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Travel time is valuable information for both drivers and trafficmanagers.While properly estimating the travel time of a single road
section, an issue arises when multiple traffic streams exist. In highways, this usually occurs at the upstream of diverge bottleneck.
+e aim of this paper is to provide a new framework for travel time estimation of a diverging traffic stream using timestamp data
only. While providing the framework, the main focus of this paper is on performing a few analyses on the stage of travel time data
classification in the proposed framework. +ree sequential steps with a few statistical approaches are provided in this stage:
detection of data divergence, classification of divergent data, and outlier filtering. First, a divergence detection index (DDI) of data
has been developed, and the analysis results show that this new index is useful in finding the threshold of determining data
divergence. Second, three different methods are tested in terms of properly classifying the divergent data. It is found that our
modified method based on the approach used by Korea Expressway Corporation shows superior performance. +ird, a
polynomial regression-based method is used for outlier filtering, and this shows reasonable performance even at a relatively low
market penetration rate (MPR) of probe vehicles. +en, the overall performance of the travel time estimation framework is tested,
and this test demonstrates that the proposed framework can show improved performance in distinctively estimating the travel
times of two different traffic streams in the same road section.

1. Introduction

+e growth in urban population and city-centred life pat-
terns has raised a series of problems in modern cities such as
traffic congestion and accidents. To tackle these issues, there
have been numerous attempts to implement intelligent
transportation system (ITS) in the road networks. In the field
of ITS, travel time is one of the most valuable information
for both vehicle drivers and traffic managers. In advanced
traveler information system (ATIS), updating travel time for
drivers in real time enables them tomake informed decisions
on their route choices to avoid congested roads [1]. In
advanced traffic management system (ATMS), based on
proper analyses of traffic states in relation to travel time
information, traffic managers can develop various control
and operational strategies to reduce road congestion [2].
Furthermore, travel time information can be used as

supplementary input for further development of the recent
studies related to traffic flow analysis [3], including short-
term prediction using neural network techniques [4, 5] and
long-term forecasts using fuzzy theory [6, 7]. Hence, proper
estimation of travel time on each road in a real-time manner
is crucial for further development and implementation of
ITS.

Travel time information can be obtained indirectly or
directly. +e indirect ways usually estimate travel time based
on traffic flow and speed measured by point sensors on the
roadside such as loop detectors, video cameras, and radars
[8–10]. +e direct ways measure the travel time using rec-
ords at tollgates and roadside units (RSU), which are parts of
automatic vehicle identification (AVI) technologies [11].+e
use of Global Positional System (GPS) on the probe vehicles
equipped with navigation devices or smartphones is another
direct way of travel time measurement, and this is the recent
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technology increasingly used due to wide spatial coverages
and low operational costs [12, 13].

+ere are three crucial issues in using the probe vehicles
for travel time estimation.+e first is the market penetration
rate (MPR). +e estimation is usually made by attempting a
statistical analysis of the travel time distribution of traveling
vehicles, but the estimation performance is reduced when
the number of the probes is low. Hence, there were a few
studies that examined the minimum conditions of MPR
[14, 15]. +ere were also some studies that provided tech-
niques for properly estimating travel time even with low
MPR conditions [16–18]. +e second issue is the outlying
observations in collected probe data. +e outliers can occur
due to various reasons such as en route stops, measurement
errors, and multiple devices in a single vehicle. +us, there
were several studies that attempted to solve this issue
[19–22]. +e third issue arises where different traffic streams
exist on a single road section. In highway networks, this
occurs at the upstream of a diverging road section, partic-
ularly when the disparity of the demands towards two
traveling directions is large. +is is called diverge bottleneck
[23, 24], and an example is shown in Figure 1. In urban road
networks, such cases usually occur at most intersections due
to signal controls. Regardless of the road types, when such
cases occur, there is a high risk of providing insufficient
travel time information to drivers. For example, if the mean
value of travel time were simply calculated from the data in
Figure 2 and given to the drivers who are to travel through
the off-ramp (left-turn), the traffic situation would be worse
than if they were informed as they arrived at the site. To
tackle this issue, separately estimating the travel times for
each of the diverging streams is required.

In fact, there are several previous studies that made some
efforts in relation to the third issue [16, 25–27]. +eir focus
was usually on estimating the vehicle delays at the diverging
(or turning) spot on a road, and this was done separately
from estimating the travel time of forward stream on the road
before the diverging spot [16]. A limitation still exists, as they
express the travel time with a single value by combining the
two different properties. Such works may support the traffic
control operations but may not be suited for improving the
route guidance system. To make improvements in this issue,
a few recent studies attempted to estimate the travel times of
different stream directions distinctively [13, 28]. +ese works
use GPS-based vehicle trajectories, and the advantage of
them is that there is a higher chance of increasing estimation
accuracy by microscopically tracking vehicle positions.
However, the real-time feasibility may be an issue because
they require continuously tracking down the traveling di-
rections and trajectories of a number of vehicles based on
numerous GPS points, which is a time-consuming and
complex process. In the sense of real-time implementation,
both the input data and the estimation technique should
maintain simplicity. +is is why many of the related studies
stuck to the use of statistical analyses of travel time distri-
bution based on the simplified timestamp data of inbound
and outbound vehicles on the roads [15, 19, 29]. +e major
problem of using such simplified data is still that the esti-
mation accuracy may be crucially influenced by the number

of data points collected. Hence, each of the methods using
trajectory data and timestamp data has both advantages and
disadvantages depending on the environments of collecting
and processing traffic data. Nonetheless, considering the
motivation of this study, which is to improve ATIS, it is
needed to maintain the simplicity of data processing while
attempting to increase the estimation accuracy with in-
sightful approaches.

+erefore, the aim of this paper is to provide a frame-
work for travel time estimation of a diverging traffic stream
using timestamp data only. While providing the framework,
the main focus of this paper is on conducting a few insightful
analyses on the stage of travel time data classification in the
proposed framework. +e analyses are done with the aid of a
microsimulation program that allows us to test the esti-
mation performance in various conditions of data acquisi-
tion. +e scope of this paper deals with a diverging road
section of highways, as the initial work of the estimation
framework. When this initial work is successfully practiced,
the research scope can be extended to dealing with the traffic
at signalized intersections in urban road systems.

+e rest of this paper is organized as follows. Section 2
provides the framework of travel time estimation of a di-
verging traffic stream. Section 3 describes the simulation
settings and simulated data used for the analyses. Section 4
presents the results of analyses on the proposed estimation
framework.+en, Section 5 concludes this paper and offers a
few suggestions for further works.

2. Proposed Framework

Figure 3 shows the framework for travel time estimation of a
diverging traffic stream.+e timestamp data of inbound and
outbound vehicles on the roads are used for the input data.
Based on the collected input data, the travel time values of a
road are sampled at each given time interval (e.g., every 5
minutes) in the preprocessing stage. +en, by conducting a
few statistical analyses, the sampled travel time values are
classified into forward and turning streams (or off-ramp
stream). Next, the outputs are the travel time values of the
forward stream and turning stream that are distinctively
estimated based on the classified data.

In this paper, our focus is on doing a few analyses in
terms of developing the stage of travel time data classifi-
cation. +ree sequential steps with a few simple statistical
approaches are provided in this stage: detection of data
divergence, classification of divergent data, and outlier fil-
tering. +e details of the steps are presented in the following
sections.

2.1. Detection of Data Divergence. +e purpose of this first
step is to detect the divergence in travel time distribution
and make a judgment if the divergence is significant. In the
sense of conventional distribution analysis [19], there is a
high risk of considering the sparse data points (red and green
points) in Figure 2 as outliers, even though they should be
considered as the effect of traffic state changes in the turning
stream. Hence, it is necessary to provide an analysis to detect
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whether the sparse data points are outliers or the congestion
has an effect on the turning stream.

In general, it is known that the mean value and median
value of distribution represent different levels of statistical
significance. +e arithmetic mean value represents the
average behavior that is easily skewed even by a small
proportion of extreme values. On the other hand, the

median value is particularly useful in analyzing datasets
with some proportion of extreme values because it is not
much skewed by the extreme values. Hence, several
previous studies used the basic advantage of comparing or
combining these two properties for travel time estimation,
considering the effect of extreme values in data
[12, 21, 29].

Forward stream
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Travel time measure area

Figure 1: Example of diverge bottleneck on highways.
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Figure 2: Travel time data of different traffic streams at the upstream of diverge bottleneck.
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Figure 3: Framework for travel time estimation of diverging traffic stream.
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If both the forward stream and turning stream are free
flow or congested, the streams can be considered as a whole
stream since they share the same traffic state. In this case, the
frequency distribution diagram of travel time usually shows
a unimodal shape with certain skewness [21]. Depending on
the skewness, the difference in the mean and median values
changes over time, but the amount of difference would not
be significant over the entire distribution. On the other
hand, if either one of the streams is free flow and the other is
congested as in Figure 1, the distribution diagram of travel
time would have a bimodal shape with two peaks as in
Figure 4. +e height of the first peak (the peak on the left
side) with lower values would more likely be greater than
that of the other peak, because the travel volume of free flow
stream is higher. In this case, the mean value would be
between the two peaks, and the median value would be
located near the first peak. Hence, if the distribution shows
clearly separated bimodal shape, the amount of difference in
the mean and median values would be more significant than
the former case.

Here, some may raise a question about the case when the
off-ramp volume is much lower than the forward volume. In
this case, the congestion in the main (forward) stream would
most likely affect the turning traffic at the upstream of the
diverging section as well, even though the off-ramp itself is in
free flow state.+us, at the upstream of the diverging section,
both the forward and turning streams would be congested in
this case, meaning that the case when the forward stream is
congested and turning stream is free flow would seldom
occur. In other words, the examples shown in Figures 1, 2,
and 4 would be the general case of diverge bottleneck in
highway sections that occurs particularly when the disparity
of the demands towards two traveling directions is large.

Now, let us use the statistical fundamentals described
above for detecting the divergence in travel time distribu-
tion. Table 1 provides descriptions of related variables. On
any highway section h, let N be the number of sampled data
points within the time interval ti−1 to ti. In addition, let
Tn

h(ti) be each of the travel time values in h within a time
interval where n � 1, 2, 3, . . ., N, and the value n is given in
the order of observation time. +e observation time of a
vehicle is the time when the stamp of outbound time is
recorded as the vehicle finishes its trip in h. +en, let us
provide the index for detecting whether the divergence is
significant and the sparse data points should not be filtered
as outliers.

Dh ti( 􏼁 �
T

me
h ti( 􏼁 − T

md
h ti( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

sh ti( 􏼁
, (1)

where Tme
h (ti) is the arithmetic mean value, Tmd

h (ti) is the
median value, and sh(ti) is the standard deviation value of
Tn

h(ti). +e index, Dh(ti), is the ratio of the difference be-
tween the mean and median values over the standard de-
viation, and we call this the divergence detection index
(DDI) of data.+e difference value is divided by the standard
deviation in order to give weight to the significance of the
difference. For the same difference value, if the data dis-
persion is large, the difference would be less significant out of

the entire dataset. Conversely, if the data dispersion is small,
the difference should be considered as more significant. In
this way, we can make judgments on the significant level of
the data divergence more properly. If DDI value is greater
than a given threshold, the divergence in data is judged to be
significant and the sparse data points should not be filtered
as outliers, because the difference between the two properties
over the dispersion of the distribution is considerably large.
+en, the classification is required to distinctively deal with
the different behaviors of the traffic streams in two
directions.

Note that the threshold can differ for different road
sections. Hence, an analysis is carried out for finding the
threshold value of an example site in Section 4.+e threshold
may differ at different times of the day even at the same
location, and examination on this should be done in further
studies after this study is successfully practiced.

2.2. Classification of Divergent Data. When data divergence
is detected by DDI and a given threshold, the data points are
to be distinctively treated to estimate the travel times of the
traffic streams in different directions. +e step of classifi-
cation of divergent data is provided for such a purpose. +e
major focus here is grouping the set of sampled travel time
values into the forward stream and turning stream. At this
step, the outliers would be still included in the group of the
turning stream, and filtering them out is to be done in the
following step. As can be seen in Figure 4, if we attempt to
filter the outliers first, there is a high risk of treating the
turning stream data points as outliers due to the low density
of the data points. +is would lower the accuracy of esti-
mating the travel time of the turning stream. Hence, the
proposed framework in this study attempts to initially
separate the data points into two groups at this current step
and then proceed to the following step of filtering outliers
from the group of turning stream data points. Such an
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Figure 4: Bimodal shape of travel time data distribution.
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approach is the major difference in the proposed framework
from the existing methods.

In this section, let G1
h(ti) be the set of travel time values

grouped as the turning stream (and outliers) and G2
h(ti) be

the set of travel time values grouped as the forward stream.
+en, we classify Tn

h(ti) values into these two groups based
on a given classification rule.+e issue here is that there is no
clearly superior solution, to the best of the authors’
knowledge. +e classification performance can differ
depending on many factors such as what kind of statistical
approaches is used, type of road, time of day, and sampled
rate of data. In this paper, three methods are attempted to
investigate the classification performances and find a rea-
sonable solution. Note that all these methods are designed
for the general case of diverge bottleneck in highway road
sections, which has been described in Section 1.

2.2.1. Method 1. +is method is designed to see the direct
effects of the mean and median values for classification. In
this method, we calculate both Tme

h (ti) and Tmd
h (ti) first.

+en, Tn
h(ti) is classified as turning stream (and outliers) if

its value is closer to Tme
h (ti). Conversely, Tn

h(ti) is classified
as forward stream if its value is closer to Tmd

h (ti) as follows:
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(2)

2.2.2. Method 2. In this method, we simply use the mean
value Tme

h (ti) and the standard deviation sh(ti). We assume
that the data points beyond a certain range of the mean value
are considered as the data originated from different be-
haviors. In this method, we consider that the range is 1.5
times the standard deviation. Tn

h(ti) is classified as the
turning stream (and outliers) if its value is beyond the given
range, and it is classified as the forward stream if its value
stays within the range as follows:
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(3)

According to the “three-sigma rule,” if the specific range
is set to twice the standard deviation, about 95% of the data
points would be included in the range. +en, the

classification of the data points corresponding to the turning
stream is more likely to be neglected, and this would lead to
underestimation. Conversely, if the specific range is set to
one times the standard deviation, about 68% of the data
points would be included in the range, resulting in a highly
exclusive classification. +en, a number of the data points
corresponding to the forward stream are more likely to be
incorrectly included in the group of turning stream data
points, and this would lead to overestimation. Hence, the
specific range should be chosen between 1 and 2 for avoiding
both underestimation and overestimation, and as the base
case study, the specific range is set to 1.5 times the standard
deviation in this paper. Note that alternative values can be
chosen depending on the condition of sampled data, and
properly determining the specific range is worthy of further
investigation in subsequent studies.

2.2.3. Method 3. +e third method is based on the Korea
Expressway Corporation (KEC), which is currently used for
filtering outliers in probe data collected from the entire
Korean highway system [19].+e reliability of the travel time
estimated with this has been shown by the ATIS in South
Korea almost for a decade, with empirical history. A coef-
ficient of variation (CV) is determined as the ratio of the
standard deviation sh(ti) over the mean value Tme

h (ti). +en,
the methods for removing outliers are provided for each CV
condition as in Table 2.

As can be seen in the table, the original method removes
the observed data points that are outside the predefined
range, and the predefined range differs according to the CV
condition.With respect to the samemean value, if CV is low,
this means that the data dispersion is low; thus, only a small
range of the data points are considered to be removed. As
CV gets greater, the range of removing the data points
increases due to higher data dispersion. However, in this
paper, we consider the divergent data to be classified as the
turning stream, rather than filtering them as outliers. Hence,
in this paper, the data to be removed based on the conditions
of the table are instead grouped as turning stream (and
outliers) G1

h(ti), and the other data values are grouped as the
forward stream G2

h(ti).

2.3.OutlierFiltering. As in Figure 2, not all travel time values
in G1

h(ti) are an actual part of the turning stream. +e
outliers may still exist within this group due to various
reasons such as en route stops, measurement errors, and

Table 1: Descriptions of related variables.

Notation Description
h Highway road section for travel time estimation
ti Time for data sample (at i-th interval)
N Number of sampled data points within the time interval ti−1 to ti

n Order of data observation (n �1, 2, 3, . . ., N)
Tn

h(ti) n-th observed travel time value in h within a time interval
Tme

h (ti) Arithmetic mean of travel time values observed within a time interval
Tmd

h (ti) Median of travel time values observed within a time interval
sh(ti) Standard deviation of travel time values observed within a time interval
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multiple devices in a single vehicle. +e purpose of this third
step is to remove these outliers in order to increase the
performance of estimating the travel time of the turning
stream.

For filtering outliers from G1
h(ti), an approach based on

polynomial regression is taken in this paper. As can be seen
in Figure 2, the divergent data points have a certain growth
trend different from the data of the main stream, and this is
due to the propagation of congestion shockwave in the
upstream lane of the off-ramp. After the growth, the trend of
divergent data points decreases as the congestion shockwave
begins to dissipate. Hence, the rate of shockwave in the
upstream lane of the off-ramp affects the travel time growth
in time-series. Analyzing the trend of such a response
variable (travel time) in time-series can be considered as a
regression problem [30, 31].

Let Tm
h (ti) be each of the travel time values in G1

h(ti)

where m � 1, 2, 3, . . ., M. Also, let fm
h (ti) be the expected

value of Tm
h (ti) in terms of the value of t, and t is in the unit

of seconds within the range of ti. +en, the quadratic
equation of fitting the data points in G1

h(ti) can be modeled
as follows:

f
m
h (t) � β0 + β1 · t + β2 · t

2
, ∀t ∈ ti. (4)

Let G3
h(ti) be the data points to be grouped as outliers

and G4
h(ti) be the data points to be grouped as the turning

stream, whichmakes G1
h(ti) � G3

h(ti)∪G4
h(ti). Here, let rh be

the constant factor that decides the range of outlier filtering
based on the trend line fm

h (ti). +en, Tm
h (ti) is classified as

outliers if its value is beyond the range of rh away from the
trend, and it is classified as the turning stream if the value
stays within the range as follows:
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(5)

Note that the range value rh can differ for different
conditions such as site location and traffic state. Hence, an
analysis is done for finding the appropriate values for these
properties in Section 4.

3. Data for Analyses

To analyze the performance of the proposed framework, it is
necessary to obtain the true values containing the turning
manoeuvres of vehicles towards a diverging direction. +e
true values are to be compared with estimated values for the
performance analyses. However, the real-world data ob-
tained by probe vehicles do not represent the true values.
Hence, we obtain travel time values with the aid of AIMSUN
microsimulation [32]. In this study, the data of all simulated
vehicles are considered as true values.

Figure 1 presents the simulated road geometry of the
diverging section, which connects Gangbyeonbuk-ro and
Seongsan bridge in Seoul, South Korea. Gangbyeonbuk-ro is
a riverside highway, and Seongsan bridge connects the north
and south of Han River. +ere is a high traffic demand from
the north to the south of the Han River during peak hours.
+e congestion frequently occurs in the off-ramp section,
and the diverge bottleneck affects the upstream of Gang-
byeonbuk-ro. Hence, the road section that corresponds to
the upstream of the diverging highway section is selected for
the analysis of this study. To simulate this, we set the “travel

time measure area” just before the off-ramp section, which
has a length of 1 km.

+e traffic demand for the simulation is set to be similar
to the peak hour demand in the real world.+e overall traffic
demand increases until the starting time of the peak hour,
and the maximum traffic demand is maintained during the
peak hour. After peak hour, the overall traffic demand
decreases, and the simulation is terminated when the
congestion at the diverging section disappears. Table 3
presents the traffic demand of each stream direction over
simulation time, and the number of vehicles that are to travel
through the off-ramp is 1/3 of the overall traffic demand. To
construct realistic traffic conditions, we set the truck and bus
demands, and the proportion of these demands is 5% each.
+ese types of vehicles have a longer length and lower
desired speed. Furthermore, to test the performance of the
outlier filtering step, some outliers are added to the simu-
lation timestamp data. +ese outliers are generated by
specific vehicles that travel through the park next to the
study site, and the type of these outliers is considered as the
en route stops [20].

When the simulation is ended, the section travel time
and exit time of each vehicle are stored in the simulation
output database. We extract the vehicles that pass through
the area of travel time measure and classify the vehicles
based on the section exit time by 5-minute unit. +e 5-
minute timestamp data are constructed by the section travel

Table 2: Outlier removal method of Korea Expressway Corporation.

Conditions Removal method
CV < 0.05 Remove the top 2% and bottom 3%
0.05 ≤ CV < 0.10 Remove the top 5% and bottom 5%
0.10 ≤ CV < 0.15 Remove the top 8% and bottom 7%
CV ≥ 0.15 Remove the values outside mean ± standard deviation
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time of the classified vehicles, which are plotted in the order
of increasing exit time. +rough the random sampling of
vehicles in 5-minute timestamp data, we analyze the per-
formance of the proposed framework in various MPR
conditions of probe vehicles.

To ensure the generality of the proposed framework, we
make 30 repeated simulations while changing the generation
seed of the simulation. +e generation seed determines the
generation time and route of each vehicle within the pre-
determined road geometry and traffic demand setting. Due
to changes in the generation seed, the characteristics of the
diverge bottleneck, such as travel time difference of each
stream direction or duration of the phenomenon, can vary
for each simulation. Total number of travel time data points
collected through the 30 simulations is 357811, of which
315038 are forward stream data points and 42773 are turning
stream data points. +e average travel time of forward and
turning streams is 102.01 and 209.61 seconds, respectively.
Also, the standard deviation values are 29.26 and
136.73 seconds, respectively.

4. Results of Analyses

+e analyses on each of the three steps in data classification
are done according to the confusion matrix in Table 4. It is
used for testing the performance of the methods with the
number of correct and incorrect data groupings. +e per-
formance can be classified into four categories: true positive
(TP), false positive (FP), false negative (FN), and true
negative (TN).

Note that the meanings of the four categories vary in
each of the analyses. +e performance tests in each analysis
will be done based on the true positive rates and true
negative rates at different MPR levels. We assume that the
entire set of the simulated travel time data described in
Section 3 is the data obtained at 100% MPR, and they are
considered as the actual results (true values). +en, we
randomly sample the data points from the entire dataset for
the lower MPR cases. Using the sampled data points at a
givenMPR condition, the true positive rate and true negative
rate can be calculated as follows:

True positive rate �
TP

TP + TN
,

True negative rate �
TN

FP + TN
.

(6)

4.1. Analysis of Divergence Detection. +e first step is to
detect the divergence of the traffic stream. +e value of DDI
represents the significant level of traffic divergence; thus, it
varies depending on the traffic state at a diverging road

section. +e traffic state changes over the simulation time
under the given travel demands in Table 3, and the traffic
state at the same simulation time can have differences by the
30 simulations due to the generation seed that is given
differently to each of the simulations. Figure 5 shows the
boxplots of DDI values of 30 different simulations at every 5-
minute sample interval. +e red dashed lines show the time
range when the divergence in travel time data exists. +e
boxplots show clear changes in the distribution of Dh values.
+e value is higher than 0.3 during the time range of data
divergence for this specific road section. Hence, in this study,
0.3 is used as the threshold of detection of data divergence.
+e sampled travel time values at ti are required to be
classified, if Dh(ti)> 0.3.

Figures 6(a) and 6(b) show the TP and TN rates at
different MPRs when DDI threshold is 0.3, respectively.
Here, the TP is the case when there is a divergence in actual
data and the distribution of the sampled travel time values
has Dh(ti)> 0.3. TN is the case when there is no divergence
in actual data and the distribution of the sampled values has
Dh(ti)< 0.3. As can be seen in these subfigures, both the TP
and TN rates are less than 0.8 for the lowest MPR case.
However, both rates increase as the MPR increases, and they
show sufficient performances, which are above 0.8 of the
rates, for MPR higher than 10%. +ese results show that,
even at relatively lowMPR conditions, the proposed method
using the DDI can perform well for detecting divergence in
travel time data.

4.2. Analysis of Data Classification. Figure 7 shows the re-
sults of the three classification methods described in Section
2. Here, TP is the case when the sampled data points are
grouped into G1

h and these data points are the subset of the
actual turning stream (including outliers). TN is the case
when the sampled data points are grouped into G2

h and these
data points are the subset of the actual forward stream.

In Figure 7(a), TP rates of all three methods increase
as the MPR increases. +ey all show similar patterns and
perform well even at relatively low MPR, because the TP
rates are higher than 0.8 when MPR is greater than 15%.
Out of the three methods, method 1 outperforms the
others and method 2 shows the worst performance. On
the other hand, in Figure 7(b), method 1 shows the worst
performance in TN rates, while the other two methods
show high performances even at low MPR conditions.

Table 3: Traffic demand of each stream direction over simulation time.

Simulation time (hh :mm) 00 : 00–00 : 30 00 : 30–01 : 00 01 : 00–01 : 30 01 : 30–02 : 00
Forward stream volume (veh/h) 10850 10850 8920 4960
Turning stream volume (veh/h) 5425 5425 4460 2480

Table 4: Confusion matrix.

Actual result
Positive Negative

Estimation Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)
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+is is because method 1 is the only one not considering
the standard deviation of the distribution. Hence, it is not
recommended that method 1 is used, based on the
performances of both TP and TN. +is finding definitely
suggests the importance of considering the standard
deviation of statistical distributions in the field of data
classification. Now, if we check the other two, method 3
outperforms method 2 in TP rates, and it shows lower
performance than method 2 in TN rates. However, the
difference in TN rates is very slight. Hence, method 3 is
superior based on both TP and TN rates. +us, the an-
alyses in the following sections are done based on the
results of data classification derived by method 3.

4.3. Analysis of Outlier Filtering. +is section presents the
results of the outlier filtering analysis. Here, TP is the case
when the sampled data points are grouped into G3

h and these
data points are the subset of the actual outliers. TN is the case
when the sampled data points are grouped into G4

h and these
data points are the subset of the actual turning stream.

While applying the regression model fm
h (t), notice that,

for example, the values of regression coefficients are
β0 � 2.846 × 102, β1 � 8.368 × 10− 1, and β2 � −2.871 × 10− 3

when MPR is 100% for the 11th data collection interval of a
simulation case, and these values vary for all different an-
alyses conditions (30 different simulations× 24 data col-
lection intervals× 20 MPR conditions).
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Figure 5: Boxplots of DDI values of 30 different simulations at every sampling interval.
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Figure 6: Results of data divergence detection (0.3 of DDI threshold). (a) TP rates at different MPRs. (b) TN rates at different MPRs.
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Figure 8 shows the TP and TN rates when different
values are applied to rh. +is graph shows that the TP
performance is superior as the factor rh decreases. +is is
because, for lower rh, there is a higher chance of including
most of the actual outliers into G3

h. However, this would
include the actual turning stream data points into the same
group and may lead to a high error. On the other hand, the
TN rates show that rh should be at the greatest level for
higher TN performances.+is is because, for higher rh, there
is a higher chance of including most of the actual turning
stream data points into G4

h. However, this would include the
actual outliers into the same group and may lead to a high
error. Hence, by considering both TP and TN rates in this
graph, it is conclude that the appropriate rh value is 27 for
balancing TP with TN performances and maintaining both
at a high level.

Figure 9 shows the TP rates and TN rates at different
MPRs when rh � 27. +e TP rates in Figure 9(a) show an
increasing trend as MPR gets greater, and they show
reasonable performances, which are near 0.8, only when
MPR is higher than 20%. +e low performances at low
MPRs are because some of the actual outliers are located
within the range of the turning stream cluster as in Figure 2,
and these points could not be filtered from the cluster. +e
TN rates in Figure 9(b) show reasonable performances near
0.8 for all MPR conditions. +e performances are almost
constant for all conditions except for 5% of MPR. +e
performance is exceptionally a bit higher for 5% of MPR,
and this is because the number of actual outliers is

extremely low within the sampled data points under the
given MPR condition. Overall, the results imply that the
outlier filtering shows reasonable performances even for
relatively low MPR conditions.

4.4. Overall Results of Travel Time Estimation. +e overall
performance of travel time estimation is tested in this
section. Figure 10 shows the parity plot of travel time
estimation before and after applying the proposed
framework. +e x-axis is the actual travel time of the
turning stream, and the y-axis is the estimated travel of the
turning stream. +e black solid line is the reference where
the actual and estimated values match each other. In this
parity plot, the estimation accuracy is higher as the data
points are closer to the reference line. +is figure presents
the results of travel time estimation before and after
applying the proposed framework for different actual
travel time values from 70 to 340 seconds. As the travel
time of the turning stream increases, the distance between
the data points and the reference line gradually increases
when the conventional method is used. Conversely, when
the proposed estimation framework is applied, the dis-
tance between the data points and the reference line is
significantly reduced. +e root mean squared error
(RMSE) values with respect to the reference line are
decreased from 113.11 to 20.42 seconds. +is shows clear
evidence that the proposed framework has a high chance
for accuracy improvement.
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Figure 7: Results of the three classification methods. (a) TP rates at different MPRs. (b) TN rates at different MPRs.
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Figure 10 depicts only a comparison result of a specific
case (at MPR 30%) as an example, and the evaluation at
various MPR conditions is also required. +e evaluation is
done by comparing the mean absolute percentage error
(MAPE) values before and after applying the proposed
framework with the three data classification steps. +e
MAPE values are calculated as follows.

MAPE �
1
n

􏽘

n

t�1

actualt − estimatedt

actualt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100(%). (7)

We consider the mean value of Tn
h(ti) as the estimated

travel time values of both forward and turning streams
before applying the framework. For the “after” case, we carry
out the output stage shown in Figure 3. +e arithmetic mean
value of the data points in G2

h(ti) is the estimated travel time
of the forward stream, and the arithmetic mean value of the
data points in G4

h(ti) is the estimated travel time of the
turning stream.

Figure 11 shows the overall performance tests on esti-
mating travel times of traffic streams in different directions.
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Figure 8: TP and TN rates at different rh values.
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Figure 9: Results of outlier filter analysis. (a) TP rates at different MPRs when rh � 27. (b) TN rates at different MPRs when rh � 27.
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+e figure presents theMAPE values of travel time estimation
before and after applying the proposed framework at different
MPRs. For both streams, it is shown that theMAPE values are
significantly reduced when the proposed estimation frame-
work is applied, except for the turning stream cases with very
low MPR conditions (5∼10%). Such exceptions occur due to
the low outlier filtering performance at low MPR conditions,
and the reason for this was described in Section 4.3. Hence,
the framework of distinctively estimating the travel times
proposed in this study is considered to be suitable for use

when MPR is more than 10%. If some improvements of the
method for removing outliers are made in further studies, the
entire framework proposed in this study is expected to show
reasonable performance under the overall MPR condition.
Subsequent studies shall particularly consider how to pre-
cisely filter the outliers located within the range of the turning
stream data cluster for very low MPR conditions.

Still, for MPR higher than 10%, the MAPE of the turning
stream in Figure 11(b) gradually decreases as the MPR
increases. +ese results imply that the proposed estimation
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Figure 10: Parity plot of travel time estimation before and after applying the proposed framework (at MPR 30%).
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Figure 11: MAPE values of travel time estimation before and after applying the proposed framework. (a) Forward stream estimation at
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framework can show improved performance in distinctively
estimating the travel times of two different traffic streams in
the same road section even for relatively low MPR
conditions.

5. Conclusion

In this paper, a new framework for travel time estimation
of a diverging traffic stream is provided. In this frame-
work, the timestamp data of inbound and outbound ve-
hicles on the roads are used for the input data. +ese data
are sampled at each given time interval in the pre-
processing stage. +en, by applying simple statistical
analyses, the sampled travel time values are classified into
forward and turning streams (or off-ramp stream). Next,
the travel time values of the forward stream and turning
stream in a single road section are estimated distinctively
based on the classified data.

While providing the framework, the main contribution
of this paper is that it offers a new approach in travel time
data classification and carries out a few insightful analyses to
test the performance of the approach. +ree sequential steps
with a few statistical approaches are provided in the stage of
travel time data classification: detection of data divergence,
classification of divergent data, and outlier filtering. First, a
divergence detection index (DDI) of data is newly provided,
and the analysis results show that the index can be useful in
finding the threshold of determining data divergence. Sec-
ond, after detecting data divergence, three different methods
are tested in terms of properly classifying the divergent data.
Method 3, which is modified based on a method currently
used by Korea Expressway Corporation [19], proves to be
superior and it shows sufficient performance in classifying
the divergent data points. +ird, a polynomial regression-
based method is used for outlier filtering, and it shows
reasonable performance even at a relatively low market
penetration rate (MPR) of probe vehicles. +en, the overall
performance of the travel time estimation framework is
tested. +is test demonstrated that the proposed estimation
framework can show improved performance in distinctively
estimating the travel times of two different traffic streams in
the same road section.

+ere are two research values in the estimation frame-
work proposed in this study. +e first is that this framework
seeks real-time practicality by using simplified data such as
timestamp data. +e second is that it suggests a new se-
quential composition of the three-step analysis to improve
the accuracy of distinctive estimation of the travel times of
diverging traffic streams. In the existing ATIS, the average
value of travel time data points collected in road sections is
usually calculated for information services. However, this
has a limitation in displaying detailed information for each
vehicle’s traveling direction at a diverging road section.
Hence, the demands of navigation service providers are
increasing for new technological developments to improve
the existing services. Furthermore, in terms of future au-
tonomous vehicle operation, there are increasing demands
for the development of various data collection and analysis
solutions to implement a high-definition map (HD map)

that requires traffic condition information for each lane of
the road. +e framework presented in this study is expected
to be used for the advancement of ATIS and ATMS in the
future, as it is a method that can contribute to the im-
provement of the route guidance services and to the reali-
zation of the HD map service for the operation of
autonomous vehicles.

Even though the proposed framework has shown
reasonable performance, this paper is not without limi-
tations. +is work focuses on analyzing only a few clas-
sification methods for the divergent data. Hence, some
alternatives should be tested in further work for im-
proving classification performance. Furthermore, this
work shows a limitation in filtering outliers at very low
MPR conditions. Hence, it is suggested that further efforts
are made for solving this issue as well. Moreover, the
scope of the estimation framework deals only with the
diverging road section of highways. +ere is a need to
extend the research scope to deal with the traffic at sig-
nalized intersections in the urban road system.
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