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On-demand station-based one-way carsharing is widely adopted for battery electric vehicle sharing systems, which is regarded as a
supplement of urban mobility and a promising approach to the utilization of green energy vehicles. -e service model of these
carsharing systems allows users to select vehicles based on their own judgment on vehicle battery endurance, while users tend to
pick up vehicles with the longest endurance distances.-is phenomenonmakes instant-access systems lose efficiency onmatching
available vehicles with diverse user requests and limits carsharing systems for higher capacity. We proposed a vehicle assignment
method to allocate vehicles to users that maximize the utility of battery, which requires the system to enable short-term reservation
rather than instant access. -e methodology is developed from an agent-based discrete event simulation framework with a first-
come-first-serve logic module for instant access mode and a resource matching optimization module for short-term reservation
mode. Results show that the short-term reservation mode can at most serve 20% more users and create 47% more revenue than
instant access mode under the scenario of this research. -is paper also points out the equilibrium between satisfying more users
by efficiently allocating vehicles and distracting users by disabling instant access and suggests that the reservation time could be
15 minutes.

1. Introduction

Carsharing has been regarded as one of the innovative urban
shared-use transportation modes since the booming of shared
economy and mobile Internet technology. Users are allowed to
drive the shared vehicles across the carsharing networks and
pay for their hourly rentals.With the awareness of green energy
promotion among the public and automobile manufacturers,
electric vehicles have penetrated into the carsharing market,
which provides environmental benefits for urban mobility
[1, 2]. Limited battery endurance and time-consuming
recharging process at the current stage make electric vehicles
lose attractiveness compared with internal combustion engine
vehicles on the private car sales market. However, the car-
sharing market provides a promising breeding ground for
electric vehicles since carsharing organizations (CSOs) manage
charging station networks and available vehicles, which set
users free from concerns on recharging and maintenance by

themselves. Many carsharing enterprises introduce electric
vehicles into their fleets, e.g., ShareNow and Communauto,
while some others operate electric fleet only, e.g., EVCARD [3]
and GoFun in China.

-e station-based one-way carsharing model is believed to
be an appropriate form for electric vehicle carsharing systems
(EVCSs, or E-carsharing). Charging piles are usually installed at
carsharing stations and users are required to plug in the
chargers after parking the cars. For instance, EVCARD
operates large charging station networks and allows users to
pick up at one station and then drop off at any other station
with the charging device plugged in. EVCARD is also an on-
demand carsharing service that users can instantly choose any
available vehicles with different state of charge (SOC) at the
station; i.e., the user can see the exact SOC and battery en-
durance (possible maximum distance to drive) of the vehicles
idling at station from the smartphone APP and instantly select
a vehicle without reservation in advance.
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-e on-demand one-way EVCS presents flexibility that
users are endowed with the decision right to choose vehicles
according to the SOCs as well as their expected trip dis-
tances. However, the user’s behavior on choosing vehicles
limits the matching efficiency between the demand on ex-
pected travel distance and the supply of vehicle battery
endurance. For instance, some of the users prefer to occupy
vehicles with high SOCs even travel shortly, while users that
need to drive for long distances could not be satisfied. To
mitigate the unbalance of matching on expected travel
distance and battery endurance, it is necessary to develop an
optimized vehicle assignment mechanism. It is possible to
improve vehicle utilization and overall profits for the CSOs
by assigning vehicles to users more reasonably rather than
choosing by themselves, which helps CSOs to satisfy more
users.-e demand-vehicle matching also impacts the vehicle
floating pattern over the networks and consequently in-
fluences the strategy of vehicle relocation and fleet reba-
lancing. -e study on matching mechanism between
expected travel distance of user and battery endurance of
vehicle provides a better understanding on EVCS operation
and improves the precision of vehicle relocation.

-is paper presents the study on the matching mecha-
nism between expected travel distance and battery endur-
ance and assigning vehicles for users, i.e., to appoint vehicles
with appropriate endurance distances for users according to
their requested travel distances, to improve vehicle utili-
zation and user satisfaction. -e remainder of the paper is
organized as follows. Section 2 reviews the literature on
carsharing operation and electricity management. Section 3
proposes the matching methods including first-come-first-
serve (FCFS) and short-term optimization based on a
simulation scheme. Section 4 provides a case study and
presents the findings by introducing the matching methods.
Section 5 concludes the study.

2. Literature Review

In this section, we first review the classifications of different
carsharing systems and point out the orientation of the on-
demand one-way EVCS. Subsequently, the electricity
problems about electric vehicle operation and management
have been summarized. Finally, we introduce problems and
methods for vehicle relocation, fleet management, and
operation improvement to seek the potential of user-vehicle
assignment for improving the efficiency of EVCS.

2.1. Categorizing Carsharing Systems. Carsharing attracts
attention around the globe and many carsharing enterprises
have emerged since the last decade. New startups continue
innovation on service models that present different char-
acteristics and various degrees of flexibility.

At the very beginning stage of research towards car-
sharing since 2002, Barth and Shaheen originally summa-
rized carsharing systems and categorized them into three
models: (1) neighborhood carsharing, (2) station cars, and
(3) multi-nodal shared-use vehicle [4]. Cepolina et al. [5]
introduced new features for carsharing models including

instant access, open-ended reservation, and one-way trip
enabling and suggested that CSOs tended to provide better
flexibility for users. Ferrero et al. developed a classification
method and differentiated carsharing by dimensions such as
mode, engine, objectives, time horizon, and methodologies.
Remane et al. proposed a taxonomy for carsharing business
models and extracted 43 characteristics in double layer and
15 dimensions to classify the carsharing business model.
Wang et al. [6] also classified carsharing services into types
of round-trip, one-way, station-based, free-floating,
reservation-based, and on-demand, which also pointed out
that the emerging EV-only carsharing CSOs tended to adopt
the station-based on-demand model.

Based on the existing taxonomy and considering the
requirement of this study, we summarize the categories of
carsharing business in Table 1. A carsharing system presents
several characteristics, and combinations of these charac-
teristics shape various kinds of carsharing business, which
provide different degrees of flexibility to users [7]. It should
be noted that many of the newly launched EVCSs enabled
one-way mode and are station-based for the convenience of
installing recharging piles and maintaining vehicles, though
some of them are free-floating for better flexibility with the
sacrifice on vehicle relocation costs [8]. It should be noted
that, according to the statistics of Remane et al. [9], 100% of
the one-way station-based systems are instant access without
any reservation.

Since the one-way station-based on-demand battery
electric vehicle carsharing systems play a vital role in the
global carsharing business, in this paper, we study the vehicle
assignment problem for users according to their desired
travel distance under the schemes of instant access and
short-term reservation and explore the possibility to im-
prove the operation efficiency.

2.2. Electricity Problems in EVCS. -e EVCS performs quite
differently from other kinds of carsharing systems because of
the limitation of battery endurance and recharging time.
Model innovations are made including battery swapping
[10] and the operation scheduling algorithm is proposed.
Other types of vehicles are also discussed, such as plug-in
[11] hybrid electric [12] vehicle charging problem and
shared shuttle bus scheduling [13]. For EVCS that we discuss
in this paper, the charging scheduling problem is also a big
issue [14].

Many studies explored the electricity problems in EVCS
from different perspectives, including the “range anxiety,”
charging station planning, and vehicle routing for charging
devices. Hu et al. [15] investigated the effect of battery ca-
pacity on electric vehicle sharing systems and suggested that
limited battery capacity lowers user satisfaction and vehicle
utilization. Hu et al. also mentioned “range anxiety” and a
vehicle selection principle [16] that allocates vehicles for
users according to SOC for on-demand EVCS. Because the
existence of anxiety, they assume that user must choose the
vehicle with max SOC. -e range anxiety does impact
traveler behavior [17] and influence the vehicle floating
pattern within networks [18].
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To mitigate the range anxiety problem, on the planning
level, CSOs can optimize the location of charging stations in
EVCS to cover more destinations as well as to save con-
struction costs for not only E-carsharing systems [19, 20] but
also general electric vehicle drivers [21]. From the user
experience aspect, some studies proposed vehicle routing
suggestions for users to optimize their routes for charging
stations and to relieve their anxiety [22, 23].

For the vehicle assignment problem with battery con-
sumption information requests, Zhang et al. proposed an
optimization model considering multiple vehicle relays and
could output the arrangements of vehicle utilization for
users [24]. However, the overall optimization models of
networks and event flows should assume all demands are
preknown, which could be long-term reservation or pre-
cisely predicted. One-way CSOs do not prefer long-term
reservation since it loses flexibility and on the other hand the
precise prediction of demand is still difficult because car-
sharing systems are highly stochastic. In our study, we try to
focus on the vehicle assignment or selection mechanism in
the circumstances of short-term reservation or on-demand.
To the best of our knowledge, there is less literature revealing
the characteristics, battery matching, and vehicle assignment
for short-term and on-demand systems and proposing
improvement suggestions for them.

2.3. Fleet Management and Operation Improvement.
Extensive studies have been conducted on fleet manage-
ment, vehicle relocation, and operation decision support.
-ose works address core issues—balancing car distribution
to meet the demand patterns—for sustainable, efficient, and
effective carsharing operation. -ey typically fall into two
folds: simulation [25–28] and optimization [29–32].

-e optimization approach relies on operation research
(OR) techniques to realize the objectives and on sophisti-
cated graph or network modeling to reveal the system

dynamics [33, 34]. Solutions from OR present the optimum
if precise demands are known. -is requires system to be
long-term reservation type, or strongly assume demand can
be accurately and stably predicted [35, 36]. Up to now, many
studies are exploring demand prediction [37, 38] but still not
quite accurate and robust enough to drive the optimization.
Towards the instant access type, the system presents strong
randomness and dynamics; simulation approaches perform
well to model the system characteristics. To improve the
performance, researchers also attached optimization to the
simulation framework [39, 40]. Inventory control ap-
proaches [41–43] are also developed to cope with the dy-
namic fleet management tactics for instant access systems.

Note that some of the studies above consider fuel fleets
rather than electric fleets. EVCS performs different char-
acteristics on range anxiety and charging time, while users
are not sensitive to fuel consumption and CSOs are not
hindered by refueling for fuel vehicle carsharing systems.
Taking electricity characteristics is quite important for EVCS
modeling. For instance, the simulation framework of Hu
et al. [15] adopted a maximum SOC pick-up strategy as we
have discussed above. Wang et al. [42] formulated SOC
constraints and integrated them in the overall optimization
model, while the actual vehicle selection judged by users on
SOCs would highly differ from the system optimization
expectation. Ma et al. [43] involved a matching model be-
tween required distance and SOC under the objective of
maximizing battery utilization, which is also not realistic
enough to reveal vehicle selection by users in instant access
systems or vehicle assignment in short-term reservation
systems. In our paper, we attempt to explore the matching
problem between user’s desired travel distance and the
vehicle’s actual SOC, and to provide suggestions for vehicle
assignment. -is problem has another aspect of property
which is the contrast between short-term reservation and the
instant access system. -e benefit of short-term reservation
and the impacts to the experience of users should both be

Table 1: Categories of carsharing business models.

Dimension Type Description

Trip mode
Round-trip Users rent cars from one place and must return to the same place

One-way Users are allowed to pick up vehicles from one place and drop off at another place without
compulsorily returning to the original place, e.g., Car2Go and EVCARD

Service
range

Station-based Stations are designed in the networks and users should pick up and drop off only at stations, e.g.,
EVCARD (round-trip should be station-based)

Free-floating
Service areas are designed and users are allowed to pick up and drop off at any legal parking place
within the service area without compulsorily driving to stations, e.g., Car2Go (free-floating can be

one-way, and one-way can be both station-based and free-floating)

Access
mode

Long-term
reservation

Users should make reservations for vehicles by providing their trip information usually one day or
more before their trips

Short-term
reservation Users should make reservations for vehicles on several hours or minutes ahead of their trips

Instant access/on-
demand Users can choose any available vehicles and are not required to make reservations before their trips

Vehicle type

Fuel vehicle System operates vehicles equipped with internal combustion engines and can be refueled easily
Battery electric

vehicle
System operates battery electric vehicles (BEVs) which have limited driving range and recharging

speed
Other green energy System operates plug-in hybrid electric vehicles or other green energy vehicles
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considered. Hence, this paper adopts an agent-based sim-
ulation and vehicle assignment optimization to model the
short-term reservation and explores the natures of short-
term reservation and instant access.

3. Methodology

3.1. Agent-Based Simulation Framework. -e methodology
of this study is on the simulation basis with an optimization
module for vehicle assignment. Agent-based simulation
models are fundamental works to depict carsharing systems
[15, 28]. -is paper further develops carsharing agent-based
model by considering the vehicle assignment problem. We
adopt agents to reveal the status of users and vehicles and
introduce a matching mechanism to reveal the vehicle as-
signment. Agents are as follows.

(i) Users are generated with trip requests. User i is
defined by a tuple ui � (Oi, Di, t0i, t1i, di, mi, ri, si),
where Oi denotes the origin station, Di denotes the
destination station,t0i denotes the departure time, t1i

denotes the arrival time, di denotes the travel dis-
tance, mi is a 0-1 sign that mi � 1 if user i is matched
with a vehicle that can satisfy the user’s trip oth-
erwise � 0, ri denotes whether the user is occupying
and driving a car on road and ri � 1 if driving
otherwise � 0, and si denotes whether the user is
served and si � 1 if served otherwise � 0. Note that
we adopt simulation second (s) to quantify time
variables.

(ii) Vehicles transport users form one station to another.
Vehicle j is defined by a tuple vj � (ej, pj, tAj, rOj),
where ej denotes the instant state of charge (SOC) of
vehicle j (defined by the current travel distance
endurance, km), pj denotes the position of vj by the
latest station where vj is parking, tAj denotes the
arrival time at pj and tAj � 0 for initialization, and
rOj denotes the occupancy of the vehicle and rOj � 1
if vj is occupied by a user; otherwise rOj � 0.

Besides the agents, we define a matching between the
user and vehicle:

(i) -ematching between user and vehicle is defined as a
tuple mij � (ui, vj). -is matching relates a user to a
designated vehicle. Once the matching is decided, the
users which have been transported and the service
chain of vehicles can be speculated.

Note that these variables are time varying, and snapshots
related to time instant t as ui(t), vj(t) and mij(t) can be
generated to record trajectories of users and vehicles. -e
process of the interaction between user agents and vehicle
agents is described in Figure 1. Note that the states of ve-
hicles and users change at discrete times and are updated by
events; we adopt discrete event simulation (DES) to model
the dynamics of the system.

3.2. User Interaction Modes Design. Considering that it has
been reviewed that the existing one-way station-based

systems are instant access [9] and the overall optimization
relies on a strong assumption of long-term reservation or
precise demand prediction [36], this research will focus on
instant access mode and short-term reservation mode. -e
interaction modes are defined as follows.

(i) Instant access: First, users emerge and are allowed to
inspect the SOCs of all available vehicles at the
nearby station. A user will lock a car once the user
makes a trip request and places an order. We assume
the server system processes the requests one by one
in a time sequence, i.e., first-come-first-serve (FCFS)
(shown in Figure 2). Note that simultaneously ar-
rived requests in reality will also be processed in a
queue with a sequence of other properties like user
number. In this simulation system, we generate users
sequentially.

(ii) Short-term reservation: Users emerge in sequence
and are grouped by time batch τ. Users submit
departure station, arrival station, and expected de-
parture time to the system. For users whose de-
parture stations are the same and departure times are
in the same time batch, the system assigns available
vehicles to those users according to some principles
(shown in Figure 3).

3.3. Instant Access Mode. -e instant access mode can be
modeled as an agent-based simulation driven by discrete
event simulation (DES) with asynchronous events. -e
events in this simulation can be found in Figure 4. Details of
the events are defined in the following contents. An event list
should be generated to ensure the sequence and action of
each event. -e event list can be dynamically read and
written. Simulation progresses through the simulation
seconds and triggers the event when processing it.

Event E1. User emerges. All users are generated in a set
U � u1, u2, . . . , ui, . . . , u|U|  at the very beginning of
simulation, where |U| denotes the number of users in
set U. ∀ui � (Oi, Di, t0i, t1i, di, mi, ri, si) ∈ U, suppose
the request of user i appears instantly at time t0i and
omit the reservation time, where mi � ri � si � 0 for
initialization.
Event E2. Vehicle arrives. Vehicles are in set V and are
grouped by two sets VI and VR for idling vehicles and
running vehicles, respectively. First, considering station
n ∈ N where N denotes the set of all stations and the
number of stations is |N|, let the set of vehicles in
station n be Vn, and we have

VI � ∪
n∈N

Vn,

Vn � vj|pj � n and rOj � 0,∀ vj ∈ V .
(1)

For the running vehicles, there is

VR � V − VI. (2)

Note that VR can be ∅ if all vehicles are at stations for
initialization. For the running vehicles ∀vj ∈ VR, there
must be a mij relating vj to ui (the matching should be
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ensured by event E3), and vehicle j would arrive at
station Di at t1i. When the arriving event happens at t1i

(i.e., E2 happens), update the following variables:

ej ≔ ej − di,

pj � Di,

tAj � t1i,

rOj � 0,

VR ≔ VR − vj ,

VDi
≔ VDi
∪ vj .

(3)

Event E3. User selects vehicle. ∀ui ∈ U this E3 event
happens at t0i. When E3 happens, ∀vj ∈ VOi

, update the
SOCs:

ej ≔ min ej + R × t0i − tAj , eM , (4)

where R denotes the charging speed (km/s) and eM is the
maximum endurance distance of this type vehicle. -en
matching will be processed as the following two schemes:

(a) Maximum SOC selection. Article [15] investigated
user’s choosing behavior and assumed all users
would pick up the vehicle with maximum SOC. -e
maximum SOC selection can be expressed as follows:

mij �

ui, varg
j

max
vj ∈ VOi

ej( 
⎛⎝ ⎞⎠, max

vj∈VOi

ej ≥ di + ε,

0, max
vj∈VOi

ej < di + ε,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where ε denotes a SOC conservation in case that the
vehicle is out of energy.

(b) Random selection with range constraint. We also
recognized some of the users would randomly
choose from vehicles with enough power to reach
their destinations. -is mechanism is expressed as
follows. For station Oi and user i, the set of available
vehicles is

VAi � vj|ej ≥di + ε,∀vj ∈ VOi
 . (6)

-e matching could be

mij �
ui, rand VAi( ( , VAi ≠∅,

0, VAi � ∅,
 (7)

where rand(VAi) is a function which randomly returns
a vj from VAi.
We assume that users can be either maximum SOC
selection or random selection, which follows a binary
distribution of pr, where pr is the probability that a
user is maximum SOC selection. User i falls into
scheme (a) according to pr and into scheme (b)
according to 1 − pr.
After matching process if mij � 0 then no action should
be taken. Otherwise, the following variables should be
updated for user i and vehicle j at time t0i:

mi � 1,

rOj � 1,

VR ≔ VR ∪ vj ,

VOi
≔ VOi

− vj .

(8)

Event E4. -is is where departure and transport take
place.-is event would happen at time t0i + tM after the
matching is done, where tM denotes a very short time

User i
ui (t0) = (Oi, Di, t0i, t1i, di, 0, 0, 0)

Vehicle j
vj (t0) = (ej, 0i, 0, 0)

Departure
station Oi 

Arrival
station Di

User i sink 

Stage 1
matching

Stage 0
emerging
mij (t0) = 0

Stage 2
driving

Stage 3
leaving

mij (t1) = (ui (t1), vj (t1))
ui (t1) = (Oi, Di, tD1, t1i, di, 1, 0, 0)
vj (t1) = (ei, O1, 0, 0)

mij (t3) = 0
ui (t3) = (Oi, Di, t0i, t1i, di, 1, 1, 1)
vj (t3) = (ei, Di, t1i, 0)

mij (t2) = (ui (t2), vj (t2))
ui (t2) = (Oi, Di, t0i, t1i, di, 1, 1, 0)
vj (t2) = (ej, Oi, 0,1)

Figure 1: Interaction between user agent and vehicle agent.
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interval. For user i after activating event E3, we apply E4
to denote that the user is being transported.

ri �
1, mij ≠ 0,

0, mij � 0.

⎧⎨

⎩ (9)

Event E5. User sinks. -is event eliminates the user if
the user arrives at the destination.-is event happens at
t1i if the user was transported.

si �
1, mij ≠ 0,

0, mij � 0.

⎧⎨

⎩ (10)

Note that the users which cannot be served can be marked
by si � 0 and would not be processed again because t1i in time
sequential simulation would be processed only once.

3.4. Short-Term Reservation Mode. -e FCFS instant access
s-
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ystem loses optimality on matching between trip requests
and vehicle supply, especially under circumstances that first-
coming users tend to occupy a vehicle with greater SOC.
Consequently, the latter users with farther distance requests
are more probable to be rejected, and vehicles with lower
SOC may idle for a longer time without making profits.

We suggest that adding a matching process by gath-
ering trip distance requests and allocating vehicles for users
would increase efficiency. -e matching process requires
the system to be short-term reservation mode. -is mode
also enables dynamic vehicle relocation for satisfying more
demands. To be focused, we concentrate on SOC matching
and do not involve the impacts brought by vehicle
relocation.

-e methodology of short-term reservation mode fol-
lows the DES as well but is with a cyclic event of demand
collection.-e users are generated the same as instant access
mode. Users are grouped by a cycle of τ in short-term
reservation mode. Users’ expected travel distances would be
matched with the endurances of all vehicles. After matching,
vehicles will be assigned to users. Users accepted by the
system will drive the vehicle to the destinations and then exit

the system. -is process is driven by a cyclic event and
several asynchronous events and can be described as in
Figure 5.

Among the events of short-term reservation simulation,
events F1, F2, F4, and F5 show similar properties to events
E1, E2, E4, and E5, respectively, and will not further be
explained. Note that C3 processes quite differently from E3
and is described as follows.

Event C3. Vehicle assignment based on battery utility
maximization: Define τ (simulation seconds, s) as the
time span to collect user requests. Starting from sim-
ulation 0 seconds, when it comes to τs, the first demand
collection and vehicle assignment will be processed.
Every τs, i.e., the 0s, τs, 2τs, 3τs, . . . , kτs, . . . , Kτs, the
matching event is activated.
Users are initially generated the same as instant access
mode. Note that user’s departure time should be later
than the time when the matching is processed. Hence,
for the kτs at station n, the users can be grouped in a set
as

Ukn � ui|Oi � n and kτ ≤ t0i ≤ (k + 1)τ,∀ui ∈ U,∀k � 0, 1, . . . , K . (11)

For Vn, the SOCs should first be updated when C3
happens.

ej ≔ min ej + R × kτ − tAj , CM . (12)

P1. Battery utility maximization. First, we define the
concept of battery utility. If the system assigns vj to ui,

we define di · ej as the battery utility of the match mij.
To further explain it, we visualize an example of the
matching in Figure 6(a). A user should at most be
assigned to one vehicle, and a vehicle should at most
be assigned to one user. One combination shown in
this figure is that u2 is assigned to v1 and ui is
assigned to v2. We discover two possible ways to

User i

Resource pool: station n 

…

…

……

Transporting

E1: user emerge

E3: user select vehicle

E2: vehicle arrive E4: departure User i 

Vehicle j′

User i′ 

Vehicle j
E4’: vehicle j′ runs like vehicle j

E4’’: user i travels like user i′

E5: user sink

Figure 4: Events in instant access mode.
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improve the matching. One is to serve more users;
the other is to make full use of the available SOCs.
-ey can be both captured by maximizing the total
battery utility. -e battery utility is visualized as the
areas in Figure 6(b). If more users are matched with
vehicles, the areas should be larger; if the SOC of
vehicle better suits the required distance of user, the
areas should also be larger (i.e., if assigning a vehicle
with long distance to a user who travels nearby, the
area would be small). Hence the objective is to
maximize the total battery utility.
With ui ∈ Ukn and vj ∈ Vn at kτ known, the matching
can be processed as a 0-1 programming model:

argmax
xij


ui∈Ukn


vj∈Vn

di · ej · xij, (13)

s.t. 
ui∈Ukn

xij ≤ 1, ∀vj ∈ Vn, (14)


vj∈Vn

xij ≤ 1, ∀ui ∈ Ukn,
(15)

ej − di − ε xij ≥ 0, ∀ui ∈ Ukn,∀vj ∈ Vn, (16)

where decision 0-1 variables xij mark that the vehicle j

is assigned to user i if xij � 1; otherwise 0; objective (13)
is to maximize the utility of battery range; i.e., if more
vehicles matched users, and if the expected travel
distance of user i comes closer to the matched SOC of
vehicle j, the objective value would be greater; con-
straint (15) ensures that one vehicle should at most be
assigned to one user; constraint (16) ensures that one
user should at most be served by one car; constraint
(18) requires that the battery endurance of vehicle j

should bemore than the required travel distance of user
i with a range conservation ε.
P2. Battery utility and subsequent orders maximi-
zation. In this research, we doubt that though long-
range users are more likely to be satisfied, the short-
range users also have opportunity to drive cars to a
near station and following users would continue to
rent this vehicle, which might not idle the system
significantly, and could be a fact that the endurance
range matching loses importance. Consequently, we
propose a new principle to consider the potential
subsequent trips and prefer to serve trips to “hot”
stations that the vehicles would be utilized by latter
users rather than be idled.

First, we define weight of station n as the proportion of
demands that would depart from it:

Wn �
ui|Oi � n,∀ui ∈ U 




|U|
, ∀n ∈ N. (17)

-e objective is rewritten as

argmax
xij


ui∈Ukn


vj∈Vn

di · ej · WDi
· xij, (18)

s.t. (15)–(18).
It should be noted that short-term reservation mode

presents less flexibility than instant access mode so that a
portion of users may not turn to accept short-term reser-
vation. It can be assumed that the probability that a user
would deny to use carsharing relates to the reservation time
τ; i.e., we assume that a function like

P � f(τ), (19)

where ps is the probability that users quit carsharing and f is
the function. fcan be an empirical function that returns-
different proportions of quited user if τ � 1, 5, 15, 30, 60
minutes. Users set U should be changed to U′ according to
probability.

U′ � ui|rand≤ 1 − P,∀ui ∈ U , (20)

where rand denotes a random number between 0 and 1.

4. Case Study

4.1. Data Description. -is study is examined by adopting
original transaction data from an EVCS company in
Shanghai, China, which involves 56 stations and 2,847
transactions in a month. Note that those transactions rep-
resent served trips but not the input demands. To drive the
simulation, we randomly generate input demands based on
the original transaction data. First, we merge the transac-
tions into one day, and we generate one-day trips from the
original one-month data. Second, to avoid the bias of
simulation samples, we generate 10 copies of the 2,847
transactions, where each copy records the transactions in a
random sequence. Examples of the 10 simulation copies can
be found in the online data repository. -ird, we group the
2,847 transactions in each copy into four groups. Each group
contains different quantity of transactions, which reflect
different intensity of input demands. -e descriptions of the
groupings are shown in Table 2.

110 vehicles are generated in the network, placed at
stations, and fully recharged as initialization. -e maximum
SOC is 100 km of those vehicles and the charging speed is
20 km/hour.-e pattern of network and demand intensity is
illustrated in Figure 7, where bubbles represent the locations
of stations and the size of bubbles represents the intensity of
demand.

Additional descriptive statistics of the original data set
collected from the recent real operation environment are as
follows. One vehicle would serve 5.17 trips per day on av-
erage; one station would process 10.16 trips per day on
average. -e station with maximum volume would serve 49
trips for a day and 10 trips in the peak hour. Features of
group B present similar properties with the original data set.
-is study handles the demand set two times larger to test
the capability of the proposed method.

Besides the transaction data, we also supplement the
study with additional questionnaires to calibrate the
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Figure 6: Matching between users and vehicles. (a) Visualization of matching. (b) Visualization of battery utility.

Table 2: Description of sample groups.

Sample group Number of requests Size of demand Demand scenario
Group A 286 Half demand intensity Undersaturated
Group B 569 Demand for one day Balanced
Group C 854 1.5 times demand Oversaturated
Group D 1138 Double demand Oversaturated
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probability that a user would choose the highest SOC or
choose randomly, and the probability that a user would quit
carsharing under different reservation times. We distributed
the questionnaire within the users of this EVCS, and 218
valid samples were returned. Results and adopted values of
the parameters are summarized in Table 3. -e survey also
revealed users’ attitudes towards battery redundancy that the
average reserved SOC for users is ε � 10.2 km before they
run out of battery. -e revenue of the system is calculated by
rental time, and the price is RMB 0.6 per minute.

4.2. Results. -is section presents the results of testing the
system performance under different schemes of instant
access (IA) mode, short-term reservation mode with battery
utility maximization (STR-BUM), and short-term reserva-
tion mode with battery utility and subsequent orders
maximization (STR-BUSOM). To test the performance of
each scheme, in this section we employ oversaturated de-
mands of group C as inputs. Simulation of each scheme runs
10 times using the 10 copies of random inputs. Boxplots in
Figure 8 show the results and compare the number of served
and unserved demands across the three schemes.

Results show that the service satisfaction rate is around
70% of all schemes where STR-BUSOM served the most
users (633 in average) and IA served the least (565.5 in
average). About 288.5 users on average would not be
served if IA was adopted, while 221 users would be rejected
if STR-BUSOM was adopted. -is phenomenon suggests
that vehicle assignment by STR can serve more users than
first-come-first-serve by IA mode.

-e performance increment can be detected by the
detailed indicators shown in Figure 9. First, if the total
numbers of vehicles are the same, the utilization rate of
vehicles should be higher so that more users could be served.
Figure 9(a) shows that vehicles operated on STR-BUSOM
can be utilized for a longer time in average than the other
two.-e higher utilization rate andmore trips satisfied result
in a higher amount of revenue (as shown in Figure 9(b)).-e
vehicles under STR-BUSOM are also driven for farther
distances of more than 160 km in average, while in IA the
vehicles traveled below 110 km in the simulation day
(Figure 9(c)). From the perspective of users, the average
travel trip is 28.06 km of STR-BUSOM, which is farther than
20.49 km of IA (Figure 7(d)).

Results of Figures 8 and 9 also imply the reasons ac-
counting for the shortcomings of STR-BUM. Althoughmore

users are served than IA, STR-BUM shows a slight incre-
ment on vehicle occupied time, which is much lower than
STR-BUSOM. It suggests that although STR-BUM matches
more users with vehicles (satisfies more demands), vehicles
would be idled subsequently at their next stations. However,
STR-BUSOM effectively mobilizes vehicles into high-de-
mand stations which are more likely to be utilized by
continuous users, so the vehicle occupied time in average is
longer.-is feature can also be observed by detailed statistics
in Figure 10. IA and STR-BUM present relatively similar
distributions of travel distance per trip as shown in
Figure 10(a), where STR-BUMpresents a higher mean value.
However, IA serves more trips with shorter distances, and
STR-BUM assigns vehicles covering different ranges uni-
formly. STR-BUSOM is more prone to long distance trips.
-e statistics on idling time after vehicles arriving until next
trips are also analyzed in Figure 10(b). STR-BUSOM reduces
vehicle waiting time at stations, which confirms that it is
prone to assign vehicles to users whose destinations are
high-demand stations. Stations with high demands would be
more likely to utilize vehicles to subsequent trips.

4.3. SimulationExperiments. To take deeper insights into the
performances of IA and STR models, we designed further
simulation experiments under different combinations of
parameters. First, we inspect the system performance under
different reservation times of τ � 1, 5, 15, 30, 60minutes, and
then we analyze the performance with the demand intensity
of groups A to D.

-e influence of short-term reservation time period τ is
the most concerned parameter. -is parameter influences
the number of matchable incoming users and available
vehicles and impacts user’s acceptance of waiting. -e result
shows that the number of served requests firstly increases
and then decreases of STR (as shown in Figure 11). -e
turning point happens at τ � 15 minutes. -e number of
served users of STRs drops lower than IA after adjusting the
reservation time longer than 15minutes (Figure 11(a)). -e
occupied time (Figure 11(b)) and traveled distance
(Figure 11(c)) of vehicles on average present similar trends
that first increase and then decrease. However, the average
traveled distance of served users presents stable trends as
shown in Figure 11(d).

We also extracted the results by setting users quit
probability to zero. -is is to test the contribution of
adopting STR if persuading all users to fully accept STR as
they accept IA. As shown in Figure 12, the number of served
requests increases if the reservation time τ is enlarged. -e
increasing rate slows down and the trend levels out when τ
increases (Figure 12(a)). -e occupied time (Figure 12(b))
and traveled distance (Figure 12(c)) present similar in-
creasing trends as well. Moreover, the average traveled
distance of served users in Figure 12(d) also presents stable
trends similar to Figure 11(d).

-e performances of IA, STR-BUM, and STR-
BUSOM under different intensity of demands are also
tested. As we employed different groups of trip requests
samples, the performances of system under different

Figure 7: Network and demand intensity for case study.
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Table 3: Parameter calibration.

Option Number of samples Parameter Adopted value
Choose vehicle with max SOC 199 P 0.913
Choose vehicle randomly 19 1 − P 0.087
Quit if reservation time τ � 1 minute 1 P � f(1) 0.005
Quit if reservation time τ � 5 minutes 13 P � f(5) 0.061
Quit if reservation time τ � 15 minutes 29 P � f(15) 0.133
Quit if reservation time τ � 30 minutes 57 P � f(30) 0.261
Quit if reservation time τ � 60 minutes 93 P � f(60) 0.427
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vehicle selection schemes present different characteristics
as shown in Figure 13. τ � 15 minutes is adopted in this
analysis.

-e grouping of demands shows features as follows.
Group A represents light demands which is about half of
group B; group B simulates the modest demand situation
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which is close to the volume that is served in reality; group C
represents the 1.5 times real demands; and group D rep-
resents double demands and simulates the scenario of
oversaturation. Each group scenario is tested 10 times with
different random demands.

-e numbers of served demand are similar among IA,
STR-BUM, and STR-BUSOM at the scenario of group A
(Figure 13(a)). -e system performs slightly different if de-
mand is under saturate. STRs performs slightly better than IA
but not obviously. If increasing the input demands, the number
of satisfied demands increases of STRs, while the increment of
IA stops at group B, which also suggests the capacity of IA.-e
increments of STRs slow down and approximate to some
capacities. -e satisfaction ratios drop if increasing demands
(Figure 13(b)). -e occupied time of vehicles also increases if
providing more demands but trends to level off (Figure 13(c)).
-e revenues under scenarios of group C and group seem
similar and STRs could hardly earn more income if demands
continue to increase, which implies the contribution of capacity
increment made by STRs.

4.4. Findings and Discussions. -e results from the case
study and additional parameter experiments revealed some
helpful findings for further study and industrial practice.

4.4.1. Short-Term Reservation Performs Better than Instant
Access. STRs perform better than IA mode on both sat-
isfied demands and system revenue. -is result confirms
that adopting short-term reservation and optimizing the
vehicle assignment according to users’ desired travel
distance can satisfy more demand. -is is probably be-
cause STRs can reduce the number of rejections on long
distance requests. Users with demand with far driving
distance can be served more, and users traveling nearby
would be matched with vehicles with low SOC. On the
other hand, vehicles with low SOC can be utilized by
allocating them to users who drive nearby rather than
letting them occupy vehicles with high SOC. Allocating
vehicles to long distance driving users can earn more
revenue by utilizing vehicles and shortening the idling
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Figure 12: System potential if all users accept short-term reservation. (a) Number of served requests. (b) Average occupied time per vehicle.
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time of them. -is results in the increment of satisfied
demands as well as the utilization rate of vehicles.

Note that the STR-BUSOM performs even better than
STR-BUM.-is ismainly because BUSOMallocates vehicles to
users who drive to “hot spots,” so that the vehicle could be soon
utilized again. For IA system and STR-BUM system, it is
possible for users to drive a vehicle to stations whose following
demand is less, and vehicles would be idled for a longer time.
However, the BUSOM is directional and selective to users and
tends to have bias to serve users with farther distance requests
preferentially, especially when the volume of demand is much
higher than the vehicle supply capacity.

Since all existing one-way station-based EVCSs are instant
accessmode, we suggest CSOs to provide short-term reservation
trials or service. -is study reveals the benefit of short-term
reservation; nevertheless, STR also enables vehicle relocation to
fulfil more demands, which leads to better efficiency for the
system operation. Note that the user’s attitude to accept STR is
quite important if they are accustomed to instant access service.

4.4.2. User Acceptability Impacts Short-Term Reservation
Mode. -e logic behind the short-term reservation is that

the system could allocate vehicles more reasonably if more
diverse requests from users are collected by extending the
reservation time so that more requests would be served. -e
paradox is that users might not accept the longer reservation
period and would quit the system or divert to other
transportation modes.

In our study, we investigated user attitude towards short-
time reservation mode against instant access mode by ad-
ditional questionnaire, and the experiments with simulation
adopted the rejection probability of users to reshape the
volume of demand. -e result suggests that there is an
inflection point through different widths of reservation time
τ. -is implies that there would be an equilibrium between
user acceptance towards STR and the width of reservation
time.

CSOs are encouraged to motivate or persuade users to
accept short-term reservation mode to better benefit from it.
Short-term reservation is not difficult to be popularized
since the user experience of it is similar to the current forms
of online taxi-hailing, e-hailing, and ride-sharing, etc. Note
that not all users would adapt to short-term reservation
because some users with immediate trip requests would also
emerge who are not willing to wait for a long time. In this
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study, the results suggest that setting the reservation time to
15 minutes would balance the user’s needs and short-term
resource allocation optimization.

4.4.3. Short-Term Reservation Provides Higher Capacity.
Short-term reservation and instant access are similar for
undersaturated demands, but different for oversaturated
circumstances. We have discussed that IA serves fewer re-
quests than STRs under similar parameters and scenarios
due to higher efficiency of vehicle allocation of STRs. Ex-
periments under different pressures of demand intensity
suggest that when IA system touched the ceiling of capacity,
STRs can serve even more requests, which implies that STRs
present higher capacity to engage higher volume of demand.

-e reason to account for this increment of capacity lies
in the selectivity among the abundant demands that the
system can choose users reversely if oversaturated. For FCFS
like IA, the system can reach the highest capacity even
though more demands emerge, but for the STRs the system
dedicatedly allocates vehicles to users that might create more
profits. STRs tend to allocate vehicles to users with far
distance requirements and create more revenue, and espe-
cially for STR-BUSOM, the system will prefer to serve users
who would drive to stations that would create more sub-
sequent transactions. -is is supported by the bodies of
evidence that the utilization time and driving distance of
vehicles of STRs are more than IA system.

5. Conclusions

-is paper presents a simulation modeling process on both
users selecting vehicles and optimal assigning vehicles to
users for one-way station-based instant-access electric ve-
hicle carsharing systems. -e authors were aware of the fact
that increasing the efficiency of matching the endurance
running distances of available vehicles with the expected
travel distances of users would serve more demand and
create more profits. Users with requests on farther driving
distance would be satisfied by allocating vehicles with higher
SOC for them, and vehicles with lower battery endurance
would be taken full advantage of by users who are traveling
nearby, which avoids the circumstance that users traveling
nearby occupy vehicles with higher SOC, leave short-range
vehicles idling, and make other users with far distance
demand being rejected.

-e methodology of this research is developed from an
agent-based discrete event simulation framework with first-
come-first-serve logic module and resource matching op-
timization module. -e FCFS scheme is adopted to model
the existing instant access carsharing service mode, and we
proposed a vehicle assignment optimization model to better
match the possible driving distances of vehicles with the
expected driving distance of users. Moreover, we involved a
criterion to allocate vehicles to users who drive vehicles to
“hot spot” stations that create more revenue during the
following operation.

Results of the case study reveal that the short-term
reservation modes involving the vehicle assignment module

perform better than the instant access mode, which serves
more user requests and increases the revenue. Short-term
reservation that considers the following transactions (STR-
BUSOM) performs even better than short-term reservation
with battery utility maximization only.

-is research encourages CSOs to enable short-term res-
ervation for users to increase the capacity of their systems as
well as incomes. Note that some parameters are not strictly
calibrated and further discussed, e.g., whether users would
mostly choose the vehicle with maximum SOC, or whether
users would accept short-term reservation or insist on pre-
ferring the instant access mode. User behavior aspects should
be further examined. -is study also left the vehicle relocation
alone and studied vehicle assignment only, which indicates that
vehicle assignment promotes system performance. Further
studies can combine vehicle relocation problems with vehicle
assignment problem for not only short-term reservation but
also long-term reservation carsharing systems.

Notations

Symbol explanation

ui: User i, a tuple, ui � (Oi, Di, t0i, t1i, di, mi, ri, si)

U: A set of users, U � u1, u2, . . . , ui, . . . , u|U| , |U|

denotes the number of users in set U

vj: Vehicle j, a tuple, vj � (ej, pj, tAj, rOj)

V: A set of vehicles, V � v1, v2, . . . , vj, . . . , v|V| ,
|V| denotes the number of vehicles in set V,
where VI and VR are for idling vehicles and
running vehicles, respectively

mij: -e matching between user and vehicle,
mij � (ui, vj)

N: A set of stations, where n ∈ N denotes a station
and Vn denotes the set of vehicles parking at
station n

Oi: -e origin station of ui

Di: -e destination station of ui

t0i: -e departure time of ui

t1i: -e arrival time of ui

di: -e requested trip distance of ui, km
mi: A 0-1 sign, mi � 1 if user i is matched with a

vehicle that can satisfy the user’s trip; otherwise
� 0

ri: A 0-1 sign, whether the user is occupying and
driving a car on road; ri � 1 if driving; otherwise
� 0

si: A 0-1 sign, whether the user is served; si � 1 if
served; otherwise � 0

ej: -e instant state of charge (SOC) of vehicle j,
defined by the current travel distance
endurance, km

eM: Maximum endurance distance when the
charging is finished, km

ε: Reserved distance in case that the vehicle is out
of energy

pj: -e position of vj by the latest station where vj

is parking
tAj: -e arrival time at pj ; tAj � 0 for initialization
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rOj: -e occupancy of the vehicle and rOj � 1 if vj is
occupied by a user; otherwise rOj � 0

VAi: A set of available vehicles for user i to satisfy the
trip distance

rand(VAi): A function which randomly returns a vj from
VAi

tM: A very short time interval
τ: Time interval to gather a batch of requests, i.e.,

every τs, i.e., the 0s, τs, 2τs, 3τs, . . . , kτs, . . . Kτs
the matching event is activated

Ukn: -e set of users at station n during time period k

R: Charging rate to extend the running distance,
km/s

Wn: Weight of importance of station n

xij: 0-1 variables, mark that the vehicle j is assigned
to user i if xij � 1; otherwise 0.

Data Availability

-e original data that supports this paper can be accessed at
the website on https://drive.google.com/drive/folders/
1qZOpGqHCG1dCtUlnMUlFRnPjuh5lp5sZ.

Conflicts of Interest

-e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

-e authors would like to extend their thanks to the support
provided by the the China National Postdoctoral Program
for Innovative Talents (grantNo. BX20190241), the Key
Research and Development Program of Shaanxi Province,
China (Grant nos. 2019ZDLGY15-04-02, 2018ZDCXL-GY-
05-07-02, 2019GY-083, and 2019GY-059), the National
Natural Science Foundation of China (Grant no. 71901040),
the Key Science and Technology Program of Shaanxi
Province, China (Grant nos. 2019JQ-442), the Fundamental
Research Funds for the Central Universities (Grant no.
300102329502), and the China Postdoctoral Science Foun-
dation (project No. 2020M671223).

References

[1] T. F. Luna, M. Uriona-Maldonado, M. E. Silva, and C. R. Vaz,
“-e influence of e-carsharing schemes on electric vehicle
adoption and carbon emissions: an emerging economy
study,” Transportation Research Part D: Transport and En-
vironment, vol. 79, Article ID 102226, 2020.

[2] S. Shaheen, E. Martin, and H. Totte, “Zero-emission vehicle
exposure within U.S. carsharing fleets and impacts on sen-
timent toward electric-drive vehicles,” Transport Policy,
vol. 85, pp. A23–A32, 2020.

[3] S. Hu, P. Chen, H. Lin, C. Xie, and X. Chen, “Promoting
carsharing attractiveness and efficiency: an exploratory
analysis,” Transportation Research Part D: Transport and
Environment, vol. 65, pp. 229–243, 2018.

[4] M. Barth and S. Shaheen, “Shared-use vehicle systems:
framework for classifying carsharing, station cars, and

combined approaches,” Journal of the Transportation Research
Board, vol. 1791, pp. 105–112, 2002.

[5] E. M. Cepolina, A. Farina, C. Holloway, and N. Tyler, “In-
novative strategies for urban car-sharing systems and a
simulator to assess their performance,” Transportation
Planning and Technology, vol. 38, no. 4, pp. 375–391, 2015.

[6] L. Wang, Y. Zhong, and W. Ma, “GPS-data-driven dynamic
destination prediction for on-demand one-way carsharing
system,” IET Intelligent Transport Systems, vol. 12, no. 10,
pp. 1291–1299, 2018.

[7] B. Boyacı and K. G. Zografos, “Investigating the effect of
temporal and spatial flexibility on the performance of one-
way electric carsharing systems,” Transportation Research
Part B: Methodological, vol. 129, pp. 244–272, 2019.

[8] C. A. Folkestad, N. Hansen, K. Fagerholt, H. Andersson, and
G. Pantuso, “Optimal charging and repositioning of electric
vehicles in a free-floating carsharing system,” Computers &
Operations Research, vol. 113, Article ID 104771, 2020.

[9] G. Remane, R. C. Nickerson, A. Hanelt, J. Tesch, and
L. M. Kolbe, “A taxonomy of carsharing business models,” in
Proceedings of the at the 37th International Conference on
Information Systems, Dublin, Ireland, 2016.

[10] Q. Kang, J. Wang, M. Zhou, and A. C. Ammari, “Centralized
charging strategy and scheduling algorithm for electric ve-
hicles under a battery swapping scenario,” IEEE Transactions
on Intelligent Transportation Systems, vol. 17, no. 3,
pp. 659–669, 2016.

[11] Q. Kang, S. Feng, M. Zhou, A. C. Ammari, and K. Sedraoui,
“Optimal load scheduling of plug-in hybrid electric vehicles
via weight-aggregation multi-objective evolutionary algo-
rithms,” IEEE Transactions on Intelligent Transportation
Systems, vol. 18, no. 9, pp. 2557–2568, 2017.

[12] C. Luo, Z. Shen, S. Evangelou, G. Xiong, and F.-Y.Wang, “-e
combination of two control strategies for series hybrid electric
vehicles,” IEEE/CAA Journal of Automatica Sinica, vol. 6,
no. 2, pp. 596–608, 2019.

[13] X. Kong, M. Li, T. Tang, K. Tian, L. Moreira-Matias, and
F. Xia, “Shared subway shuttle bus route planning based on
transport data analytics,” IEEE Transactions on Automation
Science and Engineering, vol. 15, no. 4, pp. 1507–1520, 2018.

[14] R. Xie, W. Wei, Q. Wu, T. Ding, and S. Mei, “Optimal service
pricing and charging scheduling of an electric vehicle sharing
system,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 1, pp. 78–89, 2020.

[15] S. Hu, P. Chen, F. Xin, and C. Xie, “Exploring the effect of
battery capacity on electric vehicle sharing programs using a
simulation approach,” Transportation Research Part D:
Transport and Environment, vol. 77, pp. 164–177, 2019.

[16] S. Hu, H. Lin, K. Xie, X. Chen, and H. Shi, “Modeling users’
vehicles selection behavior in the urban carsharing program,”
in Proceedings of the 21st International Conference on Intel-
ligent Transportation Systems (ITSC), pp. 1546–1551, 2018.

[17] L. Noel, G. Zarazua De Rubens, B. K. Sovacool, and J. Kester,
“Fear and loathing of electric vehicles: the reactionary rhetoric
of range anxiety,” Energy Research & Social Science, vol. 48,
pp. 96–107, 2019.

[18] C. Xie, T.-G. Wang, X. Pu, and A. Karoonsoontawong, “Path-
constrained traffic assignment: modeling and computing
network impacts of stochastic range anxiety,” Transportation
Research Part B: Methodological, vol. 103, pp. 136–157, 2017.

[19] G. Brandstätter, M. Kahr, and M. Leitner, “Determining
optimal locations for charging stations of electric car-sharing
systems under stochastic demand,” Transportation Research
Part B: Methodological, vol. 104, pp. 17–35, 2017.

16 Journal of Advanced Transportation

https://drive.google.com/drive/folders/1qZOpGqHCG1dCtUlnMUlFRnPjuh5lp5sZ
https://drive.google.com/drive/folders/1qZOpGqHCG1dCtUlnMUlFRnPjuh5lp5sZ


[20] A. Deza, K. Huang, and M. R. Metel, “Charging station
optimization for balanced electric car sharing,” Discrete Ap-
plied Mathematics, 2020.

[21] M. Xu, H. Yang, and S. Wang, “Mitigate the range anxiety:
siting battery charging stations for electric vehicle drivers,”
Transportation Research Part C: Emerging Technologies,
vol. 114, pp. 164–188, 2020.

[22] S. Pelletier, O. Jabali, and G. Laporte, “-e electric vehicle
routing problem with energy consumption uncertainty,”
Transportation Research Part B: Methodological, vol. 126,
pp. 225–255, 2019.

[23] A. Almouhanna, C. L. Quintero-Araujo, J. Panadero,
A. A. Juan, B. Khosravi, and D. Ouelhadj, “-e location
routing problem using electric vehicles with constrained
distance,” Computers & Operations Research, vol. 115, Article
ID 104864, 2020.

[24] D. Zhang, Y. Liu, and S. He, “Vehicle assignment and relays
for one-way electric car-sharing systems,” Transportation
Research Part B: Methodological, vol. 120, pp. 125–146, 2019.

[25] A. Kek, R. Cheu, and M. Chor, “Relocation simulation model
for multiple-station shared-use vehicle systems,” Trans-
portation Research Record: Journal of the Transportation Re-
search Board, vol. 1986, no. 1, pp. 81–88, 2006.

[26] M. Barth and M. Todd, “Simulation model performance
analysis of a multiple station shared vehicle system,” Trans-
portation Research Part C: Emerging Technologies, vol. 7, no. 4,
pp. 237–259, 1999.

[27] G. Alfian, J. Rhee, and B. Yoon, “A relocation simulation
model for one-way carsharing service,” in Proceedings of the
Industrial Technology (ICIT), Busan, Korea, 2014.

[28] L. Li, D. Lin, T. Pantelidis, J. Chow, and S. E. Jabari, “An
agent-based simulation for shared automated electric vehicles
with vehicle relocation,” in Proceedings of the IEEE Intelligent
Transportation Systems Conference (ITSC), pp. 3308–3313,
Rhodes, Greece, 2019.

[29] M. Bruglieri, F. Pezzella, and O. Pisacane, “A two-phase
optimization method for a multiobjective vehicle relocation
problem in electric carsharing systems,” Journal of Combi-
natorial Optimization, vol. 36, no. 1, pp. 162–193, 2018.

[30] X. Li, J. Ma, J. Cui, A. Ghiasi, and F. Zhou, “Design framework
of large-scale one-way electric vehicle sharing systems: a
continuum approximation model,” Transportation Research
Part B: Methodological, vol. 88, pp. 21–45, 2016.

[31] G. Brandstätter, C. Gambella, M. Leitner et al., “Overview of
optimization problems in electric car-sharing system design
and management,” Dynamic Perspectives on Managerial
Decision Making, pp. 441–471, Springer, Berlin, Germany,
2016.

[32] B. Boyacı, K. G. Zografos, and N. Geroliminis, “An optimi-
zation framework for the development of efficient one-way
car-sharing systems,” European Journal of Operational Re-
search, vol. 240, pp. 718–733, 2015.

[33] W. Fan, “Management of dynamic vehicle allocation for
carsharing systems: stochastic programming approach,”
Transportation Research Record: Journal of the Transportation
Research Board, vol. 2359, no. 1, pp. 51–58, 2013.

[34] M. Nourinejad, S. Zhu, S. Bahrami, andM. J. Roorda, “Vehicle
relocation and staff rebalancing in one-way carsharing sys-
tems,” Transportation Research Part E: Logistics and Trans-
portation Review, vol. 81, pp. 98–113, 2015.

[35] M. Repoux, M. Kaspi, B. Boyacı, and N. Geroliminis, “Dy-
namic prediction-based relocation policies in one-way sta-
tion-based carsharing systems with complete journey

reservations,” Transportation Research Part B: Methodological,
vol. 130, pp. 82–104, 2019.

[36] G. Molnar and G. H. D. A. Correia, “Long-term vehicle
reservations in one-way free-floating carsharing systems: a
variable quality of service model,” Transportation Research
Part C: Emerging Technologies, vol. 98, pp. 298–322, 2019.

[37] L. Wang, H. Zhong, W. Ma, Y. Zhong, and L. Wang, “Multi-
source data-driven prediction for the dynamic pickup de-
mand of one-way carsharing systems,” Transportmetrica B:
Transport Dynamics, vol. 8, no. 1, pp. 90–107, 2020.

[38] D. Yu, Z. Li, Q. Zhong, Y. Ai, and W. Chen, “Demand
management of station-based car sharing system based on
deep learning forecasting,” Journal of Advanced Trans-
portation, vol. 2020, Article ID 8935857, 15 pages, 2020.

[39] B. Boyacı, K. G. Zografos, and N. Geroliminis, “An integrated
optimization-simulation framework for vehicle and personnel
relocations of electric carsharing systems with reservations,”
Transportation Research Part B: Methodological, vol. 95,
pp. 214–237, 2017.

[40] M. Repoux, B. Boyaci, and N. Geroliminis, “Simulation and
optimization of one-way car-sharing systems with variant
relocation policies,” in Proceedings of the 94th Annual meeting
of Transportation Research Board, Washington, DC, USA,
2015.

[41] A. G. H. Kek, R. L. Cheu, Q. Meng, and C. H. Fung, “A
decision support system for vehicle relocation operations in
carsharing systems,” Transportation Research Part E: Logistics
and Transportation Review, vol. 45, no. 1, pp. 149–158, 2009.

[42] L. Wang, Q. Liu, and W. Ma, “Optimization of dynamic
relocation operations for one-way electric carsharing sys-
tems,” Transportation Research Part C: Emerging Technologies,
vol. 101, pp. 55–69, 2019.

[43] W. Ma, L. Wang, and L. Li, “Vehicle relocation triggering
thresholds determination in electric carsharing system under
stochastic demand,” Journal of Advanced Transportation,
vol. 15, 2018.

Journal of Advanced Transportation 17


