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Bike sharing systems are becoming more and more common around the world. One of the main difficulties is to ensure the
availability of bicycles in order to satisfy users. To achieve this objective, managers of these systems set up rebalancing vehicles that
displace bicycles to stations that are likely to be in a situation of bike shortage. In order to determine which stations must be
supplied on a priority basis and the number of bicycles to be supplied (named in this paper as rebalancing plan), the aim is
generally to reduce the lost demand for each station, i.e., the gap between the demand for bicycles and the number of bicycles at a
station. On the one hand, this paper proposes an algorithm that evaluates the lost demand in amore realistic way, by describing the
behaviour of users faced with a bike-shortage station. It takes into account the possibility that a proportion of users who cannot
find bicycles will move to a neighbouring station that is not empty. &is proportion depends on the distance between stations and
corresponds to the number of users willing to walk a given distance to a neighbouring station. On the other hand, this algorithm
provides the value of the objective function to be minimized to a static rebalancing plan algorithm based on a Random Search
metaheuristic. &e quantities of bicycles to be picked up and dropped off at each station are calculated in a static rebalancing
context. &e calculation of lost demand based on this algorithm, which simulates user behaviour, was compared with that one
obtained by the classical method on a real numerical example obtained from the open data of Parisian Vélibʼ (more than 1200
stations). In addition, the efficiency of the rebalancing algorithm coupled with the user behaviour simulation algorithm was
evaluated on this numerical example and allowed to obtain very good results compared to the rebalancing performed by the
system operator.

1. Introduction

Most medium and large cities have installed a bike-sharing
system (BSS) since the first appearance of this type of system
in Amsterdam in 1965. &ese systems are part of sustainable
development in urban areas. &ey have experienced a par-
ticularly strong growth in the last 15 years [1], with four
generations of systems following one another [2].&e study of
these systems has given rise to numerous works in the dif-
ferent scientific communities [3] which the main themes are
the following: factors & barrier, system optimization, be-
haviour & impact, safety & health, and sharing economy [4].

Although sometimes managed by private operators,
these systems constitute a public transport service [5]. &eir
objectives are to reduce congestion, gas emissions, and noise
and to offer a flexible and cheap means of transport while
having a beneficial effect on the health of users [6]. &ey
allow users to make relatively short journeys, of the order of
2.5 km [7] while integrating with other modes of transport in
the intermodality context [8]. In addition, these systems
provide a flexible mode of transport that improves “first
mile/last mile” connections [9]; this distance is considered
too long to walk between home and public transport and/or
public transport and the workplace [10].
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Currently, BSS is divided into two broad categories [11]
(not exhaustive, as hybrid systems exist):

(i) &e BSSs with dockings, in this case, the stations
have dockings (third generation of BSS) to which the
bicycles are hooked up.

(ii) &e BSSs without dockings (part of the fourth
generation of BSS), in this case, the bicycles have an
autonomous hook system and are generally geo-
localisable. &is category is subdivided into two
subcategories. &e first one concerns systems in
which bicycles are grouped together at defined
parking areas [12]. &e second one concerns systems
in which bicycles can be parked in any accessible area
of the urban area.

&is paper focuses on systems containing stations with
dockings, which are the most widespread category, partic-
ularly in Europe [13] and worldwide. Indeed, Chen et al. [14]
estimate that the fourth generation of BSSs constitutes less
than 20% of all systems installed worldwide.

&ese systems must meet the needs of users to make trips
between two stations. A user must therefore find an available
bicycle at the departure station and an available docking at
the arrival station [15]. Some stations have a tendency to
completely empty and others to completely fill up for specific
time slots. For example, in the early morning, stations lo-
cated in residential areas empty out and those located in
working areas fill up. &is unavailability of bicycles and
dockings degrades the quality of service of these systems. For
this reason, some operators deploy fleets of rebalancing
vehicles that pick up bicycles from full stations and bring
them to empty stations [16]. When rebalancing operations
occur at night, when the system is not in use, it is named
static rebalancing [17]; when they occur while the system is
in use, it is named dynamic rebalancing [18]. Other oper-
ators implement pricing incentive policies to encourage
users to participate in rebalancing [19].

In the context of static or dynamic rebalancing, these
operations impact the operating costs of these systems (“%e
operational cost of Vélibʼ for the redistribution a bicycle is
about $3” [20]). &ey can therefore only be carried out to a
limited extent [21]. &us, from the managerʼs point of view,
it is necessary to identify the stations that need to be
rebalanced as a priority.

Our interest in this paper focuses on the problem of static
rebalancing of BSS. In the literature, they are often addressed
by optimization models whose main objective is either to
minimize the bicycle and docking shortage over the entire
system or to minimize the amount of resources deployed for
rebalancing and/or their use. &ese studies do not take into
account the condition of stations close to the stations in
shortage. However, the user may possibly walk a short dis-
tance to look for or drop off a bicycle there. For example,
Faghih-Imani and Eluru [22] estimate that the arrival and
departure rates of a station are related to those of neigh-
bouring stations. &e authors show that part of the demand
for bicycles (resp., dockings) from a given empty (resp., full)
station can be transferred to a neighbouring station that is not

empty (resp., not full). Nevertheless, a customer who cannot
find a bicycle is usually considered to be leaving the system.
Failure to take this user behaviour into account generates
errors in the models used to improve the rebalancing of BSS.

&us, we propose a method that simulates user behav-
iour to define a static bicycle rebalancing plan in order to
reduce the number of lost demands, improving so user
satisfaction.&is static rebalancing plan contains the stations
and quantities of bicycles to be dropped off and the stations
and quantities of bicycles to be picked up. A rebalancing plan
does not explicitly include the vehicle routes for moving the
bicycles.

&e proposed method is based on an optimization-
simulation coupling. &e objective of the optimization al-
gorithm, which determines the static rebalancing plan, is to
minimize the number of lost demands (corresponding to a
customer who leaves the system without finding a bicycle).
&e algorithm, which simulates user behaviour, realistically
evaluates the number of lost demands. &is algorithm ac-
curately represents the behaviour of users in the presence of
stations with a bike shortage.

We seek to demonstrate the feasibility of using an al-
gorithm simulating user behaviour to improve the evalua-
tion of lost demand.&en, we use it subsequently to improve
the construction of the rebalancing policy applied by the
operators of these systems. As an application case, we used
the user trip and bicycle availability data from the open data
of the Vélibʼ system at Paris, operated by JCDecaux.

&is article is structured as follows: in the following
section, we present a synthesis of the state of the art con-
cerning rebalancing, and more specifically the objectives and
the solving methods used for the optimization of static
rebalancing. We then present our overall approach and
principles in Section 3. Algorithms for evaluating lost de-
mand and optimizing static rebalancing are detailed in
Section 4. &e applications and results are discussed in
Section 5. Finally, in Section 6, we summarize the contri-
butions of our work and propose some perspectives.

2. State of the Art

2.1. Generalities. BSS customer satisfaction is highly de-
pendent on the availability of bicycles and dockings at the
stations, but also on the level of trip coverage, which
measures the proportion of users who find a station available
and at an acceptable distance from their points of origin and
destination [23]. Short rental times and very high spatial and
temporal irregularity of user demand lead to imbalances in
the distribution of bicycles [24]. &e problem of rebalancing
bicycles is therefore one of the main problems in the op-
eration of BSS. According to Fishman and Schepers [25],
“rebalancing refers to bikeshare operators moving bicycles
across the network, to maintain a reasonable distribution
across docking stations.” &us, issues related to rebalancing
include defining the stations to be rebalanced, the number of
bicycles to be loaded/unloaded, and optimal routes for
rebalancing vehicles based on economic requirements [3]
such as the number or capacity of rebalancing vehicles, the
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number of rebalancing operations, or the number or dis-
tances (or duration) of rebalancing tours [26].&e aim of the
decision-maker is finally to find the best compromise be-
tween economic aspects and customer satisfaction. Both can
be integrated as constraints of the problem to be addressed
or criteria to be optimised.

Rebalancing is not carried out in the same way
depending on the studied time slot of the day, as mentioned
in Section 1. &us, two different types of rebalancing are
studied in the literature. &e corresponding optimization
problem can be classified as Static Bicycle Rebalancing
Problem (SBRP) and Dynamic Bicycle Rebalancing Problem
(DBRP) as proposed in [27]. SBRP is based on the as-
sumption that the number of bicycles of each station re-
mains the same or changes slightly throughout the
rebalancing period, without affecting the outcome of the
rebalancing. As such, SBRP is generally conducted at night
or when the movement of bicycles does not impact the
operation of the system. &e dynamic version of this
problem assumes that bicycle movements have a significant
impact on system user demand, affecting the rebalancing
outcome. In this study, we are particularly interested in the
SBRP, so we will focus on the work carried out on this topic.
&is state of the art is not exhaustive. Interested readers can
refer to [27, 28], which present a review of studies on this
topic.

2.2. Static Bicycle Rebalancing Problem. In the case of static
rebalancing, many SBRP formulations have been proposed,
differing in the assumptions considered, the objectives to be
optimised, and the constraints to be integrated. Most of the
work is concerned with determining the vehicle routes for
rebalancing operations. In the case where the system is
partitioned into small zones, only one vehicle is in charge of
rebalancing.

Chemla et al. [29] consider that a vehicle can visit a
station several times, allowing temporary storage of bicycles
at a station. &e authors formulate the problem as a special
case of a Pickup and Delivery Problem (PDP) with a single
vehicle and a single type of bicycle. &e authors propose a
mathematical formulation and a relaxation of the problem.
It is solved by a branch and bound and provides a good lower
bound of the optimal solution. &is optimal solution is then
used as an initial solution of a Taboo Search. &e latter is
then able to obtain a solution with a cost similar to the
optimal solution.

Erdoğan et al. [30] study vehicle routing for static
rebalancing. &e objective is to minimize the overall cost of
the route (assumed to integrate the consumption and du-
ration of the route, and CO2 emission of the rebalancing
vehicle). It corresponds to a set of stations to be visited from
a depot, ensuring that the vehicle leaves and arrives at the
depot to satisfy the demand for bicycles from the initial
number of bicycles at each station.&e problem is defined as
a linear integer program and solved by a heuristic to obtain
an exact solution.

Cruz et al. [31] consider the same problem and propose a
hybrid Iterated Local Search (ILS) combined with a

Randomized Variable Neighborhood Descent (RVND).
&eir method allows finding the optimal solution for a good
number of instances or even to improve the best known
solutions.

Papazek et al. [32] and Rainer-Harbach et al. [33] ad-
dress the routing of several rebalancing vehicles. &e ob-
jective is to minimize the absolute deviation between target
and final fill levels, and the number of deposit/removal
operations and the duration of the routes. &e authors
consider the capacity constraints of vehicles and rebalancing
stations.&e target fill level is defined by a statistical demand
forecasting model such as [34]. &e problem is modelled by
an oriented graph representing the network. &e nodes
represent the stations, and the arcs are associated with the
travel times of the vehicles. &e end result is the vehicle
route. Papazek et al. [32] solve the problem using the Greedy
Randomized Adaptive Search Procedure (GRASP) meta-
heuristic, while Rainer-Harbach et al. [33] use a Variable
Neighborhood Search (VNS) metaheuristic. Rainer-Har-
bach et al. [35] study the same problem from the same
formulation using the PILOT (Preferred Iterative Look-
Ahead Technique) method for the construction of initial
solutions for the VND (Variable Neighborhood Descent)
and GRASP metaheuristics. Some works integrate other
operational functionalities, for example, [36], which adds the
collection of bicycles to be repaired. Gaspero et al. [37]
address the same problem, but each route must be com-
pleted within a limited time frame. Constraint programming
is used to model the problem formulated as a routing
problem.

Forma et al. [38] adapt a cluster-first route-second ap-
proach to subdivide the problem by vehicle-associated
zones. With the same idea of dividing the network into
different zones, Lv et al. [39] propose a hybrid algorithm for
BRP. A destroy and repair algorithm is developed to improve
the clusters, and an adaptive variable neighborhood search
algorithm is designed to conduct intracluster and inter-
cluster vehicle routing optimization. &e objective function
consists of traveling cost and inventory cost.

Dell’Amico et al. [40] develop a destroy and repair
metaheuristic for the BRP, using a set of techniques based on
properties of feasible paths altered by a neighborhood op-
erator, in order to speed up the computational effort.

In most cases, the route(s) of the rebalancing vehicles
is(are) explicitly indicated by the succession of stations
visited and the number of bicycles picked up or dropped off
at each of them.

We note that the majority of the work dealing with SBRP
is aimed at improving the efficiency of rebalancing according
to the criteria of cost, distance or duration of rebalancing, or
maximizing user satisfaction. &is can be defined as the
difference between the number of bicycles obtained after
rebalancing and user demand, as in [32, 33] or by a penalty
function proposed by Kaspi et al. [41] or as a cumulative
duration during which stations are not in a state of equi-
librium, as proposed by Kadri et al. [42].

In this article, we adopt another criterion measuring the
effectiveness of rebalancing. We aim at minimizing lost user
demand, considering a limited number of bicycles to be
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redistributed. &e goal here is to propose a rebalancing plan
that minimizes lost demand, and according to this plan, the
manager can then organize the rebalancing vehicle routes.

&e main originality of our method is to consider that
users can walk to a nearby station to find a bicycle, when the
desired starting station is empty. Indeed, this user behaviour
is not integrated in the work in the field of SBPR. &e ex-
istence of such behaviour has been emphasized and taken
into account by some authors, in other fields of application.
Farghih-Imani and Eluru [22] and Rudloff and Lackner [34]
consider this behaviour for the development of a BSS de-
mand forecasting model, without being subsequently ap-
plied to a system rebalancing approach. &ese authors
consider in their model an increase in demand from
neighbouring stations when a station is empty. It is therefore
important to take this phenomenon into account when
defining the priority stations to supply bicycles during a
rebalancing operation. It is probably more judicious to
supply an empty station when its neighbouring stations are
also empty, than to supply an empty station when the
neighbouring stations have a stock of bicycles.

Chiariotti et al. [43] take into account the possibility of a
user to walk to a neighbouring station, but in the context of
dynamic regulation. &e authors develop a rebalancing
method associated with a method of monetary incentives for
users. &e users are encouraged to walk until they reach a
congestion-free station instead of just taking the first bike
they find. However, this method includes user displacement
cost, whereas some users can displace without monetary
incentive.

In our study, we consider that users may walk, without
any monetary incentive, to a neighbouring stations if they do
not find a bicycle at a desired station. Our goal is to define an
algorithm that evaluates the lost demand of each station in a
realistic way by taking into account the availability of its
neighbouring stations and simulating user behaviour. We
will compare on a real system this lost demand calculation
algorithm with the classical method. It will allow us to
demonstrate that both approaches give significantly different
results. Also, we couple this first algorithm to an optimi-
zation algorithm for establishing the rebalancing plan in
terms of bikes to be picked up or dropped off at stations.
&us, we will use the first algorithm for evaluating the
objective function to be minimized. &e goal is to determine
a rebalancing plan to demonstrate the relevance and fea-
sibility of our approach on a real system application.

3. Overall Approach and Principles

In this section, we will present the proposed approach, which
aims to propose a static rebalancing plan that is efficient in
terms of lost user demand for a BSS. &en, we will explain
the principle on which the method is based. &is principle is
to integrate the behaviour of users who could move from an
empty station where they wanted to take a bicycle and go to a
neighbouring nonempty station to get one.&e users who do
not finally find bicycles represent the lost (user) demand. In
order to describe this principle, we must first introduce the
notion of acceptance rate. It is related to the number of users

willing to go and fetch a bicycle from one of the neigh-
bouring stations. Finally, we will present how we estimate
the user demand for bicycles at a station during the time that
this one is empty.

3.1. Global Approach. &e proposed method implements a
coupling of an approximate optimization algorithm (met-
aheuristics) with an algorithm that simulates user behaviour
to compute lost demand. &is is a simulation optimization
approach, as depicted in [44]. A solution is a rebalancing
plan and is characterized by the number of bikes picked up
from a station or dropped off to it. &e initial stock of these
stations will be modified according to this rebalancing plan.
&en, the simulation algorithm acts as a function that
evaluates the lost demand of a solution. &is lost demand is
then used as the criterion to be minimized by the optimi-
zation algorithm. &erefore, for each solution explored by
the optimization algorithm, the associated lost demand is
evaluated by the simulation algorithm.

As soon as a station is empty and there is still demand
associated with this station, a part of this demand is transferred
to the nearest nonempty station. Other distribution rules of
users to one or more neighbouring nonempty stations are
possible, for example, “the station with the most bicycles
available” or “the nearest station in the direction of the userʼs
journey.” &e transferred demand is based on an acceptance
rate that corresponds to the proportion of users who are willing
to walk a certain distance to reach a neighbouring station.

&e optimization and simulation algorithms are detailed
in Section 4.

3.2. Acceptance Rate. As mentioned before, the demand
transferred from one station to another, when the first one is
empty, is relative to the rate of users whomay walk to reach a
neighbouring station that is not empty [45]. To statistically
assess the maximum distance users are willing to walk, we
carried out a survey of 136 Vélibʼ system users. &e selected
users are occasional users, who take a bicycle at least once a
month on a working day, and regular users, who take a
bicycle every working day. &e question asked was “What is
the maximum distance youmay walk to get a bicycle from an
empty Vélibʼ station?”&e results are summarized in Table 1.
For example, 86 out of 136 users (63%) agree to walk till 300
meters to get a bicycle.

We can note through Table 1 that only 8% of users agree
to walk beyond this distance. To avoid associating a station
with a large area, the entire neighbouring area is limited to
500 meters around a studied station. &e number of users
who agree to walk more than 500 meters to get a bicycle is
neglected. Also, other studies of the literature [22, 46]
mention that the maximum distance a user is willing to walk
to reach a nonempty station is 500 meters.

&e 500-meterzone around the station i is named ac-
ceptance zone Figure 1.&is acceptance zone is broken down
into concentric circles every 100 meters. &e areas between
two consecutive circles are referred to as neighbouring zones,
Zones 1 to 5 in Figure 1, and may contain stations,
neighbouring of Station i.
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We define the acceptance rate (ai,j) of a neighbouring
Zone j as the average of the proportion of users (arri,j)
agreeing to walk at a distance between the radius of the
inner circle (arri,j− 1) and the radius of the outer circle
(arri,j), or

ai,j �
arri,j− 1 + arri,j

2
. (1)

For each neighbouring zone, Figure 1 presents its radius,
the proportion of users agreeing to walk to the outer limit of
this zone, and its acceptance rate. For example, Zone 3 is
located between two circles, which respective radii are 200
and 300 meters; 63% of users agree to pick up a bicycle to the
outer limit of this zone, and the acceptance rate for this zone
is equal to 74%.

3.3. User Behaviour. We will explain here how customer
behaviour is integrated into the lost demand evaluation
algorithm, which will be detailed in Section 4.

To understand user behaviour, we illustrate it through a
case of a system consisting of three stations. It integrates the
possibility that users who cannot find bicycles can go and
fetch one from a station within the acceptance zone (less
than 500 meters away).

Table 2 describes the state of the network and its
evolution:

(i) &e initial stock corresponds to the stock of bicycles
of each station before the first users arrive

(ii) &e initial demand corresponds to the number of
users wanting to take a bicycle at each station when
the system starts up

Once users had removed the bicycles corresponding to
the initial demand at each station, a 20-bicycle demand,
named residual demand, could not be met (10 at Station 1
and 10 at Station 3). A residual stock of 20 bicycles is present
at Station 2. In a conventional approach, these 20 residual
demands would be considered as permanently lost and the
20 dissatisfied users would leave the system.

If Station 2 is close to Stations 1 and 3, some of the
dissatisfied users will go there to borrow a bicycle. Let us
assume that Station 2 is located 250 meters (Zone 3) from
Station 1 and 350 meters (Zone 4) from Station 3. In this
case, 74% of dissatisfied users agree to walk from Station 1 to
Station 2 and 54% from Station 3 to Station 2.

Multiplying the residual demand by these acceptance
rates (and rounding the real numbers to default integers)
would result in 7 users moving from Station 1 to Station 2
and 5 moving from Station 3 to Station 2. We refer to this
as the demand transferred from the source station to the
nearest neighbouring station. &e sum of the demand
transferred to the same neighbouring station is called
backlog demand. In our example, the backlog demand of
Station 2 is 12 bicycles. Considering the number of bicycles
remaining in Station 2, this backlog demand will be sat-
isfied. From now on, the lost demand is only 8 users in-
stead of 20.

If the residual stock of Station 2 was only 8 bicycles
instead of 20, 4 users would not have been able to take
bicycles. &ey would then have gone to the first nonempty
neighbouring station (applying the corresponding accep-
tance rate).

3.4. Correction of the Demand. &e actual demand for bi-
cycles is equal to the number of bicycles leaving minus the
number of bicycles arriving to a station. However, if the

Table 2: Illustration of user behaviour for a three-station system.

Station 1 Station 2 Station 3
Initial system status
Initial stock 10 30 20
Initial demand 20 10 30
Distribution of users after simulation of user behaviour
Residual demand 10 0 10
Residual stock 0 20 0
Transferred demand 7 0 5
Backlog demand 0 12 0
Residual stock 0 8 0
Lost demand 3 0 5

Table 1: Survey results concerning the distance users are willing to
walk.

Distance (m) Number of users User proportions
0 136 1.00
100 127 0.93
200 115 0.85
300 86 0.63
400 60 0.44
500 35 0.26
More than 500 11 0.08

Neighboring station
Studied station

zone5 zone4 zone3 zone2 zone1

10
0 200

300

400
500

0.93 1.00

0.85

0.63

0.44

0.26

0.97

0.87

0.74

0.54

0.35

a

arr

Acceptance 
zone

Figure 1: Acceptance and neighbouring zones of a station i.

Journal of Advanced Transportation 5



station is empty for a period of time, this evaluation leads to
an underestimation of the demand for bicycles. Inaccurate
estimates of demand can lead to suboptimal decisions,
particularly in terms of rebalancing [47]. Demand must
therefore be corrected when a station is out of bicycle.
Albinski et al. [48] estimate the actual demand of a station
that is out of bicycle for a time slot as the average of the
demand on all days under study, corresponding to the same
day of the week and the same time slot where the station is
not empty. In this paper, a different approach was con-
sidered in order to integrate the movement of users to the
nearest nonempty station in accordance with the principle
described in the previous section.

If a station has no more bicycles for a certain period of
time during the time slot under consideration, we take into
account the number of requests per minute during the time
that this station was not empty. &is amount is then mul-
tiplied by the number of minutes the station was empty.&is
value is added at the request of the station. &us, the nearest
nonempty neighbouring station will have its request reduced
by this value multiplied by its acceptance rate (in relation to
its neighbourhood area). &is last correction avoids over-
evaluating the demand over the whole system for the period
under consideration.

For example, if a station had a demand for 15 bicycles
from 07:00 to 09:00 am (period studied) but was empty for
30 minutes, we consider its total demand to be 20 bicycles.
Also, if the nearest nonempty neighbouring station had a
demand for 12 bicycles and is located in Zone 3 (74% ac-
ceptance rate), we consider its total demand to be 8.3
bicycles.

4. Proposed Method: Coupling Algorithms for
Optimizing Rebalancing Plan and
Evaluation of Lost Demand

4.1. Description of the Study Framework. In this section, we
will present the notations used, the modelling and the al-
gorithmic principles for evaluating lost demand and opti-
mizing rebalancing plan. &e aim of these frameworks is
twofold:

(i) Simulating the behaviour of users and the distri-
bution of demand over neighbouring stations, in
order to assess the impact of rebalancing on lost
demand

(ii) Proposing a rebalancing plan that takes this be-
haviour into account in order to minimize lost de-
mand, and considering constraints related to the
total number of bicycles that can be displaced and to
the stations from which bicycles can be picked up for
rebalancing operations

4.2. Evaluation of the Lost Demand Taking into Account the
Behaviour of Users. We propose to define a lost demand
calculation algorithm to integrate the behaviour of users
who move to neighbouring stations if they cannot find

bicycles at a desired source station. &is algorithm follows
the principles described in the User Behaviour section.

Let us assume that we have a set of stations I � 1, . . . , n{ }

of n stations. For each station, we know the neighbouring
stations (located in its acceptance zone). &is is transcribed
by the n × n matrix L � (lij)i∈I,j∈I containing all interstation
distances and the n × n matrix A � (aij)i∈I,j∈I containing the
acceptance rates. Each component aij provides the user
acceptance rate to move from a source station i to a nearby
station j. Each station is characterized by its initial stock of
bicycles bi, its capacity ci, and its initial demand for bicycles
di.

At each iteration of the algorithm customers take bi-
cycles, if there are enough of them. Some of the customers
who have not found a bicycle at a given source station move
to the nearest nonempty target station, and the others
abandon the system.

&e data needed for the algorithm and their notations are
as follows:

(i) n: total number of stations in the network.
(ii) I � 1, . . . , n{ }: set of station indices.
(iii) i(j): index of a station, with i ∈ I, j ∈ I.
(iv) k: index of iteration, with k ∈ N.
(v) bi: quantity (or stock) of bicycles available at a

station i ∈ I at the beginning of the simulation.
(vi) bk

i : quantity (or stock) of bicycles available at a
station i ∈ I at iteration k with bk

i ≥ 0.
(vii) di: initial demand for bicycles of a station i ∈ I.
(viii) dk

i : backlog demand for bicycles of a station i ∈ I at
iteration k.

(ix) rk
i : residual demand for bicycles of a station i ∈ I at
iteration k with rk

i ≥ 0. &is is the backlog demand
after taking bicycles from stock bk

i of the station.
(x) aij: acceptance rate from a stationi ∈ Ito a station

j ∈ I with 0≤ aij ≤ 1.
(xi) lij: distance from a station i ∈ I to a station j ∈ I

with lij ≥ 0.

&e studied criteria and the corresponding notations are
as follows:

(i) ωk
i : lost demand of station i ∈ I at iteration k.

(ii) Ω: total demand lost at iteration k.

Algorithm 1 presents the evaluation of lost demand after
dispatching users, whose demand cannot be satisfied at a
given source station, to one of the neighbouring stations
within the acceptance zone (less than 500 meters).

&e backlog demand of each station i is initialized for
k � 0 to its initial demand (d0

i⟵di) and the stock of
bicycles to the number of bicycles initially present at the
station (b0i⟵ bi).

At each iteration k≥ 1, the backlog demand dk− 1
i , from

the previous iteration (k − 1), of a source station i ∈ I is
processed, in part, by the source station itself according to
the number of bicycles present at this station (the number of
bicycles bk

i is then updated: bk
i⟵max(0, bk− 1

i − dk− 1
i )). &e
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remaining backlog demand then becomes the residual de-
mand, rk

i⟵max(0, dk− 1
i − bk− 1

i ) of this source station i.
Part of the residual demand of the source station i is

moved to a neighbouring station, named target stationj. &is
station j is selected as the closest one in the acceptance zone,
using the interstation distances contained in the matrix L,
which respects the following conditions: nonempty station
(bk

j > 0), with a not null acceptance rate aij of the source
station i toward the target station j. &e backlog demand of
the target station j is updated as follows: dk

j⟵ dk
j + rk

i aij.
&e term rk

i aij is the demand transferred from the station i to
the station j. &e remainder of the residual demand is
considered as lost demand: ωk

i⟵ rk
i (1 − aij). &e algo-

rithm stops when, for all stations, there is no more residual
demand to be dispatched.

4.3. Coupling between a Random Search and the Lost Demand
Evaluation Algorithm. &e optimization problem studied
consists in determining a rebalancing plan, by characterizing
the number of bicycles picked up or dropped off during
rebalancing operation. &e objective function is to minimize
the number of lost bicycle demand, evaluated by Algo-
rithm 1. &e constraints considered are as follows:

(C1) Obligation to pick-up bicycles only at certain
stations, named suppliers’ stations, defined by the
operator

(C2) Limitation of the total number of bicycles that can
be displaced by rebalancing operations, also defined by
the operator

(C3) Keeping the total number of bicycles, during
rebalancing operations, in the system
(C4) Respecting station capacities (in number of bicycles)

We have chosen to use an approximated optimization
scheme in the form of a single-solution-based metaheuristic,
as named in [49]. &is will allow disturbing a solution (a
rebalancing plan) in order to obtain a better solution in the
sense of the studied criterion (the total number of lost
demand). &e solutions will be evaluated, at each iteration,
by using Algorithm 1.

&e aim here is to show the feasibility of such an op-
timization approach coupled with the proposed user be-
haviour simulation model. &e metaheuristic, more
precisely a Random Search, is therefore deliberately rela-
tively simple; we will see in Section 5 that results obtained are
very satisfactory, and we will discuss possible improvements.

Input: &e initial station status (∀ i ∈ I: di, bi), the interstation acceptance rate matrix (A � (aij)i∈I,j∈I), the interstation distance
matrix (L � (lij)i∈I,j∈I)
Output: Total lost demand Ω
Begin

k⟵ 0
Ω⟵ 0

For all station i ∈ I do
d0

i⟵ di

b0i⟵ bi

End for
While􏽐i∈Idk

i > 0 and 􏽐i∈Ibk
i > 0 do

k⟵ k + 1
//Calculation of residual stock (bk

i ) of stations
∀i ∈ I, bk

i⟵max(0, bk− 1
i − dk− 1

i )

//Calculation of residual demand (rk
i ) of stations

∀i ∈ I, rk
i⟵max(0, dk− 1

i − bk− 1
i )

//Calculation of (i) backlog demand (dk
j ) of the target stations j after transferring users from source stations i which have a

residual demand (rk
i ) not null, (ii) lost demand of each station (ωk

i ), and (iii) global lost demand (Ω)
For all station i ∈ Ido

dk
i⟵ 0

End for
For all station i ∈ I such as rk

i > 0do
ωk

i⟵ 0
Let be j a nonempty station (such as bk

j > 0), which is acceptable (such as 0< aij < 1) and the closest, in the sense of the
matrix L (if there are several stations at the same distance, the smallest index station is chosen).

If j exists then
dk

j⟵ dk
j + rk

i aij

ωk
i⟵ rk

i (1 − aij)

Ω⟵Ω + ωk
i

End If
End For

End While
End

ALGORITHM 1: Algorithm for lost demand evaluation considering user behaviour.

Journal of Advanced Transportation 7



To set up this metaheuristic, we have chosen to represent
a solution (rebalancing plan) by a set indexed on the stations.
It contains, for each station, the number of bicycles picked
up or dropped off to this station. &is set is noted x � (xi)i∈I
where, for each station i ∈ I, xi is the number of bicycles
picked up (negative number) or dropped off (positive
number) at this station.

&e additional data and the corresponding notations are
as follows:

(i) bi: the number of bicycles initially present at a
station i ∈ I.

(ii) xi: the number of bicycles picked up or dropped off
at a station i ∈ I by rebalancing operations, from
the current solution x.

(iii) ci: capacity in dockings (or maximum number of
bicycles) of a station i ∈ Iwith ci > 0.

(iv) pi: which is 1 if the station i ∈ I is a picking station,
0 otherwise.

(v) Δ: total number of bicycles displaced by reba-
lancing operations (i.e., total number of bicycles
picked up or total number of bicycles dropped off
by rebalancing operations).

(vi) Δmax: maximum number of bicycles that can be
displaced by rebalancing operations; Δmax is a
parameter.

(vii) kmax: maximum number of iterations of meta-
heuristics; kmax is a parameter.

(viii) Ω: total number of lost demand associated with the
solution x evaluated by using Algorithm 1.

(ix) δ: the number of bicycles displaced by a neigh-
bourhood operator application.

In Algorithm 2, we define a neighbourhood operator to
modify the number of bicycles present at each station, as a
rebalancing operation would do, i.e., by picking up bicycles
from one station and dropping them off at another station.
&e neighbourhood operator randomly selects two stations
i1 and i2 so that bicycles can be picked up in i1 (i.e.,
bi1

+ xi1
> 0) and dropped off to i2, while respecting the

capacity constraints of the station i2 (i.e., bi2
+ xi2
< ci2

). &e
number δ which represents the number of bicycles displaced
from i1 to i2 is randomly chosen between 1 and the maxi-
mum number of bicycles that can be displaced between these
stations, i.e., min(bi1

+ xi1
, ci2

− (bi2
+ xi2

)).
Each new solution is evaluated using Algorithm 1, so as

to obtain a value of the total lost demand Ω which is the
objective function, to be minimized, of the metaheuristic. If
the lost demandΩ′ of a neighbouring solution x′ is less than
the lost demandΩ of the current solution x, then the current
solution x is replaced by the neighbouring solution x′.

We note that the first constraint, noted C1, imposes that
bicycles can be picked up only from the suppliers’ station,
where each station i ∈ I is characterized by Boolean pi which
is 1 if the station is enabled for a bicycle picking operation and
0 otherwise. &e second constraint, noted C2, consists in
limiting the total number Δ of moveable bicycles, by a

maximum quantity noted Δmax. &is constraint aims to
consider a realistic number of moveable bicycles during the
rebalancing operation.

&e C3 constraint is respected by construction by the
expressions xi1

′ ⟵xi1
− δ and xi2

′ ⟵xi2
− δ of the neigh-

bourhood operator.

5. Experiments and Results

In order to show the relevance of the proposed method, we
have carried out three different experiments in the Vélib’
system at Paris. &ese three experiments have different
objectives. &e first one aims at showing and analysing the
gap in the evaluation of the loss of demand between the
proposed method and the method more frequently used in
the literature (detailed below). &e second application aims
to show the interest of using this method to define the static
rebalancing plan of the Paris Vélibʼ system, by applying the
coupling defined in Section 4. &e estimated lost demand
after implementing this plan will be compared to the esti-
mated lost demand after implementing the rebalancing
solution carried out by JCDecaux (operator of this system).
Finally, we will apply the method in a prospective frame-
work, in which we will evaluate the static rebalancing plan by
considering a progressive increase in demand. &is final test
stage is intended to show that the method can also be useful
for studying a system that is in an evolutionary phase in
terms of demand growth. Before presenting these experi-
ments, we will introduce the main characteristics of the
Vélib’ system, the data used and the assumptions considered.

5.1. Study Case: Vélib’ System. &e Vélibʼ system was
launched by JCDecaux in 2007 and encompassed around
17,000 bicycles and 1,230 docking stations covering Paris
and suburban areas. It offered nonstop service (24/7), and
each station was equipped with an automatic rental terminal.
By July 2014, there have been more than 200 million trips
and more than 274,000 annual subscriptions.

&e data used in this study were provided by JCDecaux.
&ey concern the flow of bicycles entering and leaving each
station of the network, and the status of the stations (number
of bicycles and dockings available at each station). In order
to obtain data corresponding to a homogeneous system
behaviour, we have only used the one of the worked days
(Saturday and Sunday excluded) for the period from Sep-
tember 04th, 2017 to October 13th, 2017. &is period was
chosen because it does not include school holidays or work-
free days. In fact, the users’ demand is very different between
the working days and the week-end days and holidays.

We consider that static rebalancing is carried out be-
tween 00:00 and 06:59 am, when user movements are
considered negligible. &en, we study the starting period of
the system (from 07:00 to 09:00 am) until dynamic reba-
lancing begins.

&e number of bicycles initially present at each station
(initial stock), for a given date, corresponds to the number of
bicycles actually present at these stations at 00:00 am, from
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which bicycles are picked-up or dropped off according to the
rebalancing plan.

&e stations, from which bicycles are picked up for static
rebalancing, are the same as those frequently used (in terms
of frequency and quantity of bicycles picked up) by
JCDecaux in its rebalancing plan.

For the first two experiments, we used the demand of
each day of the study period during the morning peak hours
(from 07:00 to 09:00 am). In 2017, this demand corresponds
to an average of 6200 trips, and the standard deviation is
evaluated at 995.

We would like to point out that the demand for one of
the days, included in the studied period, was abnormally low
(1527 trips). We do not know exactly the reason for this drop
in demand, so we did not consider this day in this study, thus
it includes 29 working days.

&e three experiments of themethod were carried out for
100,000 iterations of Algorithm 2. After the presentation of
the experiments, we analyse the convergence of the method
execution.

5.2. Experiment 1: Analysis of Lost Demand Evaluation
Method. &e main indicator we use to evaluate and analyse
the results of the proposed method is lost demand, which
largely reflects client dissatisfaction. &us, we need to verify
the value of such an indicator. We measure and analyse the
difference in the lost demand estimation when we integrate
user behaviour (as described in the User Behaviour section)
and when we do not integrate it in the estimation. We will
call here the first case of LDUB, for Lost Demand consid-
ering User Behaviour, and the second case of LDC, for Lost
Demand considering Classic evaluation. &e latter calcu-
lation method considers that if the user does not find a
bicycle in the desired station, he leaves the system imme-
diately. It is therefore counted as lost demand.

We applied both methods of calculation for the 29
studied days. For each day, we considered the actual stock of
each station in the system at 07:00 am. To estimate the
LDUB, we used the Algorithm 1 proposed in Section 4, and
for the case of the LDC, we calculated the difference between
the demand and the initial inventory. If the value is positive,
it is counted as lost demand. Figure 2 shows the graph of lost
demand for both calculation methods. We can see that the
proposed evaluation method estimates a much smaller loss
of user demand, representing a gap of 36% on average, with a
small standard deviation of 5%. &is therefore shows a
significant difference in the evaluation of the loss demand. It
should be noted that the correction of the demand is esti-
mated at 4.5% of the average demand of the 29 days studied
(6200 bicycles).

&us, decision-makers, who rely on the classic indicator,
will probably take less efficient decisions. It will lead them to
overestimate by an average of 23% (the difference between
LDUB and LDC in relation to the number of bicycles dis-
placed) the number of bicycles to be displaced during static
rebalancing operations Figure 3.

5.3. Experiment 2: Static Rebalancing of the Vélibʼ System.
We compared the results, in terms of LDUB, of the
JCDecaux rebalancing plan and the results of the proposed
method for the 29 days under review.

In order to evaluate JCDecauxʼs rebalancing plan, we
considered the number of bicycles in each station of the
system at 00:00 am (beginning of the shutdown period or
beginning of the static rebalancing of the system). Using
JCDecauxʼs open data, we have registered the number of
bicycles dropped off and picked-up per station, as part of a
rebalancing operation, for each day between 00:00 and 07:00
am (rebalancing period). We then used Algorithm 1 to
estimate the lost demand (LDUB). &e results are shown in
Figures 4(a) and 4(b). After the rebalancing carried out by
JCDecaux, the system shows a demand loss estimated at 230
users on average. We can see that the loss of demand on day
5 is much higher than on the other days studied. If we do not
consider day 5 in our analysis, the demand loss for JCDecaux
is estimated at 214 users on average (standard deviation
38.6), while the demand loss for the proposed method is
estimated at only 39 users on average (standard deviation
38.7). &is represents an improvement of approximately
82% in the number of lost demands. Furthermore, if we
compare the number of bicycles to be displaced for each
rebalancing plan Figure 4(b), there is a significant difference
of 662 bicycles between the two rebalancing frameworks.
During the 29 studied days, JCDecaux rebalanced an average
of 1,928 bicycles (standard deviation of 184.4), and this
difference in the number of bicycles rebalanced represents
34% of the bicycles rebalanced by JCDecaux. We believe that
this difference is a good indication that the resulting
rebalancing plan may lead to less costly solutions for
rebalancing vehicle routing than those carried out by the
system operator. Especially as the stations from which bi-
cycles are picked up for static rebalancing are the same as
those frequently used by JCDecaux.

5.4. Experiment 3: Forward-Looking Framework for Incre-
mental DemandGrowth. In order to show an example of an
experiment in which the proposed method can be used, a
theoretical scenario has been defined based on the example
of the Vélibʼ system. &e aim here is to show the usefulness
of a method that takes user behaviour into account, to
evaluate prospective scenarios. &is may concern a system
that is not yet stabilized in terms of demand, for example, at
the beginning of deployment. &is context is represented
here by a progressive growth in demand.

To do this, we have considered that all the bicycles in the
system (here about 16,500 bicycles) are distributed equitably
and proportionally to the capacity of each station. For this
theoretical study, it is assumed that overall demand follows a
normal distribution. We simulated the demand by varying
the average between 1000 and 15,000 bicycles. &is set of
normal distribution was approximated by applying a pro-
portionality relationship based on the mean and standard
deviation of the demand of the real system over the 29 days
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Input: Station capacity (∀i ∈ I: ci), the initial station status (∀i ∈ I: di, bi), the interstation acceptance rate matrix (A � (aij)i∈I,j∈I),
the interstation distance matrix (L � (lij)i∈I,j∈I), the maximum number of movable bicycles Δmax, the list of supplier stations
(i.e.pi,∀i ∈ I), and the number kmax of maximum iterations.
Output: &e rebalancing plan (i.e., the number of bicycles picked up or dropped off, xi,∀i ∈ I), the total lost demandΩ evaluated by
using Algorithm 1, and the total number Δ of displaced bicycles
Begin

k⟵ 0 //iteration counter
Ω⟵ +∞ //total loss of the current solution
Δ⟵ 0 //total number of bicycles displaced
For all i ∈ I do
xi⟵ 0 //initialization of the solution variables (or by a constructive heuristic)
End for
While k≤ kmax do
//Neighbourhood operator
Randomly select a picking station i1 (pi1

� 1 for compliance with constraint C1) which still has bicycles to be picked up
(bi1

+ xi1
> 0)

Randomly select a station i2, different from i1, such that there is still available dockings for bicycles (bi2
+ xi2
< ci2

for
compliance with constraint C4)

Choose a random number δ of bicycles to be displaced from the station i1 to the station i2 within the interval
[1, min(bi1

+ xi1
, ci2

− (bi2
+ xi2

))]

xi1
′⟵xi1

− δ
xi2
′⟵xi2

+ δ
//Checking the constraint of the total number of bicycles displaced
Calculate the number of bicycles Δ′ displaced by solution x′
IfΔ′ ≤Δmax then //compliance with constraint C2
//Evaluation of the loss Ω′ of the neighbouring solution x′
Ω′⟵ simulation (ci, di, bi + xi

′, A, L) //call of Algorithm 1
IfΩ′ ≤Ω then

xi1
⟵xi1
′

xi2
⟵xi2
′

Δ⟵Δ′ //update of the number of bicycles displaced
Ω⟵Ω′

End if
End if
k⟵ k + 1

End while
End

ALGORITHM 2: Optimization algorithm by metaheuristic (Random Search) using Algorithm 1 for lost demand evaluation.
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considered, i.e.,m � 6217 and s � 1336. For each of the 15
values, we have performed 5 simulation runs. &e result we
present is the average lost demand obtained for these 5
simulation runs (with a maximum variation coefficient of
5%) for each value of the demand.

In addition, it is considered that the number of bicycles
that can be displaced as part of the rebalancing operation is
no longer limited. We compared two scenarios: in the first
one, we did not consider rebalancing operations. We thus
used Algorithm 1 to estimate the LDUB. In the second
scenario, we used the proposed method to define the
rebalancing plan and then estimate the LDUB.

Figure 5(a) shows the difference in the evolution of the
LDUB for the two scenarios. &e result of the proposed
method is significantly better than the second scenario.
Although this result is expected, it is important to note that
the LDUB in the second scenario does not exceed 3% of the
total system demand.

We also analyse the number of bicycles displaced moved
to achieve this performance. Figure 5(b) shows the curve of
the ratio of the number of rebalanced bicycles to total de-
mand. We note that for a demand of more than 9000 bi-
cycles, the ratio increases significantly but does not exceed

36% regardless of the value of the considered. &e actual
JCDecaux system has a ratio of approximately 33%. We can
therefore observe that even considering a very strong in-
crease in demand, the proposed method shows promising
results.

5.5. Analysis of Method Parameters

5.5.1. Convergence Testing and Analysis. One of the pa-
rameters of the method is the number of iterations, which is
chosen by the operator. &is number must be determined
according to the accuracy required. &e objective is to find a
compromise between precision and computation time by
evaluating the convergence of the algorithm as a function of
the number of iterations. To do so, we have run the algo-
rithm 10 times on different instances with a parameter value
set to 1,000,000 iterations. Figure 6 shows the evolution of
the mean value (over 10 runs for one instance) of the lost
demand in function of the number of iterations (here
represented up to 120,000 iterations).

It can be noticed that the curve stabilizes relatively
quickly. On this instance, with an initial loss of 698 users, no
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improvement was possible after a number of iterations close
to 110,000. It can be noted then that the relative im-
provement over the last 20,000 iterations is only 1.3% on
average per thousand iterations, which is relatively small.
Depending on the instance, this stabilization point may
occur earlier (around the 30,000th iteration on instance with
a lower initial loss of 222 users). &erefore, subsequent it-
erations are potentially useless.

We have therefore set the number of iterations at
100,000. &is corresponds to an execution time of about 3.5
minutes (on a PC running Windows 10 with an Intel Core™
i7-6700 CPU@6.40GHz and 8GB RAM).

5.5.2. Variation in Acceptance Rates. Acceptance rates
assigned to neighbouring stations of an empty station in-
fluence the LDBU result, calculated by the proposedmethod.
Like explained in the Acceptance Rate section, it was defined
from a survey of 136 users of the Vélibʼ system. As this
sample is not large enough, an analysis of the variation in
acceptance rates was carried out in terms of the impact on
the LDBU.&is analysis shows the influence of these rates on
the results of the proposed method.

A factor α ∈ 0.3, 0.35, 0.4, . . . , 0.95, 1, 1.05{ } has been
applied to all acceptance matrices of the system. &e lower
the value of α, the greater the number of users who will not
be willing to go to a neighbouring station in case of bike
shortage. Note that α≤ 1.05, otherwise the highest accep-
tance rate would exceed 1 (the acceptance rate for Zone 1 is

0.97).We have chosen to use the data of the third studied day
(September 06th) because the LDUB of this day, calculated
during Experiment 2, is very close to the average LDUB of
the 29 studied days.

Figure 7 shows, as expected, that the LDUB increases
when α decreases. Indeed, the acceptance rate decreases
when α decreases, and thus fewer users move to a neigh-
bouring station when the desired station is empty. If we
compare LDUB for the values of α equal to 0.3 and 1, LDUB
is 65% higher in the first case. &us, the proposed method is
more relevant for systems with higher acceptance rates.

A priori, the acceptance rates will be higher for systems
with a small distance between stations. As these acceptance
rates are a parameter of the proposed method, they can be
modified by the system manager to better characterize the
behaviour of users of the system.

6. Conclusion

In this article, we proposed amodelling of the user behaviour
of a BSS (made up of stations and dockings). &is behaviour
concerns users who do not find an available bicycle in the
desired station and can move to the nearest nonempty
station to pick up a bicycle. Our main objective is to use this
model to realistically evaluate the lost demand as a measure
of user dissatisfaction by proposing an algorithm.
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Figure 5: (a) LDUB evaluation as a function of demand evolution; (b) ratio of rebalanced bicycles to total demand.
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Our second objective is to show the feasibility of using
this calculation method to support system control decisions,
in particular static control. A coupling between two algo-
rithms is performed.&e optimization algorithm of the static
rebalancing minimizes the number of lost demands.&e lost
demand is calculated by the algorithm simulating the user
behaviour. &e method defines a static rebalancing plan
determining the stations and quantities of bicycles to be
dropped off and the stations and quantities of bicycles to be
picked up.

&ree different experiments of the method have been
carried out, and very interesting results concerning its use
have been obtained on a real system (Vélibʼ). In particular,
we found the following:

(i) Experiment 1 (evaluation of lost demand): the
LDUB indicator, calculated by Algorithm 1 of our
method, shows a deviation of around 36% on av-
erage compared to the more traditional lost demand
indicator found in the literature.

(ii) Experiment 2 (static rebalancing of the Vélibʼ sys-
tem): the rebalancing plan defined by the proposed
method has an average LDUB improvement of
around 82% compared with the rebalancing plan
applied by the manager (JCDecaux). Moreover, this
is done by moving less than 34% of bicycles on
average.

(iii) Experiment 3 (forward-looking framework): in a
case of gradual growth in demand (variation from
1000 to 15,000 bicycles), the proposedmethod never
achieves demand losses (LDUB) greater than 3% of
the total system demand, and the number of bicycles
rebalanced does not exceed 36% of the total bicycle
demand.

&ese results show, from an operational point of view,
the interest of using this method, in order to be able to better
dimension the resources to be implemented in order to
manage a BSS more efficiently. It is important to note that
the budget allocated to rebalancing operations is not very
large (c.f. Section 1), requiring fewer resources to be
deployed for its execution in order to achieve better cus-
tomer satisfaction.

From a more strategic point of view, the third experi-
ment shows that decision-makers can also use the proposed
method in more prospective studies, such as the deployment
of a new system and the restructuring or extension of an
existing system. In this context, the tool would be applied as
a decision support tool to test different scenarios and
compare them on the basis of a more realistic indicator
which is the LDUB.

Although the proposed method offers very good results,
it has limitations. As it stands, the method has been applied
to cases that considered the real system demand. However,
operators make decisions using demand forecasts. &us, for
the results presented in this section to be reproducible, it is
necessary for the decision-maker to be able to integrate
reliable demand forecasts.

As regards the continuity of this study, the next step will
concern evolutions related to user behaviour and to reba-
lancing plan. In respect of user behaviour, we will integrate
into the proposed method other criteria for the choice of the
neighbouring station made by the users (the station with the
most bicycles, the station closer in the direction of the userʼs
movement, etc.). In this way, user behaviour will be more
realistic. Concerning the rebalancing plan, we will also take
into account the docking demand and rebalancing to define
it, as docking availability is necessary at the end of usersʼ
trips. In this case, the demand is not really lost; as for this
type of BSS, the user is obliged to return the bicycle to a
station. It is therefore necessary, for Algorithm 1, to take into
account the transfer of the demand for the bicycle from a full
station to a neighbouring station that is not full. &is will
allow us to create a rebalancing plan (by Algorithm 2)
without having predefined a list of supplier stations.

&en, we will consider the problem of setting up reba-
lancing vehicle routes, taking into account the capacity
constraints of the vehicles in order to minimize the total
distance travelled. It would be possible to apply a vehicle
routing optimization algorithm.

Secondly, it would also be interesting to develop the
study towards dynamic rebalancing. &is would imply the
integration of temporal dimensions to the problem, such as
the evolution of the demand for bicycles and dockings over
time, the walking time of users to reach a neighbouring
station, and the duration of rebalancing vehicle tours.

Concerning the solving method, other metaheuristics
could be implemented, for example, based on simulated
annealing, to avoid being trapped in a local minimum. In
addition, other neighbourhood operator could be used in
order to implement mechanisms for diversifying the
neighbouring solutions obtained.

Data Availability

You can find the data used in this study and the source code
of the proposed method in the link below: https://www.
dropbox.com/sh/p220jhtpp5g72t3/AACXN-G7LC4bmRPjz
Nx2m9yqa?dl�0.
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