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Medical services are essential to public concerns and living qualities. Facing new public health events, the spatio-temporal
variation of healthcare accessibility can be different, which is ignored in the previous accessibility studies. In this paper, we study
the spatio-temporal variation of healthcare accessibility and residents’ accessibility to the designated hospitals under public health
emergencies such as COVID-19. Metropolitan Beijing is chosen as the study area. *en, we analyze the spatial disparity and the
temporal variation and measure the matching degree between healthcare accessibility and population density. From the per-
spective of epidemic prevention, we evaluate the medical capacity of the designated hospitals. *e autocorrelation method is used
to analyze the spatial correlation of residents’ accessibility to designated hospitals in the study area. A conclusion can be drawn
that 74.14% grids in the study area have proportionate population density and healthcare accessibility.We find that the 5thMedical
Center has sufficient medical resources, and Puren hospital is less affected by time. Moreover, the result of residents’ accessibility
to the designated hospitals presents a pattern of high-value aggregation in the arterial road neighborhood. At the same time, the
peripheral areas show a trend of low-value aggregation. *e research in healthcare accessibility can provide a reference for
policymakers in medical service development and public emergency management.

1. Introduction

Measuring spatial accessibility has received increasing at-
tention in recent years. Also, GIS (Geographic Information
System) technology has recently been widely used to measure
the transit access of public facilities (e.g., hospitals, schools,
supermarkets, and banks) [1]. As a part of public infra-
structure, medical facilities are related to residents’ vital issues
directly and provide people with healthcare treatment [2]. It is
convenient for the residents to go to the nearby healthcare
facility for general medical care. Primary healthcare facilities
are supposed to provide medical services for common dis-
eases such as cough, sprain, and vomit. Short travel time and
more healthcare facilities indicate an efficient medical service.
High-quality fundamental healthcare is critical to public
health and life safety, especially under the consideration of

public health emergencies. Recently, the highly contagious
COVID-19 (Corona Virus Disease, 2019) has broken out
worldwide. As it is an infectious disease, unprotected contact
will expose individuals to the virus directly and cause in-
fection. Since long time traveling may increase the risk, easy
access to healthcare facilities becomes crucial [3].

Comprehension of the spatio-temporal variation of
healthcare accessibility is helpful to not only policymakers but
also medical staff and residents. From the perspective of
politicians, it can answer whether the medical resources are
distributed reasonably and the service efficiency can be
guaranteed. It is beneficial to the staff for understanding the
service catchment and the potential number of patients.
Residents can also know their available healthcare opportu-
nities clearly, which enables them to choose the destination
facility. In the past few decades, many studies have been
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conducted on measuring spatial accessibility of healthcare
facilities. *e literature on healthcare accessibility mainly
focuses on two issues. Firstly, researchers primarily investigate
the inequity of accessibility between vulnerable groups and
other residents [4–6]. Luo proposed a modified two-step
floating catchment area method to investigate elderly medical
availability in different types of roads [7]. Benevenuto pro-
posed a novel strategy to measure the spatial burden that was
potentially preventing the low-income population in rural
northeast Brazil from accessing healthcare services [3]. Zhao
found attenuate accessibility of medical care services for
migrants resulting from the constraints and the proximity to
other disadvantaged neighborhoods [8]. Hamilton reported
that insurance coverage limitations led to inadequate access to
rehabilitative services (e.g., visiting an SCI specialist) for
people with chronic or disabling conditions [9]. Secondly,
researchers demonstrate the difference in accessibility be-
tween various medical facilities [10]. Stentzel examined the
accessibility of different physicians in a rural area with a low
population density, both by car and by public transport [11].
Jin used Shenzhen as the study area and investigated the
accessibility of medical service facilities at different levels,
from mesoscopic to macroscopic [2]. Kilinc introduced a
measure to quantify the potential spatial accessibility of home
healthcare services considering its new features [12]. How-
ever, the traffic condition and road congestion level can be
different as time goes by. Travel time for the same origin and
destination (OD) varies greatly, which is influential to the
accessibility result [13–16].*ere is a lack of research focusing
on the spatial disparity and temporal variation of healthcare
accessibility, especially under public health emergencies.

Currently, the advent of big data offers an unprecedented
opportunity to obtain large-scale human mobility data,
which can be used to study the characteristics of healthcare
facilities from the spatial interaction perspective [17–20].
GPS trajectories data enables researchers to record human
activities and investigate spatial accessibility in a relatively
long time accurately. *ese data are collected by vehicle data
recorder, registering the location and time every ten seconds.
Hence, the travel time and actual travel distance can be
calculated, which benefits quantifying travel costs in ac-
cessibility research. Cui employed the taxi trajectory data to
detect regions with low accessibility and examined transport
problems [21]. Pan analyzed medical accessibility with
uncertainty using GPS trajectory data in Shenzhen [22].
Pedro depicted the attractiveness of the desired destinations
in phone data records and quantified how destination at-
tractiveness affected accessibility [19]. Kong linked the fa-
cility properties with its customers’ distribution from a
spatial interaction perspective by taxi GPS data and divided
the study area into square grids [23].

As an extensively used index, the traffic accessibility re-
flects a synthesis of residents, transport systems, and urban
land use. *e relationship between population and accessi-
bility has aroused the broad concern of researchers. In the
previous studies, population data is usually obtained from the
National Census, which is operated every 10 years. Census
data is generally collected based on administrative units;
however, research studies have been conducted based on the

geographic groups or community. In fact, it is difficult for
census data to express the dynamic changes in population
density in recent years and to record some residents groups
such as migrants. With the development of remote sensing,
night-time light images are increasingly broadly used in
transport and geography research. Tan carried out spatial
matching on the population of each county, respectively, and
established population density diagrams of China for 2000 and
2010, which had a spatial resolution of 1× 1 km [24]. Based on
high-precision calibrated night-time light satellite images,
Long accurately measured the impact of high-speed rail on
urban expansion [25]. Tian regressed sum lights on total
freight traffic (TFT), railway freight traffic, and highway freight
traffic (HFT), respectively, and found that sum light strongly
correlates to TFTandHFT [26]. Generally speaking, these data
are widely used to evaluate urban growth, economic devel-
opment, urban transition, and population density.

To date, very few accessibility studies have treated the
spatio-temporal variation of healthcare accessibility in much
detail. Under the circumstances of public health events,
studies on medical accessibility are helpful to government
decisions and emergency management. Meanwhile, only a
few researchers have drawn on the systematic research into
population-accessibility matching degree but ignored po-
tential changes of population which could be extracted from
the night-time light images. Moreover, previous studies have
not dealt with the spatial correlation of healthcare accessi-
bility which could be beneficial to the comprehension of the
mechanism of accessibility changes.

*e study aims to investigate the spatio-temporal dif-
ferences in medical accessibility in the central city of Beijing
using GPS trajectory data. Firstly, we divide the study area in
the 5th ring road into hexagons to investigate the spatial
accessibility of healthcare precisely. *e balance between
accessibility and population density can be measured to
demonstrate the equity of medical resources and identify
regions under different healthcare service levels. Further-
more, to study the status quo of patients’ diagnosis and
treatment, the capacity and resources of the designated
hospitals (special healthcare facilities for diagnosis and
treatment of COVID-19 patients) are evaluated. *e spatial
autocorrelation analysis method is also used to analyze the
correlation of residents’ accessibility to the designated
hospitals. Hence, it can help residents to make reasonable
decisions on medical advice seeking, which is advantageous
to epidemic prevention and control.

*e remainder of this paper is structured as follows.
Section 2 presents measurement of accessibility population
balance and accessibility measures. Section 3 reports the
study area and data used in the study. Section 4 contains an
analysis of the results, and Section 5 presents the discussion
of our research. Section 6 presents the main conclusions.

2. Methodology

2.1. Measurement of Accessibility Population Balance. As the
participant of a trip, residents are an essential part of the
research on traffic accessibility. Population data used in the
study is usually derived from the population census, which is
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operated every 10 years in China. Hence, it is challenging to
demonstrate population changes in recent years. Night-time
light images are widely used in transportation research as
geographic data. Some scholars have analyzed the rela-
tionship between population distribution and light intensity
in different regions, showing a significant correlation be-
tween them [27]. *e population data extracted from night-
time light images can be expressed as follows:

EPi � α · li �
PO
L

· li, (1)

where EPi is the estimated population in grid i, α is the
correction coefficient, li is the light intensity in grid i, PO is
the permanent population of the study area, and L is the
intensity of night-time light data.

*e accessibility measurement reflects merely a synthesis
of the capacity and demand for the medical service, which is
not sufficient to indicate the spatial equity of medical re-
sources. As previous research studies insisted, public facilities
can be considered equally distributed when the accessibility
level matches the population distribution [23, 28]. It means
that high accessibility should serve high population density
regions and vice versa. It is because the demand for the
medical service always comes from the residents, and resi-
dents’ distribution can be measured by population density.
Yet the population distribution and public facility accessibility
are not quantitatively compared or just compared simply in
most previous research studies. Jin classified the study area
into four categories based on the Z-score of accessibility and
population density [2]. A modified comparison system is
designed based on the Z-score normalization and the dif-
ference of Z-scores to measure the matching degree between
medical service facility accessibilities and population distri-
bution in Beijing. *e Z-score normalization method can
normalize a set of values varying from below zero to more
than zero, which is expressed as follows:

Z �
x − mean

std
, (2)

where x is the current sample value, mean is the average of
the samples, and std is the standard deviation of the samples.

Here, in this research, we define the assessment as high
when the value is positive (above zero) and define the
evaluation as low when the value is negative (below zero) for
both the normalized accessibility and population density
measurements. For the high assessment, if the difference
(S � Zaccessibility − Zpopulation) is larger than 0.2 (with the ref-
erence of quintile in statistics), it is labelled as area B. When S

is lower than −0.2 and |S| is smaller than 0.2, it is defined as
areas D and C, respectively. For each unit, when the high
accessibility of medical service facilities is accompanied by the
high population density, the distribution of medical service
accessibility in this area is relatively balanced. With the
emigration of residents caused by the work stress, areas B, C,
and D with high accessibility and population density can bear
high accessibility with low population density (area A). On
the contrary, when the area suffers from low accessibility of
medical service and low population density, it is recognized as
area H (S> 0.2), area G (|S|< 0.2), and area F (S< − 0.2). As

population density increases, areas H, G, and F can switch to
area E with high population density but low accessibility. *e
measurement of balance is shown in Figure 1.

2.2. Measures of Healthcare Accessibility. Numerous acces-
sibility measures, ranging from simple to sophisticated, can be
found in the GIS-based accessibility modeling literature. *e
widely used accessibility measures in the research are travel
time/distance measures [29], cumulative opportunity mea-
sures [30], gravity-based measures [31], two-step floating
catchment area (2SFCA) measures [32], etc. *e cumulative
opportunity model is chosen to measure the accessibility. It
enables us to understand the meaning of accessibility easily
and to reflect land use in spatial accessibility. Supposing that i

is the origin of residents’ travel and j is the travel destination,
the implications of equations (3) and (4) are different.
Generally speaking, equation (3) is utilized in the calculation
of the number of opportunities that residents in grid i could
obtain in a time limit. Equation (4) indicates the service
catchment of a facility in grid j. Calculation of spatial ac-
cessibility of the residents’ travel origin grid i in the time
threshold Trepresented as CUMT

i is provided as equation (3)
which indicates opportunity number that residents could
access in the time threshold as follows [33]:

CUMT
i � 􏽘

j

O
T
ij,

O
T
ij �

1, tij ≤T,

0, otherwise,
􏼨

(3)

where CUMT
i is the spatial accessibility of the origin grid i in

the time threshold T, OT
ij represents the opportunities that

residents travel from grid i to grid j can obtain, which is a
binary variable, OT

ij � 1 indicates tij ≤T and one can arrive
grid j from grid i in the time threshold T, and OT

ij � 0
otherwise. In this paper, T � 30 mins, which is consistent
with the 30 mins-integrated medical service circle proposed
in the government plan [34], and tij indicates the travel time
from grid i to grid j.

*e calculation of spatial accessibility of the residents’
travel destination grid j showed as CUMT′

j is provided as
equation (4) which demonstrates the service catchment of
the public facility in grid j as follows:

CUMT′
j � 􏽘

i

O
T′
ij ,

O
T′
ij �

1, tij ≤T′,

0, otherwise,

⎧⎨

⎩

(4)

where CUMT′
j is the spatial accessibility of the destination

grid j in the time threshold T′, OT′
ij represents whether the

opportunities of grid j can be obtained, which is a binary
variable, OT′

ij � 1 indicates tij ≤T′ and one can arrive grid j

from grid i in the time threshold T′, and OT′
ij � 0 otherwise.

tij indicates the travel time from grid i to grid j.
*e meanings and applications of these two equations

are totally different, where i is the place of departure for
individuals while j is individuals’ destination and tij is the
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travel time from grid i to grid j. Equation (3) quantifies the
number of grids/opportunities that one departing from grid
i could arrive within T(time threshold). Equation (4) in-
dicates how many grids could reach grid j in time threshold
T′. Larger CUMT

i suggests that individuals in grid i could
obtain more opportunities than that in other grids in a
limited time. CUMT′

j indicates the catchment boundary of
grid j or service scope of public facilities in grid j. Grids with
large CUMT

i could be chosen as a residential area to provide
convenient transport for residents, and they will generate
plenty of traffic. On the contrary, grids with large CUMT′

j

could be regarded as a good location for building public
facilities which would attract much traffic. CUMT

i is applied

in the calculation of opportunity number about residents
and CUMT′

j is utilized in the issue of facility location.
Since the accessibility indicates opportunities that can be

reached, researchers combine public facilities to accessibility
research for an application purpose. As for the healthcare
facilities, there are significant differences in the level of
medical equipment, service catchment, and medical quality
between hospitals, and the opportunities in regions vary
greatly. Accordingly, healthcare grade is introduced to de-
pict therapeutic opportunities of each grid precisely.
*erefore, the regional healthcare accessibility formula can
be developed based on formula (3) for a comprehensive
assessment of medical care resources. It can be presented as
follows:

MCUMT,dt
i � 􏽘

j

O
T
ij · Gj � 􏽘

j

O
T
ij · 􏽘

f

h�1
βh

j
⎛⎝ ⎞⎠, O

T
ij �

1, tij ≤T,

0, otherwise,
􏼨 (5)

where MCUMT,dt
i is the healthcare accessibility of grid i in

day dt within the time threshold T, Gj is healthcare grade
which indicates the total medical opportunities of grid j, βh

j

is the weight coefficient of healthcare facility h in grid j, and
MCUMT,dt

i means the total number of therapeutic oppor-
tunities can be reached from grid i in day dt. A higher value
of MCUMT,dt

i means residents in grid i is more likely to get
qualified healthcare services.

As for healthcare accessibility calculated based on
equation (5), accessibility demonstrated that each resident in
the grid i could get opportunities equaling to the accessibility
value in the time threshold. When it comes to accessibility
indicating service scope of a public facility, equation (4)
could be used to measure the catchment boundary in terms
of special scale. From the perspective of population, it is
distributed unevenly in the study area which could not be

Start

Z_a = Z_accessibility, 
Z_p = Z_population

Z_p > 0

Z_a > 0

Yes

Z_a > 0

No

Area E S = Z_a – Z_p

Area B Area C Area D

|S| < 0.2S > 0.2 S < –0.2

Yes

No

S = Z_a – Z_p

Area H Area G Area F

|S| < 0.2S > 0.2 S < –0.2

No

Area A

Yes

Figure 1: Measurement of accessibility-population balance. *e study area is assessed according to normalized measurements of ac-
cessibility and population density.
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illustrated in equation (4). Hence, the variation of the
population in different grids is considered and introduced to
equation (4) to quantify the number of residents that the
healthcare facility in grid j could serve for. *e accessibility
model is provided as follows:

MCUMT′,dt
j � 􏽘

i

O
T′
ij · wi, O

T′
ij �

1, tij ≤T′,

0, otherwise,

⎧⎨

⎩ (6)

where MCUMT′ ,dt
j is the healthcare accessibility of grid j in

day dt within the time threshold T′, wi is the population
factor of grid i which is obtained from night-time light
images as EPi in equation (1), and MCUMT′ ,dt

j indicates the
number of residents that could be covered in the catchment
boundary of the healthcare facility in grid j. MCUMT′ ,dt

j is
mostly used to demonstrate service catchment of the
healthcare facility in grid j which is calculated as a pop-
ulation which could obtain healthcare service here.

Although the form of the cumulative opportunity mea-
sure provides an easy understanding of accessibility, chal-
lenges still exist in the accessibility calculation of each grid.
*e key point in the calculation is how we can accurately and
efficiently compute the accessibility value of each grid using
GPS trajectory data. Meanwhile, spatial accessibility can
usually be affected by travel time, which varies significantly at
different times. Hourly data cannot demonstrate residents’
actual access to their destinations, so the n-days floating car
dataset is utilized to accessibility computation. It can be
presented as follows:

MCUMT
i �

􏽐
n
dt�1 MCUMT,dt

i

n
, (7)

where MCUMT
i is medical accessibility result of grid i and n

is the number of days.
Besides, the C.V. (Coefficient of Variation) is widely used

in accessibility research studies to depict the variability of
some indicator [13, 17, 20]:

CVi �
σi

μi

. (8)

CViis the C.V. of grid i, σi is the sample standard de-
viation of accessibility in grid i, and μi is the sample mean.
CVi shows the temporal variation of accessibility in grid i. A
larger CVi indicates great changes in the accessibility, which
can facilitate the identification of different accessibility
levels.

3. Data Collection and Processing

3.1. Data Collection and the Study System Overview. *e
comprehension of the spatio-temporal variation in health-
care accessibility can accelerate the establishment of an
integrated medical service circle. *ree datasets are collected
and used in this study: floating car trajectory data, healthcare
facilities data, and night-time light data in Beijing. *e
floating car dataset consisted of 0.21 trillion trajectory points
during a week in 2015. *e time interval for trajectory
sampling is about 30 s, with each record including vehicle
ID, road ID, velocity, timestamp, longitude, and latitude.

Based on the application programming interfaces (APIs)
provided by the Gaode application, a toolkit was developed
to extract healthcare POI data for Beijing. Each collected POI
had several attributes, including name, address, latitude,
longitude, and categories. In this study, a total of 2248
records (facilities) were collected from 37 categories related
to medical service (mainly hospitals), and only 1068 records
are located in the study area. Based on the function and the
service level, the collected facilities were grouped into 3
types: tertiary hospitals with the best physicians, medical
apparatus and instruments, the secondary hospitals of which
the service catchment is not that large, and first-level hos-
pitals located mainly in communities. *en, different
healthcare facilities are given weights to illustrate the
medical service capacity (Table 1). *e weight of healthcare
facilities can be obtained concerning the actual number of
beds in each type of hospital. Bed number is chosen as a
proxy of service capacity in healthcare facilities, which is
derived from the statistical data of health work in Beijing
[35]. *e number of beds is referenced as the weight of each
type of healthcare facility, not only the weight but also a
proxy of medical opportunities that facilities can provide.

*e night-time light data used in this article is obtained
from a public website. As a type of raster data, it is processed to
be a proxy of the population. To estimate population distri-
bution, the total population and light intensity in the study area
are obtained from the statistical yearbook and night-time light
data. Hence, the coefficient αcould be estimated and the
population of each grid can also be calculated, as shown in
equation (1). To verify the estimated population, the permanent
population of the 6 districts which constitute the study area was
obtained from the statistical yearbook of Beijing [36].*en, the
relative error of the estimated population is calculated, as
shown in Table 2. Supposing rkis the relative error of district
kand |rk|is the absolute of rk, rk can be presented as follows:

rk �
EPk − Pk( 􏼁

Pk

× 100%, (9)

where EPk is the estimated population of district k and Pk is
the actual population of district k.

Due to the lack of population distribution data, as shown
in Table 2, the estimated population and permanent pop-
ulation of the whole district are analyzed instead of the
population of districts within the 5th ring road. For some
districts, such as Chaoyang, Dongcheng, and Xicheng, |rk| is
larger than 14%. *e reason for the large |rk| could be the
statistical methods used in the yearbook which cannot
quantify the number of migrant populations.*e permanent
population number used in the statistical yearbook could not
display the actual population density. According to the
results, we could learn that the mean value of rk and |rk| are
-0.58% and 14.21%. It is indicated that the accuracy of the
estimated population could reach 85.79% or more which
could demonstrate population distribution accordingly.
*us, the night-time light data could be utilized in the
population density estimation.

*e study area is the region inside the 5th ring road of
Beijing, the capital city of China. It comprises 6 major
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administrative districts (Chaoyang, Haidian, Xicheng,
Dongcheng, Fengtai, and Shijingshan districts) with diverse
land-use characteristics. *e study area covers 667 km2, with
approximately 11.659 million inhabitants accounting for
54.12% population of Beijing. *e Gross Domestic Product
(GDP) is 2.1378 trillion yuan accounting for 70.51% the total
urban GDP [36]. Dongcheng and Xicheng districts are
historic urban areas with many service facilities and his-
torical sites. Haidian and Chaoyang districts are the most
developed areas with famous colleges and shopping malls.
Fengtai and Shijingshan districts are the areas with several
railway stations. *e socioeconomic characteristics of the
population and urban land use make it something for ac-
cessibility studies.

*e study area is divided into hexagons to measure
accessibility. Hexagons have the following three main ad-
vantages. (1) It has the nearest neighbor’s specific definition.
Hexagons have only one kind of adjacent neighbors. *e
distance of vehicle movement among the core of hexagons is
equal, reflecting the actual moving trajectory. (2) Hexagons
have the advantage of a smaller edge-to-area ratio, which can
help reduce bias produced by edge effects. In the calculation
of accessibility using trajectory data, the inflow/outflow of
vehicles between two adjacent hexagons has substantial
impacts on the accessibility of each grid. A smaller edge-to-
area ratio means a lot. (3) Hexagons are isotropic. Hexagons
have consistent and stable grid distance ratios to straight-
line distance, which can decrease the calculation error of
accessibility [37]. *ese advantages can benefit in depicting
the movement between adjacent grids accurately to reduce
calculation error and improve calculating efficiency.

In the previous accessibility research studies, the length
of hexagons or squares is chosen for the convenience of
computation, such as 100m, 200m, 500m, 1000m, and
2000m. A larger hexagon can increase the travel time of
crossing the grid, which can drop off accessibility compu-
tation accuracy. It enables us to study the spatial distribution
of accessibility roughly but is not precise enough. In con-
trast, smaller hexagon (such as 100m hexagons) can lead the
travel time of traversing a hexagon shorter than the time
interval between two data points, which is less useful and
meaningful for accessibility calculation. Moreover, a smaller

hexagon will increase the computing time of accessibility in
one grid.*erefore, the area is divided into 1102 500m-edge
hexagons in the study (Figure 2). *e main map shows the
arterial road and how the study area is divided into hexa-
gons. We provide the administrative district map of Beijing
in Figure 2 as the submap to demonstrate the location of our
study area in Beijing.

3.2. Data Processing. We process the data in the following
ways. Firstly, to investigate the spatial disparity of accessi-
bility, a hexagon network which comprises 1102 hexagons
has been generated in the toolbox. *e study area is divided
in two ways. Besides, we calculate the travel time and average
speed using trajectory data for the accessibility computation
convenience. *en, we proposed location-trip-based ac-
cessibility measures to compute the healthcare accessibility
of each grid. In the location-trip-based method, the acces-
sibility is calculated based on each trip. *e process can be
summarized in Figure 3.

3.2.1. Space Division. *e study area is divided into two ways
to study the spatial disparity of accessibility. Primarily, the
study area is divided into 2 sections (the north and south
sections) separated by Qianmen road and also divided into
annular sections separated by the ring roads.

(1) 7e North and South Sections. Considering the intrinsic
difference between regions, the study area is divided into the
north and south sections. Regional difference between the
north and south sections results from diverse factors. De-
velopment and land use differences contribute to the ac-
cessibility variation. *e grid number in the north section is
546, accounting for 49.55% the total grids, while that of the
south section is 556. Hence, the number of grids in the north
and south sections are roughly equal without significant
difference. *e spatial distribution of accessibility can be
quantitively characterized.

(2) Annular Sections. *e ring roads connect different re-
gions in Beijing and promote economic exchanges. Mean-
while, ring roads also lead to a regional imbalance in

Table 1: Healthcare facility information.

Category Number Actual bed number Weight
Tertiary hospitals 61 72230 7
*e secondary hospitals 372 28135 3
First-level hospitals 635 14497 1

Table 2: Districts’ information.

District Estimated population Population Relative error (%) Absolute of relative error (%)
Chaoyang 4698529.582 3605000 30.33 30.33
Fengtai 2327257.82 2105000 10.56 10.56
Haidian 3007561.723 3358000 −10.44 10.44
Shijingshan 573424.5058 590000 −2.81 2.81
Dongcheng 685397.1085 822000 −16.62 16.62
Xicheng 1007844.378 1179000 −14.52 14.52
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development. As a result, the number of healthcare op-
portunities varies significantly from region to region. To
study the spatial distribution characteristics, the study area is
divided into the following regions based on the ring road.
*ey are [Center, the 2nd] (the 2nd ring road and regions

inside), (the 2nd, the 3rd] (regions between the 2nd ring road
and the 3rd ring road, without 2nd ring road), (the 3rd, the 4th]
(regions between the 3rd ring road and the 4th ring road,
without 3rd ring road), and (the 4th, the 5th] (regions between
the 4th ring road and the 5th ring road, without 4th ring road).

Data processing

Hexagon generation Hexagon: 500m hexagons, number: 1102
method: thiessen polygon toolkit

Data processing (1) Date cleaning (2) Outlier processing
(3) Data preprocessing: calculating travel time, average speed

Space division (1) North and south sections (separated by Qianmen road)
(2) Annular sections (separated by ring roads)

Accessibility 
calculation of each grid

(1) Medical grades (2) Grid opportunities 
(3) Healthcare accessibility

Computation

Accessibility 
calculation

Time slot: 2 hours, time threshold: 30 mins,
results: average value of healthcare accessibility

Figure 3: Accessibility calculation process.

Figure 2: Hexagon grids and the study area. *e main map shows the arterial road and how the study area is divided into hexagons. *e
submap is the location of the study area in Beijing.

Journal of Advanced Transportation 7



3.2.2. Data Processing and Calculation. To eliminate the
effect of abnormal data, “−1” in latitude and longitude at-
tributes are removed. *e recording interval and the travel
time are also computed for the convenience of accessibility
calculation:

Tink
� tk+1 − tk,

T
k
d � tk − t1,

(10)

where Tink and Tk
d are the recording interval from point k to

k + 1and travel time from point k to the origin of this
trajectory, tk is the recording time of point k, and t1 is the
departing time of this trip.

Cumulative opportunity measures quantify opportunity
numbers one can obtain from a grid within a time threshold.
However, for the trajectory data, points are connected by
trajectory ID. When a trip occurs, residents can get the
opportunities provided by the final destination and service
facilities along the way, which was not considered in pre-
vious studies. *e grid of the first point on each trajectory is
defined as the origin and the grid of the last point is regarded
as the destination.

Based on the processed data, the accessibility of each grid
is calculated as follows:

(1) Medical opportunities calculation: the healthcare
grade of grid j is calculated by the summation of
every facility weight in this grid.
Supposing that f facilities locate in grid j, βh

j is the
weight of facility h and total weight of grid j can be
expressed as

Gj � 􏽘

f

h�1
βh

j , (11)

where Gj is the total medical opportunities in grid j.
(2) Grid dataset: we calculate the number of grids that

can be reached from grid i or the number of grids
that can be reached from grid j in the time threshold.

(a) Data processing about CUMT
i and CUMT′

j : the
accessibility computation of grid i can be regarded
as a repetitive process on each trajectory passing
grid i. For example, n points belonging to m

trajectories locate in grid iand point p1in grid i is a
part of trajectoryτ. *en, information about other
points p2, p3, . . . , pq−1, pq􏽮 􏽯on trajectory τ is
extracted where T2

d <T3
d < · · · <T

q−1
d <T

q

dand

T
q

d − T1
d ≤T (Tq

d is the travel time from point q to
the origin of this trajectory). It indicates that
points belonging to p2, p3, . . . , pq−1, pq􏽮 􏽯 are
recorded after point p1 and time interval between
pq and p1 is smaller than time threshold, as
shown in Figure 4.
When the accessibility is calculated according to
formula (4), suppose that point p1 in grid j is
part of trajectory τ. *en, information about
other points p2, p3, . . . , pq−1, pq􏽮 􏽯on trajectory τ
is extracted, where T2

d >T3
d > · · · >T

q−1
d >T

q

dand
T1

d − T
q

d ≤T′. It indicates that points belonging to
p2, p3, . . . , pq−1, pq􏽮 􏽯 are recorded before point

p1 and time interval between p1 and pq is smaller
than time threshold T.

(b) Location trip-based accessibility calculation
processing: the location-trip-based accessibility
indicating the accessibility of each grid is cal-
culated based on every trip passing the grid.
Accessibility of each grid could be obtained after
calculating the grid number that each trip goes
through. One trip is demonstrated by trajectory
points with the identical ID. *e calculation
process is shown in Figure 5
Suppose that n points belonging to m trajectories
located in grid i. One of the trajectories
(trajectoryτ) is made up by a set of points
p1, p2, p3, . . . , pq−1, pq􏽮 􏽯, in which

T1
d <T2

d <T3
d < · · · <T

q−1
d <T

q

d (Tq

d is the travel
time from the origin to point pq). grid

τ
q is the grid

index of point pq on trajectory τ. *e grids that
trajectory τ go through could be expressed as

Qτ � gridτ1, grid
τ
2, grid

τ
3, . . . , gridτq−1, grid

τ
q􏽮 􏽯, Qτ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ q,

(12)

where gridτ1, grid
τ
2, grid

τ
3, . . . , gridτq−1, grid

τ
q􏽮 􏽯

could show the route of this trajectory in which
there would be some duplicates, for some points
locating in a similar grid. Qτ is the grid set that
trajectory τ goes through and |Qτ| is the grid
number and also the opportunity number that
could be obtained.
*e total grid number that m trajectories passes
by can be presented as

S
i

� Q1 ∪Q2 ∪Q3 ∪ · · · ∪Qm−1 ∪Qm

� gridτa|τ � 1, 2, 3, . . . , m − 1, m, a � 1, 2, 3, . . . , q − 1, q􏼈 􏼉,

CUMT
i � S

i
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽘
m

τ�1
Qτ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(13)

where Si is the grid set that grid i could arrive.
Hence, the calculation of accessibility in grid i is

completed. Results of other grids could be ob-
tained by repeating this calculation process.
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Considering that every grid means an oppor-
tunity for individuals, the accessibility CUMi can
be computed as

CUMT
i � 􏽘

j

O
T
ij � S

i
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, O
T
ij �

1, tij ≤T,

0, otherwise.
􏼨

(14)

(3) Healthcare accessibility: it is calculated by sum-
mating the healthcare grade of different grids in the
grid dataset (as shown in equation (5)) or the
population of each grid (as shown in equation (6)).

We can then compute the healthcare accessibility value
of each grid in different time slots to investigate spatial
disparity and temporal variation.

4. Case Study

4.1. General Healthcare Accessibility

4.1.1. Spatial Disparity. Medical facilities are not evenly
distributed but somewhat clustered in the central city, es-
pecially inside the 4th ring road. To demonstrate the spatial
distribution clearly, we conduct a density analysis of
healthcare facilities, as illustrated in Figure 6. With the
increase of distance to downtown, it turns blue from red,
which means the healthcare facility density is gradually
decreasing. *e inner city has more healthcare facilities and
a higher density of medical resources. Due to the developed
infrastructure, it is appropriate to build hospitals and other
healthcare facilities. Besides, we could also distinguish the
difference in the 3rd ring road.*e healthcare facility density

is higher in the neighborhood of the northern, western, and
southeastern 2nd ring road areas.

To investigate the spatial disparity of accessibility in
depth, the healthcare accessibility of each grid is computed
based on formulas (3) and (4), which is shown in Figure 7.
*e accessibility drops off with the increase of distance to
downtown. *e areas near the ring roads have better ac-
cessibility compared to other regions, which means the
residents here could access healthcare services conveniently.
Because of the higher density of the road network, residents
would have great possibilities to reach their destination and
arrive at more grids at the same time. Similarly, accessibility
of the area in the central city could be considerable according
to the developed road network. However, not all residents in
the central city have many healthcare opportunities. As
shown in the red line, it is the Temple of Heaven, of which
the land-use type is mainly park space.

To further quantify the accessibility difference among
subregions, the accessibility result is divided into five cat-
egories according to quintiles: low accessibility (bottom
20%), medium-low accessibility (20%–40%), medium ac-
cessibility (40%–60%), medium-high accessibility (60%–
80%), and high accessibility (top 20%). *e proportion of
accessibility categories in subregions is shown in Figure 8, in
which the spatial disparity is quantified and exhibited. From
Figure 8, we could recognize significant spatial differences
between annular sections. For each section, the composition
of the accessibility levels varies greatly. *e proportion of
low accessibility in (the 4th, the 5th] area is 36.43%, which is
8.69 times higher than the summation of the other three
annular sections, and the proportion of high accessibility in

i j

pq

pq

pq–1

pq–1

p1

p3

p1

p2
p3

p2

CUMT
j

CUMT
i

T1 
d < T2 

d < T3 
d < … < Td d

q–1 q
 < T – T1 

d ≤ Td
qT 

d
q–1

d
qT < T < … < T3 

d < T2 
d < T1 

d T1 
d – Td

q < T′

Figure 4: Data processing about CUMT
i and CUMT′

j .
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this area is 1.03%. Good accessibility illustrates that residents
could get sufficient healthcare opportunities. *e healthcare
accessibility of the area in the 3rd ring road is relatively
better. *e high accessibility ratio of regions within the 3rd
ring road is more than 58% while around 16.18% or less in
the area outside the 3rd ring road.

It is also necessary to reveal the spatial disparity of
healthcare accessibility between the north and south sec-
tions. Results from Figure 8 confirm that spatial variation in
healthcare accessibility exists between the north and south
sections. *e proportion of high accessibility in the south
section is 10.74% lower than that of the north. *e ratios of
accessibility in the low and medium-low levels in the south
section are, respectively, 20.65% and 3.95% higher than
those of the north section, which are below themean value of
the whole study area. *e regional disparity between the
north and south sections results from diverse factors.

4.1.2. Temporal Variation. Since previous research shows
that accessibility distribution varies over space, date, and
time, we also investigate the impact of the variety on the
individual medical opportunities. *e accessibility is cal-
culated every 2 hours to reflect residential travel charac-
teristics during rush hours. A day is divided as the time
intervals of 1:00–3:00, 3:00–5:00, 5:00–7:00, 7:00–9:00, 9:
00–11:00, 11:00–13:00, 13:00–15:00, 15:00–17:00, 17:00–19:
00, 19:00–21:00, 21:00–23:00, and 23:00–1:00 the next day,
respectively.

Figure 9 illustrates four maps of healthcare accessibility
at different time intervals. As it is shown, the four maps share
similar spatial patterns over the whole research area in which
healthcare accessibility drops off gradually with the increase
of distance to downtown. It is indicated that inner city has
better accessibility than peripheral regions which is different
from previous studies [13]. Two reasons could result in the

∪Qm–1∪QmSi = Q1∪Q2∪Q3∪

Input the total 
number of grid: 1102

Extract information of trajectory τ
where τ = 1, 2, 3,…, m – 1, m
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Extract information about Qτ, Qτ is the 
grid set that trajectory τ went through

Si is the grid set that residents from grid i
could arrive

Accessibility of grid i
CUMi = ∣Si∣

Figure 5: Accessibility calculation processing.
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Figure 6: Spatial distribution of healthcare facilities obtained from the density analysis of healthcare facilities.

Figure 7: Comprehensive accessibility of healthcare facilities.
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Figure 9: Healthcare accessibility at different time intervals: (a) 1:00–3:00. (b) 7:00–9:00. (c) 13:00–15:00. (d) 17:00–19:00.
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difference that the medical infrastructures are concentrated
in the central city, and the road network is developed.

Comparing accessibility at different time intervals, we
find that though the overall distribution of accessibility is
similar, accessibility varies greatly with time changing.
Proportion changes of healthcare accessibility are calculated
according to the result in 1:00–3:00 and shown in Table 3. If
the value is below zero, it shows that number of grids with
this accessibility level decreases. *e mean value of acces-
sibility in 1:00–3:00 is 17.41% higher than that from 7:00–9:
00. In other words, residents lose 17.41% healthcare op-
portunities that could be obtained during a time period in
the morning peak. *e number of grids with accessibility
below 584.95 rises in 7:00–9:00 when the number of grids
with good accessibility (higher than 584.96) decreases. After
the morning peak, accessibility gets increased to some extent
but still not as good as that from 1:00–3:00.

To investigate the temporal variation of accessibility
quantitively, the C.V. of each grid is calculated based on
formula (8). It demonstrates accessibility changes in one grid
for a day. *e spatial distribution of C.V. in each grid is
shown in Figure 10. *e C.V. of healthcare accessibility is
distributed unevenly. *ere are not only areas with smaller
C.V. in light yellow but areas with higher C.V. in dark in
each annular section.

To quantify the difference of C.V., the mean value and
STD (standard deviation) of C.V. of each annular section are
calculated and listed in Table 4. It is shown that the mean
value of C.V. in (the 3rd, the 4th] is larger than those in
[Center, the 2nd] and (the 2nd, the 3rd]. However, the STD of
C.V. in [Center, the 2nd] is 2.409/3.678 times larger than
those in (the 2nd, the 3rd] and (the 3rd, the 4th]. *e C.V. of
each annular section is examined and C.V. of areas near the
Temple of Heaven is labelled, which is also the maximum
(1.328034) in [Center, the 2nd]. *e reason for the large C.V.
near the Temple of Heaven could be less number of vehicles
in the urban park and a smaller sample size of GPS data. It
thus results in a small mean value of healthcare accessibility
which contributes to a large C.V., as shown in equation (8).
Generally speaking, the C.V. of healthcare accessibility
moderately rises with the increase of distance to the
downtown within the 4th ring road.

As for the C.V., in the area of (the 4th, the 5th], the mean
value (0.1838) is almost 2 times and STD (0.1240) is 3.828
times that of the area in (the 3rd, the 4th]. *e mean value of
C.V. in (the 4th, the 5th] ranked the 1st among the four
annular sections, which results from a lower density of data
points in this area. *e reason for the lower density of data
points in (the 4th, the 5th] could be the underestimation of
residents’ travel outside the border which can account for a
large proportion of residents’ travel in this area. Considering
the influence of residents’ travel outside the border, large
C.V. in (the 4th, the 5th] could result from not the variation of
accessibility but smaller sample sizes of GPS data.

4.1.3. Measurement of the Healthcare Accessibility Balance.
As previous studies indicate, population density distribution
has a close connection with accessibility distribution. *e
balance between population and accessibility could show the

per capita medical opportunity practically. However, these
studies have not dealt with the spatial disparity in regions
with proportionate accessibility and population density. *e
balance evaluation of the medical service accessibility is
expressed.

Based on the measurement of accessibility population
balance in Figure 1, we measure the matching degree be-
tween medical facility accessibilities and the population
density level. *e result is shown in Figure 11. Areas A and E
are regions with unmatched accessibility and population.
Area E has a relatively high population density, with ac-
cessibility below the average. Conversely, area A has ac-
cessibility above average and relatively low population
density. Areas C and G are regions in which the accessibility
and population density perfectly matched. Areas B and H
and areas D and F are also regions with matched accessibility
and population density.

*e result of the balance is shown in Figure 12. As
introduced previously, there are 8 categories in the study
area based on the result of Z-scores. *e result shows that
30.49% urban region retains high accessibility and high
population density, indicating a good balance in healthcare
accessibility distribution. *is area comprises 44.65% urban
population and is mostly located inside the 4th ring road due
to sufficient medical facilities and concentrated population
distribution. Areas B, C, and D account for 17.97%, 5.72%,
and 6.81% in the study area, respectively. Approximately,
43.65% region (areas F, G, and H) has a low population
density and low medical service facility accessibility; the area
is mainly located in the periphery, with 28.91% population in
Beijing. However, only 13.61% area (area G) has a good
matching degree. In contrast, 16.06% urban area (area A)
possesses high accessibility with a low population density
and is dispersed mainly inside the 4th ring road area. *is
area includes 13.55% total population. For those people,
medical facilities are sufficient for a relatively low population
density. However, the remaining 9.8% study area (area E)
suffers from low accessibility with a high population density,
mostly outside the 4th ring road, such as the Laiguangying
community and the Xincun community.

4.2. Medical Accessibility of the Designated Hospitals

4.2.1. Accessibility to the Designated Hospitals. Recently,
COVID-19 has broken out around the world. Sufficient

Table 3: Proportion changes of healthcare accessibility at different
time intervals.

Accessibility 1:00–3:
00

7:00–9:
00

13:00–15:
00

17:00–19:
00

[0, 129.12) 0.00% 9.16% −10.76% −11.95%
[129.13, 228.27) 0.00% 13.45% 18.49% 15.97%
[228.28, 337.72) 0.00% 34.12% 35.29% 32.94%
[337.73, 461.44) 0.00% 10.08% −3.10% −6.98%
[461.45, 584.95) 0.00% 27.55% 29.59% 33.67%
[584.96, 717.29) 0.00% −0.83% 1.65% −6.61%
[717.30, 866.55) 0.00% 0.94% 22.64% 34.91%
[866.56, +∞) 0.00% −56.28% −38.25% −34.43%
Mean value 461.90 393.42 433.89 443.57
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healthcare opportunities and easy access to medical services
can decrease the risk of being infected, which is vital to
individuals. Besides, the designated hospitals are established
to cope with issues on diagnosis and treatment of specific
diseases, such as COVID-19. *ere are 20 designated hos-
pitals in Beijing, of which only 6 are in the study area. *e
distribution and service catchment of the designated hos-
pitals are different from general medical resources. *ere-
fore, we study the medical capacity and distribution of the
designated hospitals for particularity and specialty in patient
treatment.

*e hospitals have 5673 beds in all, and the spatial
distribution is shown in Figure 13. Long-distance travel and
lack of healthcare services can expose individuals to a higher
risk of encountering COVID-19. Residents are suggested to
go to healthcare facilities as near as possible for professional
medical assistance. With approximately 11.659 million in-
habitants accounting for 54.12% in population, there are
30% (6/20) designated hospitals of all located in the study
area.

From the perspective of accessibility, good accessibility
indicates easy access to the designated hospitals and a large

number of residents could obtain medical treatment in time.
Due to the variations of medical resources, a significant
difference exists in the medical capacity of the designated
hospitals which directly correlates to the efficiency of pa-
tients’ treatment. It is certainly worth studying the service
capacity of the designated hospitals. Figure 14 shows ac-
cessibility and PCO (per capita opportunities) of the des-
ignated hospitals with/without population variations.

*ere are similar patterns in Figures 14(a) and 14(b).
Some hospitals, such as the 5th Medical Center, have the

Figure 10: Spatial distribution of C.V. in grid accessibility. *e brown grid indicates higher C.V., while gold grid indicates lower C.V.

Table 4: Information about CV.

Area Mean STD Min Max
[Center, the 2nd] 0.08667 0.119161 0.034509 1.328034
(*e 2nd, the 3rd] 0.083798 0.049448 0.043242 0.472702
(*e 3rd, the 4th] 0.098277 0.032398 0.047024 0.226324
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Figure 11: Match the population and accessibility. *e yellow line
represents function “Zaccessibility � Zpopulation” and the dotted yellow
lines are “Zaccessibility � Zpopulation + 0.2” and
“Zaccessibility � Zpopulation − 0.2” separately.
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mean level of accessibility but the largest PCO among the six
hospitals. *e capacities of the hospital would be positive to
meet the inquiry and treatment demand. Beijing Haidian
Hospital has relatively small accessibility and good PCO
above the average. On the contrary, some hospitals have
great accessibility which indicates the hospital would have
large service scope and catchment but limited PCO below
the average. For example, Beijing Puren hospital and Beijing
Youan hospital are hospitals with the highest accessibility
but PCO under the average. Although, these hospitals could
provide medical service for the most residents among the six
hospitals, the per capita healthcare opportunities are almost
the lowest among them. *e other two hospitals, Beijing
Huimin hospital and Beijing Shijingshan hospital, are below
the average both on accessibility and PCO. Hospitals’
medical capacity is demonstrated by the actual beds’
number, which is shown as the size of a circle. *e actual
beds’ number of the 5th Medical Center (the highest value) is
almost 9 times that of Beijing Huimin Hospital. *e sig-
nificant variance exists in the medical capacity of the 6
designated hospitals.

To exhibit the difference of healthcare accessibility with/
without considering population, the difference between the
accessibility of each hospital and mean accessibility is cal-
culated and shown in Table 5.

*e accessibility of the designated hospitals changes at
different levels after considering population variation. *e
differences of Beijing Puren Hospital and Beijing Haidian
Hospital are 26.80% and −19.49% and change into 43.30%
and −27.86% in view of population variation. *e change of
accessibility difference indicates that the hospitals with
modest accessibility could serve a large number of residents
and the hospitals that could provide healthcare service for
plenty of residents are likely to have moderate service scope.
Accessibility measures without considering the population
could demonstrate service scope straightway and area that
healthcare facility in grid j could provide medical service for
within the time threshold. *is measure is applied in the
analysis of medical capacity when the spatial location is
emphasized. And, measures in view of population variation
are able to calculate the number of residents in the catch-
ment boundary who could reach the healthcare facility to get

Figure 12: Balance between accessibility and population.
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medical assistance. *e measure considering the population
is used when a potential number of patients is focused on.

Accessibility of the designated hospitals is calculated
according to formula (4), which indicates the service
catchment of hospitals and potential healthcare demand.
However, traffic congestion exacerbates the change in travel
times. It is necessary to introduce the calculation of ac-
cessibility in different time slots. *e accessibility of the 6
designated hospitals in the study area is computed, as shown
in Figure 15. Four time slots (morning peak, moon, evening
peak, and night) are selected to study the variations of ac-
cessibility in different periods.

A significant variance of accessibility exists in the des-
ignated hospitals as well. *e Beijing Puren hospital is least
affected by time changes, while Shijingshan hospital, Hai-
dian hospital, and the 5th Medical Center are apparently
influenced. Beijing YouAn Hospital and Beijing Puren
Hospital are available to the greatest extent, with an increase
of 52.27% and 26.80% compared to the mean value of ac-
cessibility, respectively. Due to its geographical location, the
accessibility of Beijing Shijingshan Hospital is 25.45% below
that of the study area. From the perspective of the designated
hospitals, Beijing Puren hospital is the least affected for C.V.
which is 0.014. *e C.V. indicator is calculated based on the
4 accessibility values of the grid that each hospital locates in.
*e C.V. of Shijingshan hospital, Haidian hospital, and the
5th Medical Center exceed 0.08, which indicates that ac-
cessibility of these 3 hospitals can fluctuate as time changes
and be affected easily. From another point of view, acces-
sibility from 7:00–9:00 is influenced mostly by heavy con-
gestion in the morning peak. *e accessibility of the evening
peak is also affected by traffic congestion. For residents’ sake,
it takes more time to reach their destination in peak hours,
which brings about the reduction of medical opportunities
they could arrive in the time threshold.

4.2.2. Spatial Autocorrelation Analysis of Accessibility.
*e spatial autocorrelation analysis for accessibilities is
conducted based on the above calculations to study the
spatial distribution and identify regions in lack of access to
the designated hospitals. We use the Queen Contiguity
weight method to calculate Global Moran’s I and generate
Local Indicators of Spatial Association (LISA) Cluster Map
[38]. *rough the autocorrelation analysis of accessibility at
different time intervals, each Global Moran’s I value and the
Monte Carlo Test result are obtained, as shown in Table 6.

For the test results shown in Table 6, Moran’s I is larger
than 0.68 and Z-value is higher than 2.58. Hence, all these

results for spatial autocorrelation at different time intervals
are significant at a 99.9% confidence level. It is shown that
accessibility to the designated hospitals has specific positive
spatial correlations. In most of the time, the accessibility to
hospitals show an increasingly strong positive correlation
withMoran’s I larger than 0.68 and Z-value higher than 21.9.
From results at different time intervals, it can be seen that
there are similar spatial distributions and aggregation trends
in the result of spatial autocorrelation.

To clearly show the variation, the ratio of frequency
changes has been calculated based on the result from 7:00–8:
00 (Table 7). For example, the result of −9.09% in 8:00–9:00
shows that the number of grids with a high-high spatial
pattern is 9.09% less than that in 7:00–8:00 in the Dongcheng
district. From the statistical analysis of results, the spatial
association of districts differs apparently. With a relatively
developed road network, some Xicheng district and
Dongcheng district areas show an apparent high aggregation
and without low aggregation. Conversely, the Shijingshan
district has higher frequencies in the low-low aggregation
area than other areas in Beijing. Haidian, Fengtai, and
Chaoyang districts exhibit two aggregations of high acces-
sibility and low accessibility.

*e results from the spatial autocorrelation analysis are
shown in Figure 16, and the appearance of subregions in the
high-high and low-low areas is counted to find most and
least developed medical regions during the outbreak of
COVID-19 in Beijing. Yellow areas represent regions with
high-value aggregation and the blue for low-value aggre-
gation. It is shown that the high aggregation area mainly
locates in the neighborhood of the arterial road and annular
road. Residents could easily access healthcare opportunities
here for nucleic acid testing and disease treatment. *e low
aggregation area is generally distributed in the peripheral
city, which indicates that spatial location has a significant
influence on accessibility of the designated hospitals. Areas
with not-significant aggregation usually have average
healthcare accessibility [39].

5. Discussion

*e analysis presented above demonstrated the character-
istics of healthcare accessibility in the spatio-temporal
variations. Our research focuses on car-based accessibility
which can demonstrate specific vehicle traveling and travel
behaviors under public health emergencies, such as COVID-
19. Firstly, the car-based traveling and specific vehicle
traveling, such as ambulance travel, play critical roles in

Table 5: Accessibility difference of the designated hospitals.

Hospitals
Difference

With population variation (%) Without population variation (%)
*e 5th Medical Center −2.87 0.26
Beijing Puren Hospital 43.30 26.80
Beijing Haidian Hospital −27.86 −19.49
Beijing Huimin Hospital −33.81 −34.39
Beijing Youan Hospital 50.02 52.27
Beijing Shijingshan Hospital −28.77 −25.45
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Figure 15: Accessibility at different time intervals. *e dotted lines in different colours represent the means of accessibility in the study area
at different time intervals. *e tag on the bar is the C.V. of the hospital accessibility.

Table 6: *e results of the spatial autocorrelation analysis.

Time Moran’s I Z score P value
7:00-8:00 0.6818 21.9350 0.001
8:00-9:00 0.6802 21.9052 0.001
11:00-12:00 0.6808 21.9794 0.001
12:00-13:00 0.6810 22.0018 0.001
17:00-18:00 0.6805 22.0073 0.001
18:00-19:00 0.6803 21.9994 0.001
21:00-22:00 0.6806 22.0031 0.001
22:00-23:00 0.6804 21.9956 0.001

Table 7: Changes of aggregation frequency result in administrative districts.

District Spatial
pattern

7:00-8:00
(%)

8:00-9:
00

11:00-12:
00

12:00-13:
00

17:00-18:
00

18:00-19:
00

21:00-22:
00

22:00-23:
00 Figure

Dongcheng High-high 0.00 −9.09% −27.27% −36.36% −36.36% −36.36% −36.36% −36.36%

Fengtai High-high 0.00 7.14% 7.14% 7.14% 7.14% 7.14% 7.14% 7.14%

Haidian High-high 0.00 0.00% 7.14% 7.14% 57.14% 57.14% 57.14% 50.00%

Xicheng High-high 0.00 0.00% 0.00% 0.00% −3.57% −3.57% −3.57% −3.57%

Chaoyang High-high 0.00 0.00% −17.95% −17.95% −20.51% −23.08% −25.64% −23.08%

Shijingshan Low-low 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Chaoyang Low-low 0.00 20.00% 10.00% 5.00% 15.00% 15.00% 15.00% 10.00%

Haidian Low-low 0.00 −4.76% −23.81% −23.81% −28.57% −28.57% −28.57% −28.57%

Fengtai Low-low 0.00 1.82% −1.82% −3.64% −1.82% −1.82% −3.64% 0.00%
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Figure 16: *e final cluster map based on statistics.

Table 7: Continued.

District Spatial
pattern

7:00-8:00
(%)

8:00-9:
00

11:00-12:
00

12:00-13:
00

17:00-18:
00

18:00-19:
00

21:00-22:
00

22:00-23:
00 Figure

Shijingshan Not
significant 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Xicheng Not
significant 0.00 0.00% 0.00% 0.00% 1.96% 1.96% 1.96% 1.96%

Dongcheng Not
significant 0.00 1.79% 5.36% 7.14% 7.14% 7.14% 7.14% 7.14%

Fengtai Not
significant 0.00 −1.06% 0.00% 0.53% 0.00% 0.00% 0.53% −0.53%

Haidian Not
significant 0.00 0.52% 2.06% 2.06% −1.03% −1.03% −1.03% −0.52%

Chaoyang Not
significant 0.00 −1.29% 1.61% 1.94% 1.61% 1.94% 2.26% 2.26%
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travel behaviors to healthcare facilities. Due to the compara-
bility of travel characteristics, specific vehicle traveling is
represented by car-based traveling to solve the problem of
difficulty in obtaining high-quality data of ambulance traveling.
Secondly, under the consideration of epidemic diseases such as
COVID-19, traveling in public transport would increase the
risk of disease infection. Residents may prefer to car-based
traveling to decrease the possibility of accessing the crowd,
considering the travel distance, level of safety, and comfort.

From the perspective of technique, the study proposes a
method making use of floating car trajectory data to cal-
culate healthcare accessibility. Night-time light data is uti-
lized to evaluate population density. It can demonstrate the
change in population distribution in recent years, which is
the deficiency of census data. Moreover, the results show the
potential unmatched area of accessibility and population.
*en, we analyze the spatial distribution and capacity of the
designated hospitals during the outbreak of COVID-19.
*ere is a great difference in the accessibility of designated
hospitals and general medical facilities. *e spatial auto-
correlation method is used to analyze the correlation be-
tween residents’ accessibility to the designated hospitals and
geographical locations. *e study benefits the accomplish-
ment of precise epidemic prevention and refines urban
traffic management under the epidemic situation.

*ere are also limitations of this research. Our research
focuses on the car-based accessibility now, but not all res-
idents own a private car or travel to healthcare facilities by
car. Other traveling modes (e.g., public transit) also play
important roles in traveling behaviors to seek healthcare
service [40]. Based on the smart card data of bus and subway,
the influence of the public transport modes on the available
opportunity number of residents can be studied by calcu-
lating the accessibility within the time threshold. *e
temporal variations of public transport-based accessibility
could be different from that of car-based accessibility. Be-
sides, in this research, we compute the healthcare accessibility
regarding residents in the study area with the same mobility,
which neglects disadvantaged people’s travel conditions [41].
With the positioning data of smartphone, the accessibility of
residents with various mobilities can be studied to demonstrate
accessibility variations between different residents’ groups.
Moreover, we choose regions within the 5th ring road of Beijing
as the study area but ignore residents’ travel outside the border
which results in a smaller sample size of GPS data. In order to
demonstrate the accessibility accurately, the proportion of
travel outside the border should be estimated. *en, the
proportion of residents’ travel to the different annular sections
should be calculated which can be considered as a correction
coefficient to eliminate the effect of ignored residents’ travel.
Our future work will look into these limitations and try to
handle them.

6. Conclusions

Compared to the previous studies, the study investigates the
characteristics of the spatio-temporal accessibility, especially
under the circumstances of the public health emergency.
Significant difference exists in the spatial disparity and

temporal variation of healthcare accessibility. Accessibility
drops off along with the increase of distance to downtown,
while accessibility variation expressed by the C.V. expanded.
Healthcare accessibility of the north section is better than
that of the south. Compared to trips for medical purposes in
the night, residents lose 17.41% healthcare opportunities that
can be obtained in the morning peak. *en, 74.14% urban
region retains accessibility along with matched population
density. However, population migration can give rise to the
imbalance between accessibility and population density in
some areas. Moreover, the research on healthcare accessi-
bility during the outbreak of COVID-19 is conducted. It is
identified that the 5th medical center has better medical
capacity than the other 5 designated hospitals. On the
contrary, the accessibility of Puren hospital is less affected by
time changes. *ere are different spatial patterns of resi-
dents’ access to medical treatment during the outbreak of
COVID-19. *e main roads in the central city present a
high-value aggregation pattern, while the peripheral regions
show a trend of low-value aggregation.
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obtained from a public website.
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