Hindawi

Journal of Advanced Transportation
Volume 2021, Article ID 8829081, 18 pages
https://doi.org/10.1155/2021/8829081

Research Article

WILEY

Hindawi

Exploring the Spatial Distribution Characteristics and Correlation
Factors of Wayfinding Performance on City-Scale Road Networks
Based on Massive Trajectory Data

Jun Li®,"? Yan Zhu®,' Zhenwei Li©®,! Wenle Lu®),’ Yang Ji ,! and Xiao Sang !

College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China
2State Key Laboratory of Resources and Environmental Information System, Chinese Academy of Sciences, Beijing 100101, China

Correspondence should be addressed to Jun Li; junli@cumtb.edu.cn

Received 14 August 2020; Revised 21 January 2021; Accepted 19 February 2021; Published 4 March 2021

Academic Editor: Nirajan Shiwakoti

Copyright © 2021 Jun Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Understanding how urban residents process road network information and conduct wayfinding is important for both individual
travel and intelligent transportation. However, most existing research is limited to the heterogeneity of individuals’ expression and
perception abilities, and the results based on small samples are weakly representative. This paper proposes a quantitative and
population-based evaluation method of wayfinding performance on city-scale road networks based on massive trajectory data. It
can accurately compute and visualize the magnitude and spatial distribution differences of drivers’ wayfinding performance levels,
which is not achieved by conventional methods based on small samples. In addition, a systematic index set of road network
features are constructed for correlation analysis. This is an improvement on the current research, which focuses on the influence of
single factors. Finally, taking 20,000 taxi drivers in Beijing as a case study, experimental results show the following: (1) Taxi drivers’
wayfinding performances show a spatial pattern of a high level on arterial road networks and a low level on secondary networks,
and they are spatially autocorrelated. (2) The correlation factors of taxi drivers’ wayfinding performances mainly include anchor
point, road grade, road importance, road complexity, origin-destination length, and complexity, and each factor has a different
influence. (3) The path complexity has a higher correlation with the wayfinding performance level than with the path distance. (4)
There is a critical point in the taxi drivers’ wayfinding performances in terms of path distance. When the critical value is exceeded,
it is difficult for a driver to find a good route based on personal cognition. This research can provide theoretical and technical
support for intelligent driving and wayfinding research.

1. Introduction

Wayfinding was formally defined by Lynch as the consistent
use and organization of sensory cues from the external
environment [1-3]. Wayfinding is not randomly navigating
in the environment but rather a purposeful activity from an
origin to a destination by comprehensively mobilizing
cognitive knowledge of the surroundings. It can be influ-
enced by both environmental factors and individual dif-
ferences [3-5]. For example, a person with high spatial
cognitive ability will become lost in some places. Generally,
there is more than one alternative path between a pair of
origin-destination (OD) points in a road network. However,
there exist optimal and poor paths considering the

consumption of time or other limited resources (e.g., fuel,
economic cost). The choice of different paths reflects each
individual’s wayfinding performance level (WPL) [6]. In an
urban environment, road networks, which are key to urban
transportation systems, play an important role in the
movement and circulation of people and resources, and they
guarantee the vitality of a city. Investigating the differences
in wayfinding performance of city residents on road net-
works and discovering wayfinding behavior patterns and
their correlation factors are helpful for understanding the
universal law of human spatial knowledge acquisition and
spatial consciousness development and important for both
individual travel optimization and intelligent transportation
planning.
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The quality of wayfinding is the integrated result of the
individual features including age, sex, professional back-
ground, perceptual ability, spatial ability, and environmental
features including size, symbols, and structure [7-9]. Much
research has been undertaken in a broad range of disciplines,
particularly the environmental, behavioral, and computer
science fields, in examining the principles and factors related
to wayfinding. From the perspective of observation means,
they can be categorized into three types: based on ques-
tionnaire surveys, based on professional equipment obser-
vation, and based on location-aware data mining.
Questionnaire surveys are mostly used in behavioral and
cognitive science. Marie-Dominique and Patrick [10] took
taxi drivers as the study objects and analyzed the differences
in wayfinding performance and strategy differences between
novice and skilled drivers by drawing routes on maps and
time estimation. Through a questionnaire experiment,
Garling and Girling [11] found that 69% of shoppers
consciously plan their paths to shorten the overall journey,
but whether they can find the shortest path depends on their
wayfinding ability. Ishikawa and Montello [12] and Al-
Alwan and Al-Azzawi [13] explored the influence of repe-
tition and familiarity on the level of wayfinding and spatial
knowledge development from different angles based on
hand sketching and questionnaires. Giudice et al. [14] and
Kim et al. [15] focused on the effect of map presentation
mode on pedestrian wayfinding. Giudice et al. studied the
influence of map presentation mode on the level of envi-
ronmental learning, cognitive map development, and
wayfinding performance with visual impairment through
controlled experiments. Kim et al. discussed the differences
between digital signage and traditional signage in helping
people find their way on a campus.

With the development of science and technology, the
wide applications of virtual reality, eye movement recorder,
video capture, real-time positioning, and other technologies
provide more convenient and accurate observation methods
for wayfinding behavior research [16-19]. Li and Klippel
[20] used audio and video acquisition equipment to explore
human wayfinding behavior in complex buildings and ex-
plored the interaction between individual differences and
architectural features in the process of wayfinding. Wang
et al. [21] discussed the effects of sex and age on wayfinding
performance by using eye trackers. The results showed that
there were significant interactive differences between sex and
age in self-location memory and route memory. Malinowski
and Gillespie [22] used positioning technology to carry out a
wayfinding experiment of the field environment. It showed
that the influence of individual differences found in the
laboratory experiment, such as sex, previous experience,
mathematical ability, and map skills, also exists in field tasks.
In addition, the adoption of new technologies allows some
experiments to be implemented in a laboratory. Laboratory-
based research reduces the impact of the real, dynamic, and
complex environment, which is convenient for variable
control and detail discovery. Spiers and Maguire [23] used
retrospective oral reporting protocols, eye tracking, and
highly accurate virtual reality simulations of a real city
(London, UK) to explore taxi drivers’ decision-making step
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by step. Taillade et al. [24] compared the wayfinding and
spatial memory performance of young and elderly people by
using virtual reality technology. It was found that age had a
significant effect on wayfinding ability but had no significant
effect on spatial memory ability. Brunye et al. [8] discussed
the impact of time pressure on wayfinding in a virtual
environment. The results showed that time pressure can
increase the intuitive feeling of pressure and reduce the
accurate performance of wayfinding tasks. Jansen-Osmann
and Wiedenbauer [25] investigated the influence of struc-
turing space on wayfinding performance, wayfinding
strategies, and spatial knowledge in an unfamiliar virtual
environment.

With the accumulation of location-aware data [26, 27],
scholars also carry out wayfinding research through loca-
tion-aware data mining. This type of research focuses on
pattern discovery in path selection and simulation. Turner
[28] proved that motorcyclists pay more attention to the
smaller angle distance than to the shortest distance in a
familiar environment. Tang et al. [29] and Li et al. [30]
explored the route selection patterns of taxis and further
applied them to path planning. Liu et al. [31] identified a set
of valuable features through trajectory analysis to explore
cabdrivers’ operation patterns and compared cab drivers’
wayfinding behaviors. Zhang et al. [32] explored the travel
mode and seasonal regularity of taxi groups, which provided
useful information for trip generation.

The questionnaire survey methods have advantages in
obtaining the attribute information and specific details of
respondents but show strong individual heterogeneity be-
cause the retrospective description and question-and-an-
swer format rely heavily on the memory, expression, and
perception ability of respondents. Observation by profes-
sional equipment can obtain wayfinding process informa-
tion comprehensively and accurately, which makes up for
the drawbacks of questionnaire survey methods to a certain
extent. However, this method can be applied only in ex-
periments with small samples due to equipment limitations,
causing weakly representative results. Although research
based on location-aware data mining does not rely on prior
knowledge, it mostly focuses on the discovery of path se-
lection patterns but not on wayfinding performance. In
summary, existing research mainly measures wayfinding
behavior based on a small sample or in a small/indoor area
and rarely explores wayfinding performance on city-scale
road networks and underlying rules based on large sample
data. For the correlation factor analysis of wayfinding
performance, the existing studies focus more on a simple or
single factor, such as color, repetition frequency, age, or sex,
and few studies have paid attention to the influence of a
comprehensive set of factors.

In view of the abovementioned problems, this paper
aims at evaluating drivers’ wayfinding performances on road
networks, exploring its spatial distribution characteristics
and correlation factors based on trajectory data. The specific
work and main contributions are as follows: (1) This paper
proposes a quantitative and population-based evaluation
method of wayfinding performance on city-scale road
networks based on massive trajectory data. The method can
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accurately compute and visualize the magnitude and spatial
distribution differences of drivers’ cognitive levels to the
road network, which is not achieved by conventional
methods based on small samples. (2) This paper constructs a
systematic index set of road network features for correlation
analysis of wayfinding performance. This is an improvement
on the current research that focuses on the influence of
single factors. (3) This paper discovers the spatial distri-
bution characteristics and correlation factors of taxi drivers’
wayfinding performances in Beijing.

The structure of this paper is as follows: Section 2 il-
lustrates the study area and all datasets used in the exper-
iment; Section 3 introduces the methodology for evaluating
the wayfinding performance of drivers on a city-scale road
network and analyzing its correlation factors; Section 4
presents the experimental results of the case study in Beijing;
Section 5 discusses the implications and limitations of the
study; and Section 6 concludes with future directions.

2. Study Area and Data

Beijing urban area is taken as the study area to investigate the
spatial distribution and correlation factors of driver way-
finding performance, as shown in Figure 1. The data used in
the experiment mainly comprise three datasets. The first
dataset is taxi trajectory data from the taxi administration
agency, and its attributes include the license plate number
(encrypted for privacy protection), positioning time, pas-
senger-carrying status, longitude, latitude, speed, and di-
rection. Its sample dataset is shown in Table 1. The entire
dataset is composed of approximately 350 million trajectory
points collected from approximately 20,000 taxis from
November 1 to 7, 2012. The taxi drivers are chosen as a study
group for two reasons. First, taxi drivers generally have a
larger scope of activity in a city and have more frequent
interaction with the urban road networks than urban resi-
dents due to the nature of their work. Using a dataset of taxi
drivers is conducive to analyzing wayfinding performance
differences in the entire city. Second, it is difficult to obtain
trajectory data of private cars, for the sake of privacy and
security. The reason for selecting 2012 is that car-hailing and
navigation applications were not used on a large scale by taxi
drivers in Beijing at that time according to the development
process of the car-hailing industry in China (https://www.
didiglobal.com/about-special/milestone) and an interview
survey of taxi drivers in Beijing, so taxi drivers’ wayfinding
behaviors relied mainly on their cognition of road networks.
The second dataset is road network data, which include the
road name, road grade, number of lanes, traffic direction,
and longitude and latitude coordinates of the road nodes.
The sample data are shown in Table 2. The main structure of
the road network in Beijing is a combination of ring-shaped
express roads and highways, and the secondary roads are
evenly distributed across the city, as shown in Figure 2. The
ring-shaped express roads mainly bear the traffic flow inside
urban areas, while the highways bear the traffic flow between
urban and suburban areas. The third dataset is a point-of-
interest dataset (POI) including landmark buildings and
anchor points. Its sample data are shown in Table 3. Both

road network data and POI data in the year 2012 come from
AutoNavi Maps, the largest map provider in China.

3. Methodology

Trajectory data provide an unprecedented and large amount
of information that reflects the dynamics of mobile objects
and thus are widely applicable to intelligent transportation,
urban computing, social network analysis, and other fields
[33, 34]. As far as this research is concerned, the trajectory
data demonstrate the actual moving routes of taxis, while an
objective optimal route based on road networks exists for
each passenger-carrying trip. The discrepancy between them
can reflect the wayfinding performance of taxi drivers. Based
on this observation, a methodological flowchart is designed
as shown in Figure 3, which is mainly composed of four
parts: (1) In the data preprocessing stage, map matching
between the original trajectory data and the road network is
implemented. The driving route is reconstructed, and the
passenger-carrying route segment is further extracted. (2) A
quantitative evaluation index of wayfinding performance is
defined as the WPL. The global index “global WPL” and local
index “local WPL” are calculated based on the passenger-
carrying route segments. (3) Based on the local WPL of all
taxi trajectory data, the spatial distribution characteristics of
the wayfinding performance are analyzed by the spatial
autocorrelation analysis method. (4) The correlation factors
and effects of the WPL are analyzed by statistical analysis
methods from four aspects: feature point, road attribute,
regional features of the road network, and OD features.

3.1. Data Preprocessing. The data preprocessing of this study
mainly includes four parts:

(1) Map matching: The original trajectory data are the
tracking points recorded by GPS receivers installed
on taxis, and most of these points do not match road
vectors due to positioning errors and signal receiving
disturbances of GPS receivers. Therefore, the map
matching must be conducted to match each trajec-
tory point with the corresponding road segment.
Considering that the map matching algorithm with a
hidden Markov model has good performance
[35, 36], we choose it for map matching in this study,
and the accuracy of the map matching result is
verified to be 87% using the accuracy ratio of points
matched (ARP) from [37].

(2) Route reconstruction: For the consecutive trajectory
points of each taxi, the matched road segments are
connected in chronological order to reconstruct the
complete driving path. In this study, the Dijkstra
algorithm [38] is adopted to handle the matched
road segments generated by sparse trajectory points.
Moreover, in order to avoid the impact of related
factors on the calculation result, the trajectories with
a length of less than 1km or with a dwelling time of
more than 5min in the course of the trip are re-
moved before the index calculation.
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FIGURE 1: Study area and dataset.
TaBLE 1: Example of taxi trajectory data.
Taxi ID Time Longitude Latitude Speed Direction Carrying state
156814 2012-11-01 00-16-38 116.4512558 39.9600296 21 40 1 (passenger-carrying state)
489509 2012-11-01 09-09-52 116.3273697 39.9753838 12 192 0 (cruising state)
156941 2012-11-01 09-09-53 116.3183136 40.0305862 0 282 2 (parking state)
TaBLE 2: Example of road vector data.
Road ID Road name Origin ID Destination ID Length (m) Direction Road grade
60560404385 Jingmi road 560402808 560400279 894 Two-way Expressway
60560404371 Siwei road 560402801 560401957 177 One-way Branch way
60560404339 Xiping street 560402786 560400461 120 One-way Branch way
(3) Passenger-carrying segment extraction: The taxis (4) Nighttime dataset extraction: This paper focuses on

look for passengers in the cruising state, and the
trajectories collected in this state reflect the cognition
of the location of passenger sources rather than of
road networks. Therefore, the route segments while
carrying passengers are extracted according to the
field value of the passenger-carrying state, and only
these segments are used for further steps.

exploring the spatial distribution differences of taxi
drivers’ WPLs and the correlation between WPL and
static factors, so the impact of traffic flow on route
selection is not considered at this stage. This study
uses only the trajectory dataset collected in the
nighttime (0:00-5:00), during which the traffic flow
is relatively stable. In the end, 5 million positioning
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FIGURE 2: Major road network structure.

TaBLE 3: Example of point-of-interest data.

POI ID Longitude Latitude
Tiananmen 116.403931 39.91328
Jimen bridge 116.36071 39.973565

data were screened out, covering the entire extent of
the Beijing urban area.

3.2. Construction of Wayfinding Performance Level Index.
Many studies have been carried out in the field of cognitive
science and transportation for the aspect of wayfinding
evaluation [23, 28, 39]. All scholars adopt some practical
evaluation indexes from different perspectives, including the
rate of wrong-way selections at intersections, the accuracy of
map redrawing, the distance going the wrong way, the time
spent viewing maps during wayfinding, and the time spent
finding a destination. This study aims to explore the in-
fluence of the urban road network structure on a taxi driver’s
wayfinding performance by using historical trajectory data
of taxis. In the taxi industry, both the origin and destination
become determined when a taxi picks up a passenger, and
the taxi tends to reach the destination in the shortest path.
The actual driving route can be regarded as the subjective
optimal route based on the driver’s cognition on the road
network, while there is an objective optimal route based on
the road network. The discrepancy between the two routes
can reflect the taxi driver’s wayfinding performance. Based

on this observation, this paper chooses the ratio of the length
of the shortest route to the actual driving route to construct
the WPL [6, 9, 23] as follows:

WPL — LShortest) (1)

actual

where WPL is the wayfinding performance level index, L,
is the length of the actual driving route, and L. is the
length of the optimal route between the origin and desti-
nation of the trip by the Dijkstra algorithm based on the
digital road network map. The greater the WPL value, the
closer the actual driving route to the shortest route and the
higher the WPL of the taxi driver.

3.3. Calculation of Wayfinding Performance Level Index.
The driving route varies in length, and the WPL of the taxi
driver on different road segments that the route passes by is
also different. As shown in Figure 4, during the journey from
Point A to Point B, the selected route is good overall, but it is
not always a good choice in every segment (such as segment
CD). Therefore, calculating only the overall wayfinding
performance would ignore local detailed information and
fail to reflect spatial differences.

Based on the above observation, this paper evaluates the
driver’s wayfinding performance from the global and local
perspectives, which correspond to global WPL and local
WPL, respectively. The global WPL is calculated based on
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the entire driving route to evaluate the overall wayfinding
performance on this route. A sliding window [40-42] with a
width of 3km and a step length of one road segment is
designed to calculate the local WPL. As shown in Figure 4,
the sliding window slides along the actual driving route
(black solid line) progressively—e.g., from W1, W2 to W3 in
the figure. For each window, the road network nodes at the
two ends of the window are extracted as the start and end
points, and the shortest path length between them is cal-
culated based on road networks.

The WPL within the range of this sliding window (local
WPL) is then calculated using (1). The result is assigned to
the road segment within the current window to reflect the
driver’s WPL to this segment. The local WPL is calculated in
turn until all road segments along the driving route are

Qualitative and quantitative methods are used to discover
the spatial patterns that exist in the WPL of taxi drivers.
Specifically, the global Moran’s [41] and local Moran’s [42]
indexes are used to perform global and local spatial auto-
correlation analysis on the WPL, respectively. The global
spatial autocorrelation index is used to confirm whether
there is a correlation between the WPL in a region and those
in its neighboring region. By contrast, the local spatial au-
tocorrelation index is used to explore the spatial location of
the agglomeration center and corresponding patterns. The
formula for the global Moran’s I index is as follows:

_ ny Y w(yi - 7)()’1 - 7)

(Z? b wij) Y (yi- )
where I is the value of Moran’s I index, n is the total number
of roads in the study area, y; and y; are the WPL values of

roads i and j, ¥ is the mean WPL of all roads, and w; is the
spatial weight matrix between roads i and j.

(2)
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The formula for local Moran’s I index is as follows:

n
I; = Zizwijzj) (3)
i#j

where I, is the value of the local Moran’s I index of road i, z;
is the standardized value of the mean WPL, z; is the
standardized value of the standard deviation, and w; i is the
spatial weight matrix between roads i and j.

The result of spatial autocorrelation analysis can help
determine whether the WPL of taxi drivers is spatially
autocorrelated and explore the degree of correlation and
dependence. The two indexes are calculated by ArcGIS
software, and the inverse distance weight method is used to
construct the spatial weight matrix.

3.5. Potential Correlation Factors and Correlation Analysis.
To the best of our knowledge, there is no previous literature
specifically studying the influence of a city-scale road net-
work on the wayfinding performance of drivers. In this
paper, the selection of potential correlation factors mainly
considers the comprehensive measurement of the structural
characteristics of an urban road network. First, the urban
road network is a network structure. Second, it has some
unique features compared with common networks (anchor
point, OD path). By referring to the literature on network
structure characteristics [43, 44] and route planning on a
road network [45, 46], this paper selects nine features as
potential correlation factors: feature point, road grade,
centrality (betweenness centrality, closeness centrality,
straightness centrality), road density, road complexity, OD
complexity, and OD distance. The details of each potential
factor are shown in Table 4.

While calculating the indexes on centrality, this paper
takes road intersections as nodes and road segments as edges
to construct a graph of the road network. Then, taking
multicenter analysis as a theoretical basis [43, 44], this paper
uses the urban network analysis toolbox of ArcGIS software
to calculate the multicenter measurement indexes.

In correlation analysis, we distinguish two types of
variables: categorical variables and numerical variables. For
categorical variables, the boxplot analysis method is used to
display the distribution of WPL values across different at-
tribute values, which shows the changing trends in WPL. For
numerical variables, regression analysis is performed be-
tween them and WPL by Origin software to discover how
WPL correlates with the factors.

4. Results and Analysis

4.1. Spatial Distribution Characteristics of the Wayfinding
Performance Level. According to the calculation method in
Section 3.3, the average local WPL value of all taxis on the
same road segment is calculated, and it reflects the WPL of
the taxi drivers on this road segment. Figure 5 shows the
spatial distribution of WPL. The high-WPL road segments
marked by blue are mostly freeways, expressways, and major
roads, which are basically consistent with the arterial roads
in Beijing. Between the East 2nd Ring and the East 3rd Ring

is a significant low-WPL area. Generally, the taxi drivers’
wayfinding performance in Beijing shows an obvious hi-
erarchical pattern.

The global and local Moran’s I indexes are used to further
analyze the clustering characteristics of WPL. Table 5 shows
that the global Moran’s I is 0.2115, the z-value is 225.33, and the
p-value is less than 0.05, which indicates that wayfinding
performance has a strong spatial autocorrelation. Based on this
finding, it can be inferred that if a driver can make a good
wayfinding decision in a region, he or she is likely to have good
performance in adjacent regions. Figure 6 shows the results of
local spatial autocorrelation analysis, and most of the arterial
roads show an obvious high-high aggregation pattern. There
are several low-low aggregation areas distributed in the regions
between the East 2nd Ring and East 3rd Ring, between the
Northeast 4th Ring and Northeast 5th Ring, and between the
West 2nd Ring and West 4th Ring. The high-low aggregation
pattern is the phenomenon that highly cognized roads are
surrounded by lowly cognized roads, which can be observed
around the Northeast 2nd Ring, Northeast 3rd Ring, and
Jinggang’ao freeway. The overall result is the following: (1) The
wayfinding performance on road networks shows a spatial
pattern of a high level on arterial road networks and low level
on secondary networks. It is speculated that taxi drivers have a
hierarchical wayfinding pattern from arterial networks to
secondary networks that is step by step. (2) Wayfinding per-
formance has a strong spatial autocorrelation. If a driver is
familiar with a road, he or she tends to be familiar with adjacent
roads. (3) There are several concentrated areas with weak
wayfinding performance in road networks in Beijing in which it
is difficult for most people to find an optimal way.

4.2. Exploration on Correlation Factors of the Wayfinding
Performance Level

4.2.1. Feature Point. From the cognitive perspective, land-
marks are important focal points and are prominent cog-
nitive clues with distinctive features [47-50]. Based on the
concept of landmark significance (i.e., semantic, visual, and
structural significance), this study constructs a feature point
dataset as shown in Figure 7, which is composed of landmark
buildings (e.g., Tiananmen Square and National Stadium),
road anchor points (e.g., overpasses, underpass tunnels, and
roundabouts), and others [51, 52]. Figure 8 shows the av-
erage WPL of all road segments within 500 m of the feature
points, road anchor points, and landmark buildings, and the
red line indicates the average value of WPL for all road
segments. Generally, the taxi drivers’ WPLs near feature
points are higher than average, among which the WPL
around road anchor points is more prominent, far beyond
the average value. It can be speculated that taxi drivers in
Beijing take road anchor points as important marks for
cognizing road networks, and these anchor points play a
greater role in route planning.

4.2.2. Road Attributes. Road attributes reflect the role and
function of a road in a road network system, and two attributes
(road grade and centrality) are selected for analysis. In Figure 9,
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TaBLE 4: Definition and expression of potential correlation factors.

Factor

Factor expression

Description

Feature point

Road anchor points (overpass, highway entrance and exit, bridges)
and landmark buildings.

Feature points are defined as important focal points
and cognitively salient cues with prominent
features.

Road grade

Freeway, expressway, trunk road, secondary trunk road, branch
way.

It identifies the grade, functions, and traffic volume
of the road.

Betweenness
centrality

Capi = Z?:l 22:1 bjk (i)
where 7 is the total number of nodes, b (i) = (g% (0)/g i), Cap; is
the betweenness of node i, and by, (i) is the probability that node i
islocated on the shortcut of node jand node k. g (i) is the number
of shortcuts through node i between nodes j and k, and g is the
number of shortcuts between nodes j and k.

It indicates the force and influence of nodes in the
whole traffic network. The greater the betweenness
centrality of nodes is, the more the nodes can
control the relationship between other nodes.

Closeness
centrality

Capi = (1 Z?:l dij)
where 7 is the total number of nodes, C 4 ; is the closeness of node 7,
and d;; is the length between node i and j.

It indicates the difficulty for a node to reach other
nodes, and the greater the closeness centrality, the
better the accessibility of the node.

Straightness
centrality

1
Cusi =1/(N - I)ZjeV,j#i (dfi““ /dij)
where N is the total number of nodes, C g, is the straightness of
node i, d;; is the shortest path distance between nodes i and j, and
df is the Euclidean distance between i and j.

It indicates the accessibility efficiency between one

node and other nodes. The greater the value of this

index, the closer the actual route to a spatial straight
line.

Road density

D; = R/S;
where D; is the density of roads in region i, R; is the total length of
roads in region i, and S; is the area of region i.

The ratio of the total length of the roads to the total
area (km/km?).

Road
complexity

C, = N//S,
where C, is the complexity of roads in region i, N, is the number of
intersections in region 7, and S; is the area of region i.

The ratio of the number of road intersections to the
total area (/km?).

OD complexity

The number of road intersections passed by the shortest route
between the origin and destination.

It indicates the number of turning choices between
the origin and destination.

OD distance

The length of the shortest route between the origin and destination.

It indicates the total driving distance.
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TaBLE 5: Result of global Moran’s I.
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FIGURE 6: Local spatial autocorrelation analysis of taxi drivers” local wayfinding performance levels.

the boxplot describes the statistical characteristics of the
wayfinding performance for each road grade, and the red line
represents the average WPL of all roads. The wayfinding
performance on a freeway, expressway, and trunk road is
higher than the average value. With a decrement in the road
grade, the average WPL decreases, and the fluctuation am-
plitude of WPL increases. From the perspective of the appli-
cation, a perfect and appropriate design of an arterial urban
road network is very important and provides urban residents
with a more friendly cognitive experience.

Figures 10(a)-10(c) show the distribution of the between-
ness, straightness, and closeness centrality of the road network in
Beijing. The distribution structure of the betweenness and
straightness centrality is polycentric, while the closeness cen-
trality shows a single-center distribution and conforms to the
distance attenuation law from the center to the outside. To
explore the relationship between the road centrality and WPL,
this study shows a changing trend in WPL with the centrality
index by a scatterplot, as shown in Figure 11. The dotted line is
the fitting line of the scatterplot, while the broken line dem-
onstrates the change rate of WPL with the centrality index.

Figures 11(a)-11(c) show that the WPL and the three
types of centralities are positively linearly correlated, second-
order correlated, and negatively linearly correlated,

respectively. Note that the sparse and noisy points in each
figure can be neglected since they are extraneous samples,
which cannot reflect the general trend. The betweenness
centrality indicates the function of transfer and switch of a
segment in a road network, which corresponds to the im-
portance of a road to some extent. As shown in Figure 11(a),
the higher the betweenness centrality, the more important the
road segment in the entire network and the higher the WPL
among taxi drivers. The straightness centrality measures the
degree of deviation between the shortest route and the straight
path between two nodes, which indicates the simplicity of a
route. As shown in Figure 11(b), the higher the straightness
centrality, the higher the WPL among taxi drivers. In addi-
tion, the wayfinding performance is very sensitive to the
straightness centrality, so their correlation is a second-order
function. The closeness centrality is how close a node is to
other nodes in the road network, which reflects the alternative
road choices available in the neighboring area in route se-
lection. As shown in Figure 11(c), the greater the closeness
centrality is, the more difficult the road segment is cognized
and the lower the WPL among taxi drivers is. In the future, a
comprehensive consideration of the road capacity and cog-
nition in urban road network planning will help build a more
public-friendly road network.
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4.2.3. Regional Features of Road Networks. The study area is
divided into grids with a size of 1km™*1km, and then the
average local WPL, road complexity, and density within each
grid are calculated, as shown in Figure 12(a)-12(c), re-
spectively. The areas with high road complexity are dis-
tributed mainly between the 2nd Ring and 4th Ring,
especially along ring expressways (Figure 12(b)). The dis-
tribution of road density is similar to that of road com-
plexity. The area within the 4th Ring and the area north of
the 5th Ring have a significantly high road density

| EB—ES—eg 5
ool L T T T\\x
0.85 \

Local WPL

0.8

0.75
Freeway Expressway Trunk road Secondary Branch way
trunk road

FIGURE 9: Statistics on the local wayfinding performance level for
each road grade.

(Figure 12(c)). As shown in Table 6, the correlation analysis
results indicate that the WPL of the regional road network is
obviously correlated with road density and complexity. The
correlation between the road complexity and WPL (R2 is
0.90) is much stronger than that between road density and
WPL.

4.2.4. OD Features. To reveal the relationship between the
OD features and WPL, this study takes the path complexity
and distance as the independent variables and the global WPL
as the dependent variable to perform linear regression
analysis, as shown in Figure 13. Global WPL has a negative
correlation with the number of road intersections passed by
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TaBLE 6: Correlation between local WPL and road complexity and density.
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(R2 is 0.808). It can be seen that 140 is a critical point before
which the linear relationship between the two variables be-
comes more significant (R2 is 0.9063, as shown in the small
subfigure of Figure 13(a)), after which the decreasing trend of
global WPL fluctuates greatly as the path complexity grows.
There is a similar correlation pattern between global WPL and
path distance. Global WPL has a negative correlation with the
path distance (R2 is 0.3848). Here, 20 km is a critical point,
before which the linear relationship is more significant (R2 is
0.7881, as shown in the small subfigure of Figure 13(b)), after
which the correlation becomes insignificant.

Generally, it is speculated that there is a critical point in
the taxi drivers’ wayfinding performances on road networks
in terms of path distance. When the critical value is exceeded,
it seems that is difficult for a driver to find a good way based
on personal cognition. Compared with path distance, path
complexity has a higher correlation with WPL. A driver who
encounters a road intersection must make a route choice, so
the number of intersections passed by can better reflect the
difficulty of driving and navigation. It can be inferred that the
number of road intersections has a greater impact on the
difficulty of wayfinding than on the driving time.
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5. Discussion

The spatial distribution map of WPL shows that taxi drivers
have a good understanding of the skeleton of a road network,
even in the Central Business District of Eastern Beijing,
which has a complex network structure. It can be inferred
that drivers’ cognition of the urban road network may have
such a hierarchical cognitive mode from the spatial distri-
bution of wayfinding performance, which makes the driver’s
wayfinding performance gradually decrease from the arterial
road network to the secondary road network, but further
study of this dynamic cognitive process is still required.

Experimental results show that feature points and road
grade are important references in route selection and play an
important role in wayfinding, and among all types of feature
points, taxi drivers have a higher WPL to road anchor points
(i.e., overpasses and roundabouts). In addition, this paper
explores the relationship between road centrality and WPL
for the first time. The results show that there is a close and
predictable relationship between road centrality and way-
finding performance. Road centrality does not exist ex-
plicitly in real space as a concept of graph theory, but it is still
closely correlated to wayfinding performance.

The results in Section 4.2.4 prove that as the path dis-
tance increases, the global WPL decreases, which means that
the deviation of the actual driving route from the shortest
route shows a cumulative growth trend, and the deviation
value can be predicted to some extent. However, the devi-
ation becomes unpredictable when the driving route exceeds
20 km or the number of passed by intersections exceeds 140.
It can be inferred that there might be an upper limit for the
human brain to cognize a road network. When the upper
limit is exceeded, it is difficult to plan a good route based on
personal cognition, and the route selection results are rel-
atively random. It is necessary to further confirm the reasons
causing a long route planning failure [50].

At present, most wayfinding performance research takes
a trajectory as the evaluation unit [23, 28, 39], but taking
only the global wayfinding performance result as a per-
formance indicator is not a good choice because the driver
does not have the same level of cognition on every segment
along a long route. This study applies a sliding window to
calculate the local wayfinding performance (local WPL) to
reflect the cognitive status of drivers on different road
segments along a route. Evaluating the global and local WPL
at the same time can help reveal more fine-grained spatial
wayfinding decision patterns.

This research provides insights into drivers’ perceptions
of road network characteristics during wayfinding, which is
an important research direction in cognitive science,
transportation, and geography [53]. It has high theoretical
value: (1) It can prepare the ground for the simulation and
forecast of travelers’ behaviors under hypothetical scenarios
and further close the gap between urban features used by
drivers during route choices and the computational repre-
sentation of these features used in modeling this process. (2)
For driverless vehicles, it can provide a theoretical basis for
the autonomous learning and brain-like decision-making of
vehicles. (3) With the development of indoor positioning
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technology (gyroscope positioning, WiFi positioning, video
positioning), it has become possible to track the continuous
trajectory of pedestrians in various environments, for ex-
ample, within buildings. Therefore, the proposed research
framework can also aid in investigating the wayfinding
performance of pedestrians in these environments. The
population-based experiment will promote the under-
standing of pedestrians’ wayfinding behaviors in an indoor
environment. In addition, this research has a number of
practical application values: (1) Existing navigation software
conducts route planning based on limited deterministic
information but cannot consider certain complicated in-
formation. Integrating the group wayfinding experience into
route planning is conducive to improving the accuracy of
navigation. (2) The research results can help improve the
information presentation mode and user experience of
navigation products. For example, instructed by the research
results, the expression of route planning can be divided into
high-grade and low-grade road parts to improve under-
standability. The former part takes road anchor points as the
description unit (e.g., “Go straight to Madian Bridge, turn
right onto the North Third Ring”), while the latter takes the
distance as the description unit (e.g., “Go straight for 7 km,
turn left”).

However, more research questions should be further
investigated to enhance this work. Individual heterogeneity is
an indispensable point in the study of wayfinding [47], but
this paper focuses on the common wayfinding characteristics
of the entire population of taxi drivers instead of individuals.
Moreover, this study explores the correlation factors of taxi
drivers’ WPLs separately. Nevertheless, each factor is analyzed
separately while conducting correlation analysis at this stage,
so it is necessary to further consider the comprehensive in-
fluence of road network characteristics and explore the
leading factors. In addition, with the popularity of navigation
and car-hailing applications, the locality and uncertainty of
taxi drivers’ cognition of road networks gradually decrease.
Therefore, exploring the changes in the wayfinding modes to
road networks in this period of new technology is important
for understanding the impact of auto-navigation on human
spatial cognitive processes. Third, human activities rely on the
physical environment and bring new meanings to the physical
environment (i.e., context information). This paper currently
focuses on the features of the pure physical environment (e.g.,
road density) while investigating the correlation factors of
wayfinding performance and has not yet considered the
features of context information (e.g., traffic flow caused by
human travel, and type of trip). It may be interesting to study
wayfinding based on contextual information in the future.
More comprehensive research requires the interdisciplinary
fusion of psychology, physiology, behavioral science, geog-
raphy, computer science, environmental science, and other
disciplines.

6. Conclusions

This paper proposes a quantitative and population-based
evaluation method of WPL based on massive trajectory data. It
can accurately compute and visualize the magnitude and spatial
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distribution differences in drivers’ wayfinding performances,
which is not achieved by conventional methods based on small
samples. In addition, a systematic index set of road network
features is constructed for correlation analysis of wayfinding
performance, including point features, regional features, at-
tribute features, and OD features. Finally, taking the taxi drivers
in Beijing in the year 2012 as a case study, we analyzed the
spatial distribution characteristics of taxi drivers’s WPLs and the
correlation factors. Experimental results quantitatively reveal
that the wayfinding performance is hierarchically distributed
and spatially autocorrelated, and its correlation factors mainly
include anchor features, road grades, road importance, road
complexity, OD length, and complexity. This research is useful
for understanding people’s wayfinding performance charac-
teristics on road networks and provides theoretical and
technical support for intelligent driving and wayfinding re-
search. The large-scale study based on trajectory data lacks the
attribute information of individual participants such as sex, age,
and occupation, so it cannot reflect the influence of individual
attributes on wayfinding performance. Future studies will be
conducted to deepen the understanding of wayfinding per-
formance on city-scale road networks by considering indi-
vidual heterogeneity, joint influence of various features, and
context information (e.g., traffic flow caused by human travel,

type of trip).
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