into one
variable.,e other variable is lane difference coefficient (Dif.
DEdo), which describes traffic density variation among
different lanes through aggregating VC, V, and NL into one
variable. ,e definitions of these two variables are provided
in the two following equations:

Dif .DEup−do �
VCdo/Vdo − VCup/Vup

SL




, (2)

Dif .DEdo �
1
NL

·


NL
i�1 VCi/Vi − VCi−1/Vi−1





n
i�1 VCi/Vi

. (3)

In equation (3), i represents the number of a specific
lane, i ∈ [1,NL]. With these two variables, traffic stability
can be more or less depicted, and SL is comprehensively
considered. Although traffic density difference has been
adopted to predict crash risk in a previous study [6], it is
considered in temporal dimension. ,at is, traffic density
difference at a certain location is calculated every five
minutes. Meanwhile, in the present work, Dif. DEup-do and
Dif. DEdo are developed to describe traffic density variation

in spatial dimension. To the best of our knowledge, this is
one of the first attempts to consider density variation in
spatial dimension when building real-time crash prediction
model. According to the definitions of these two variables,
Dif. DEup-do represents the traffic condition variation along
the road segment, while Dif. DEdo considers the traffic
condition variation along the cross section of specific
downstream section. ,erefore, the two constructed vari-
ables are independent.

Once DEup-do and Dif. DEdo are applied, traffic con-
dition variables VCdo, Vdo, VCup, Vup, NL, and SL used to
construct new variables could be replaced. For other traffic
condition variables depicting traffic flow stability applied in
traditional studies [6, 21], such as Dif. VCdo, Dif. VCup-do,
Dif. OCCdo, Dif. OCCup-do, Dif. Vdo, and Dif. Vup-do, if new
designed variables DEup-do and Dif. DEdo can be proved to
have better performance in predicting crash risk than these
traditional variables, it is reasonable to replace these traffic
condition variables with the new designed variables, and
intercorrelation problem can be addressed. Besides these
two new designed variables, PT is considered additionally in
the present work as it is proved to have great significance in
our previous work [40] and it is not correlated to density
variation variables. Apart from traffic condition-related
variables, MA and DA attributed to geometric alignment
and WC related to travel environment are also considered
based on the significant level summarized from previous
studies, as shown in Table 1.,e final variable system used in
this paper is depicted in Table 2.

5. Methodology

Based on available traffic data obtained on G3001, considering
the variable space adopted in existing researches, a compre-
hensive variable system considering the importance of traffic
flow continuity characteristics was built in the previous part. To
build an effective crash prediction model, quantitative rela-
tionship between specific variable and crash risk needs to be
specified. In the present work, RF is applied to specify the
relationship mentioned above as it is commonly used in
ranking the importance of each variable by Gini indexes, which
is intuitive [6, 12, 21, 32]. It also has better antioverfitting ability
and operational stability compared with traditional engi-
neering practice based or statistical variable selection methods.
,en real-time crash risk prediction can be interpreted as
judgement uponwhether traffic accident will happen in certain
segment, which actually becomes a binary classification
problem. When building the crash prediction model, appro-
priate modelling method considering the intercorrelation
problem, volume of available data, calculation complexity, and
predicting accuracy should be selected. As mentioned in the
Data Preparation part, traffic data aggregated in small time
interval are not available on G3001, which means that only
lower traffic data volume can be applied to build the prediction
model. To address the intercorrelation problem and at the
same time considering the available data characteristics,
support vector machine (SVM) is adopted to build the crash
risk prediction model.
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5.1. Random Forest. Once the variable system used for
building the prediction model is specified, relationship
between specific variable and crash risk will be quantified
through RF. RF is a widely used machine learning method
for classification and regression. Usually, in process of
building classification model, variables’ quantized im-
portance will be intuitively obtained. Consider a database
θ containing N records depicted as [x1, x2, . . . , xN]. Every
record consists of an explanatory variable set
V � [V1, . . . , Vn] and a response variable Vr. To suc-
cessfully predict Vr, classification tree f known as CART
was proposed. ,e prediction error R(f, θ) based on
validation subset θ is given in the two following
equations:

R(f, θ) �
1

|θ|


i∈θ

I f Vi(  � Vir , (4)

I(e) �
1, if e is true,
0, if e is false.

 (5)

Among the abovementioned equations, Vir represents
the observed value of variable Vr, corresponding to the ith
record. CART mentioned above has shortage of inaccurate
prediction led by small turbulence in training sample. To
overcome this problem, RF was introduced [41]. In RF al-
gorithm, the trees are formed depending on nRF bootstrap
samples θ1, θ2, . . . , θnRF of database θ. To a specific tree, a
subset of variables nvar is randomly chosen for splitting rule
in each node. Every tree is completely grown until all of the
nodes are pure, and the trees are not pruned. ,e resulting
learning rule is the aggregation of all the tree-based esti-
mators denoted by f1, f2, . . . , fnRF

[42]. ,e class with the
maximum number of votes among the nRF trees in the forest
is the predicted class of an observation.

As depicted previously, variables’ quantized importance
will be intuitively obtained by using RF, which is represented
by Gini indexes. Split with lowest impurity at each node is
selected based on Gini criterion. While forming the forest,
reduction of Gini node impurity is recorded for variable
Vi ∈ [V1, . . . , Vn]. Average of all the reductions in Gini
impurity in the forest where Vi forms the split is its Gini
variable importance. At last, the variables can be ranked
according to the Gini variable importance measure [43].

5.2. SupportVectorMachine. As mentioned at the beginning
of this section, the essence of real-time crash prediction is a
binary classification problem, and SVM has been proved to
be effective in solving such issues [9, 24]. Previous studies

integrated all variables (i.e., all traffic, geometric, socio-
demographic, and trip generation variables) in SVM, which
was considered deficient due to overfitting problem [9].
Meanwhile, in the present work, this issue can be tackled
through using simplified and derived variables.

Real-time crash prediction using SVM can be taken as a
linear separable problem, and the training setTcan be defined as

T � x1, y1( , . . . , xl, yl(   ∈ (X∗Y)
l
. (6)

In the above contents, xi ∈ X � Rn, yi ∈ Y � +1, −1{ },

i � 1, . . . , l, and hyperplane given below could be found in
n-dimension Euclidean space Rn.

x ∈ R
n
|(w · x) + b � 0 , w ∈ R

n
, b ∈ R. (7)

Further, the parameters w and b are proposed in equation
(8), while the decision function is provided in equation (9).

yi � sgn w · xi(  + b( , i � 1, . . . , l, (8)

f(x) � sgn((w · x) + b). (9)

Based on the form, along the necessary and sufficient
condition of a standard hyperplane, the previously men-
tioned problem can be converted into an optimization issue
combined with maximum spacing principle, shown in the
two following equations:

min
w,b

τ(w) �
1
2
|w|

2
, (10)

s.t. yi w · xi(  + b( ≥ 1, i � 1, . . . , l. (11)

To approximate the linear separable problem, relaxation
variable ξi ≥ 0(i � 1, . . . , l) and penalty parameter C> 0 can
be introduced to soften the restrictions and to provide a
penalty to the scenario when the value of ξi is too large in the
objective function.

,us, equations (10) and (11) can be converted as
follows:

min
w,b,ξ

1
2
|w|

2
+ C 

l

i�1
ξi, (12)

s.t. yi w · xi(  + b( ≥ 1 − ξi , ξi ≥ 0, i � 1, . . . , l.

(13)

Based on dual theory, optimization problem can be
converted as a dual problem, shown in the two following
equations:

Table 2: Variable system.

Selected variables Quantization Abbreviation
Segment difference coefficient Equation (2) Dif. DEup-do
Lane difference coefficient Equation (3) Dif. DEdo
Proportion of trucks % PT
Merge area Ratio to segment length (%) MA
Diverge area Ratio to segment length (%) DA
Weather conditions Snow� 3; fog� 2; rain� 1; others� 0 WC
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min
a

1
2



l

i�1

l

j�1
yiyjαiαj xi · xj  − 

l

j�1
αj, (14)

s.t. 
l

i�1
yiαi � 0, 0≤ αi ≤C, i � 1, . . . , l. (15)

Assuming that α∗ � (α∗1 , . . . , α∗i )T is an arbitrary solu-
tion to dual problem and that arbitrary solution (w∗, b∗, ξ∗)
of equation (10) can be obtained using linear support vector
machine, a kernel function K(xi, xj) that can be used to
create the linear mapping was introduced in equation (14). A
different kernel function (linear kernel function, polynomial
kernel function, radial basis kernel function, as well as
sigmoid kernel function) will create a different support
vector machine. ,e general form of the decision function is
described as follows:

f(x) � sgn 
l

i�1
α∗i yiK xi, xj  + b

∗⎛⎝ ⎞⎠. (16)

In previous studies, the efficiencies of different kernel
functions have been investigated [6, 9]. But unified con-
clusion has not been obtained yet. ,erefore, all of the four
kernel functions will be applied to predict the real-time crash
risk, and the classification result of each kernel function will
be contrasted to find the optimal algorithm.

6. Results and Discussion

In this section, significant variables’ importance which is
represented by Gini indexes will be obtained using RF, and
quantitative relationship between specific variable and crash
risk will also be verified. Real-time crash prediction models
will be built through SVM usingMATLAB LibSVM toolbox,
based on both simplified variable space and traditional
variable space. ,e accuracy and practicality will be further
proved using comparison analysis.

6.1. Variable Significance Identification Based on RF. In the
Variable Selection section, newly designed parameters Dif.
DEup-do and Dif. DEdo representing traffic dynamic in crash
risk prediction are provided. To further verify the influence
of these two new variables on crash occurrence and specify
the quantitative relationship between specific variable and
crash risk, RF model is applied. Variables shown in Table 2
were taken as part of the input. Others were considered
according to Table 1, including VCup, Vup, VCdo, Vdo, SL,
and density in upstream (DEup) and downstream (DEdo)
representing OCCup/OCCdo. To conduct the RF method,
MATLAB RF toolbox was applied, and the results of output
Gini indexes were shown in Figure 2.

As shown in Figure 2, Dif. DEup-do and Dif. DEdo ranked
the first (0.97) and second (0.93), respectively, among all
variables used, which is well aligned with the assumption
mentioned above. Parameters Vdo and Vup also show the
importance of 0.89 and 0.72, which met the results in related
works (16).,e Gini indexes of DA, MA, andWC were 0.69,

0.65, and 0.64, respectively, which rank in the middle among
all variables. For the proportion of trucks (PT), the results
show that PTup (upstream) and PTdo (downstream) have
the same index of 0.61, and the importance level is close to
the three abovementioned variables. ,is result differs from
the evidence found in related study, which claimed that
proportion of trucks has no effect on crash occurrence [28].
Moreover, a recent study showed that consideration of
vehicle type will increase the prediction power [44], which
supports the decision of adopting PT in the present work.
Except for DEdo, other traditionally used parameters were
ranked in relatively lower positions, which is well aligned
with the results in related works [21].,oughVdo, DEdo, and
Vup have anterior positions, they can be represented by Dif.
DEup-do and Dif. DEdo. As can be summarized from this
result, the abovementioned assumption, Dif. DEup-do and
Dif. DEdo are strongly related to crash occurrence, could be
proved, and variables shown in Table 2 have the potential to
be further used in building the SVM prediction model.

6.2. Crash PredictionModel Based on SVM. As mentioned in
Section 2, 350 pieces of crash data and 1750 pieces of
corresponding normal traffic data were selected as training
group. Testing group consisted of 115 pieces of crash data
and 575 pieces of corresponding normal traffic data were
used to analyze the model accuracy. According to Section
5.1, variables shown in Table 2 compose a simplified variable
space in building SVM prediction model. To further prove
model performance when adopting this simplified variable
space, a traditional variable space including variables shown
in Figure 2 (except Dif. DEup-do and Dif. DEdo) is also
applied to build SVM prediction model as a comparison.
After SVM training, correct rate, which refers to the ratio
between correct prediction volume and all prediction vol-
umes in testing group, is used to describe the accuracy of
prediction model. In SVM model, four kernel functions,
linear kernel function (LKF), polynomial kernel function
(PKF), radial basis kernel function (RBKF), and sigmoid
kernel function (SKF), were used. ,e performance of each
kernel function should also be verified [6]. ,us, correct rate
of two SVM models based on each kernel function was
provided in Figure 3.

As can be seen from Figure 3, the gap between correct
rates of simplified variable space based SVM prediction
model and traditional variable space based SVM prediction
model lies in 0–5%. ,erefore, the accuracies of these two
SVM prediction models could be considered in the same
level. Compared to traditional variable space, variables
volume reduces more than 50% in simplified variable space,
owing to the usage of newly designed variables (Dif. DEup-do
and Dif. DEdo). ,e intercorrelation problem is also solved
in simplified variable space, as introduced in Section 3.
Moreover, the performances of LKF and PKF are basically
the same, which are better than those of RBKF and SKF.

,ough the accuracy of simplified variable space based
SVM prediction model has been proved, it could not be
concluded that this accuracy is mainly contributed by newly
designed variables, Dif. DEup-do and Dif. DEdo.,erefore, we
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also choose correct rate as objective, and, using simplified
variable space and the abovementioned four kernel func-
tions based SVM, in each prediction we remove one sig-
nificant variable, and corresponding correct rate could be
obtained, as shown in Figure 4.

As can be seen in Figure 4, in each kernel function based
SVM prediction model, Dif. DEup-do and Dif. DEdo in
simplified variable space havemuchmore obvious impact on
correct rate, which proved that these two newly designed
variables mainly contribute to the accuracy of simplified
variable space based SVM prediction model. Four other
variables in simplified variable space also affect correct rate,
which show basically the same importance. Results in Fig-
ures 3 and 4 proved the feasibility of simplified variable space
based SVM prediction model with correct rate level of 0.90,
and its classification power compared to other prediction
models should also be studied.

Traditionally, AUC (the area under the curve) value of
ROC (receiver operating characteristic) curve is used to
describe the classification power of prediction models. In
typical ROC curve, true positive rate (TPR) represents the
probability of correct prediction in positive samples. False
positive rate (FPR) represents the probability of mistake
prediction in negative samples. ROC curve describes the
relationship between TPR and FPR in specific prediction
model, and AUC value is understood to better when it is
closer to 1. In this research, AUC values of train group and
test group were selected to analyze the classification power of
simplified variable space based SVM prediction model. To
make the results more reliable, previously used traditional
variable space is also adopted as a comparison. Furthermore,
six currently used real-time crash prediction models were
chosen to specify the superiority of simplified variable space
based SVM prediction model: Binary Logit (BL) model and
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Figure 2: Output Gini indexes of selected variables.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

C
or

re
ct

 ra
te

LKF PKF RBKF SKF
Kernel functions

0.891 0.906 0.884 0.906
0.804 0.819

0.746
0.783

Correct rate-simplified variable system
Correct rate-traditional variable system
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Genetic Programming (GP) model in uncongested and
congested traffic flow [21] and unmatched/matched case-
control models (UCC/MCC) [19]. All AUC values in the
abovementioned models are depicted in Table 3.

Based on results in Table 3, we could draw the two
following conclusions. First, compared with the prediction
results when traditional variable space is applied, AUC value
of each prediction model remains of the same level when
simplified variable space is applied (error lower than 4.37%).
,at is, with 50% reduction in variables volume, simplified
variable space could contribute the same classification power
in currently used real-time crash prediction models com-
pared with traditional variable space. ,e generality and
efficiency of the proposed variable space can be verified.
Moreover, the intercorrelation problem can be better
addressed when applying simplified variable space. Second,
AUC values of SVM predictions (0.952–0.977) are larger
than those of other models (0.705–0.903), which proves that
the real-time crash prediction method of simplified variable
space based SVM has a stronger classification power than
those of other currently used models. ,ese two conclusions
both support the importance and significance of newly

designed variables, segment difference coefficient and lane
difference coefficient.

7. Conclusions

In this article, a real-time crash risk prediction model
based on SVM was built considering the importance of
traffic flow continuity parameters. To build the prediction
model, data groups with one-hour time interval were
selected using real road traffic and accident data from
January 2014 to January 2019 on Xi’an G3001 Expressway.
Based on a comprehensive analysis of previously applied
variables, six important variables were selected including
two newly designed variables, Dif. DEup-do and Dif. DEdo.
Method of random forest was adopted to specify the
quantitative relationship between specific variable and
crash risk. Based on the result, the significance of Dif.
DEup-do and Dif. DEdo was verified with high Gini indexes.
,e real-time crash risk prediction model was then built
based on SVM LKF. ,e result showed that the prediction
model built in the present work obtained the accuracy
level of 0.9, and its feasibility and practicality were verified
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Figure 4: Impact of each significant variable on SVM prediction accuracy.

Table 3: Prediction performances of real-time crash prediction models.

Real-time crash prediction models
AUC values

Simplified variable space Traditional variable space
SVM (train data) 0.975 0.977
SVM (test data) 0.952 0.961
BL (uncongested) 0.771 0.770
BL (congested) 0.712 0.705
GP (uncongested) 0.820 0.792
GP (congested) 0.754 0.773
UCC 0.897 0.903
MCC 0.722 0.755
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by ROC curves, which showed better performance
compared to other currently used prediction models. It
should be noticed that the two newly designed variables
proposed in the current work are applied under the cir-
cumstances of a longer time interval, and further studies
should concentrate more on exploring comprehensive
variables for other circumstances.
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