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Proper vehicle operation and route planning are critical for achieving the best match between bus operation and passenger
services. In order to enhance the attractiveness of public transportation, a new type of the public transportation dispatching
method based on passenger reservation data is proposed. ,is mode can meet the requirements of multiple lines in urban centers
during peak hours, which can realize direct service between two stations. ,en, taking the lowest operating cost of the enterprise
and the lowest passenger waiting cost as the optimization goal, a customized dynamic dispatching model of multiline and hybrid
vehicles was established. Finally, a calculation example is designed and the genetic algorithm is used to solve the model.,e results
show that the hybrid vehicle solution is more reasonable than the traditional single-vehicle solution and reveal that the model is
feasible to optimize scheduling plan. ,e conclusions obtained in this research lay a theoretical foundation for APP setup and
operation plan formulation.

1. Introduction

With the improvement of Internet technology and the re-
alization of intelligent means, some scholars have focused on
the study of customized bus dispatch on the basis of con-
ventional bus dispatch [1–4]. However, there are still
problems in custom-made buses, such as high operating
costs for enterprises and lack of theoretical guidance in
vehicle operation and route planning [5, 6].

Over the past decades, customized buses have become a
form of ridesharing with the improvement of the Internet
and informationmethods, which is one of the effective urban
traffic supply and demand management policies to reduce
car ownership and mitigate traffic congestion [7]. For ex-
ample, Ma et al. [8] formulated necessary ride matching
constraints for participants of multiple ridesharing services
and proved the rationality of route selection based on the
OD pricing strategy. Liu et al. [9] developed precise and

approximate algorithms to optimize large-scale bus ride-
sharing services, which greatly reduce the number of vehicles
compared with car ridesharing.

On this basis, some scholars have studied the application
of modular vehicles in public transport operations. For
example, Caros and Chow [10] analyzed three types of
service designs using modular autonomous vehicles
(MAVs). ,e aim is to reflect the impact of transfers on the
way to users and operators under different last-mile service
designs. Zhang et al. [11] evaluated the advantages of
modular vehicles in improving public transportation. Liu
et al. [12] used the deficit function to solve the minimum
fleet size of modular vehicles in the public transportation
system. Pei et al. [13] proposed the concept of modular
transportation network system (MTNS) to overcome the
mismatch between the fixed vehicle capacity and the
changing travel demand of space in the traditional public
transportation system. Liu et al. [14] developed a two-stage
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solution to improve flex-route transit services. Gong et al.
[15] proposed a modular bus system design method that can
optimize passenger route allocation.

,e above research studies are analyzed from the per-
spective of vehicle automation technology application [16],
which provides services effectively by selecting the appro-
priate ratio of trailers and main modules [17]. Different from
this, some scholars have adopted some smart scheduling
strategies from the perspective of company operations and
management to increase the attractiveness of customized
buses. For example, Nourbakhsh and Ouyang [18] proposed
an alternative flexible route bus system based on the optimal
network layout. Qiu et al. [19] proposed a dynamic site
strategy to effectively reduce user costs. Neven et al. [20]
assessed the impact of different demand response trans-
portation systems (DRT) on policy decisions for people with
disabilities. Dell’Olio et al. [21] constructed a two-level
planning model for the optimization of departure frequency
and vehicle type.

,e above research studies only specifically studied the
scheduling methods and models of single-vehicle flexible
bus routes. In fact, the choice of vehicle types can be di-
versified. Considering the cost-effectiveness and resource
integration, the following studies have further explored the
hybrid vehicle types.

Zhou et al. [22] established a multiobjective bi-level
planningmodel for collaborative optimization for the hybrid
formation of electric buses and traditional buses. Sun et al.
[23] tried to use multitype buses to solve the flexible demand
of single-line passengers problem. Yao et al. [24] proposed a
new method to solve the electric vehicle scheduling problem
based on a given multivehicle type schedule. Li et al. [25]
proposed a solution to the multisite vehicle scheduling
problem with multiple vehicle types (MVTs) under range
and refueling constraints. Hassold and Ceder [26] proposed
a network traffic model based on minimum cost to solve the
multivehicle scheduling problem (MVT-VSP) which was
effectively verified in a real case in Auckland, New Zealand.
Ellegood et al. [27] provided a general strategic analysis
using continuous approximation models to assess the
conditions under which mixed loading is likely to be ben-
eficial. Wang et al. [28] focused on the bus bridging problem
under operational disruptions on a single metro line. A
multiobjective optimization model is established with ob-
jectives to minimize total waiting time, the number of
stranded passengers, and dispatched vehicles. Zhang et al.
[29] used the enumeration method to establish a planning
model that simultaneously optimizes bus types and
schedules.

,e research studies in the above literature mainly focus
on a single route and lack further expansion on multiple
routes. In response to this phenomenon, the following
studies have made corresponding supplements and
extensions.

Lu et al. [30] proposed a new operational mode to serve
passengers on both street sides. In addition, when multiple
feeder buses are operating in the target service area, the
proposed model can provide an optimal plan to locate the
nearest one to response to the demands. Liu et al. [31]

proposed hybrid operation modes that combine fixed and
dynamic frequencies in a bimodal period, which optimizes
the fleet size and schedules of feeder buses that connect
metro and residential areas in the context of bike-sharing
systems. Some scholars studied demand-responsive con-
nection bus route planning to minimize the waiting time and
riding time of passengers, which can solve the problem of
“last-mile” transfer between bus stations and subway sta-
tions [32, 33].

Summarizing all the above studies, some scholars focus
on modularized vehicles for customized public trans-
portation and some formulate scheduling strategies from the
perspective of operation management. ,is study is inclined
to the latter. ,e differences from previous studies are as
follows:

(1) In the past, these studies onmultiple lines andmultiple
vehicles focused on the transfer between stations and
the last-mile line service. For urban centers where
there is currently no subway, it is necessary to consider
a system with point-to-point service.

(2) For the first time, this study integrates the operation
modes of buses, subways, and taxis and provides a
new operation strategy and management perspective
for solving the oversaturated traffic problem in urban
centers.

,erefore, in order to increase the attractiveness of
public transportation and improve the service quality of
public transportation enterprises, a new type of public
transportation mode for direct appointment between sta-
tions is proposed.,is study combines the reservation mode
of taxis and takes the passenger flow of subway stations as a
reference. It has the advantages of fast, punctual, and low-
cost travel. ,e research perspective is as shown in Figure 1.

2. Process Analysis of Customized Bus Dynamic
Dispatch System

,e customized bus dispatching system can realize the in-
formation interaction between passengers and buses, and it
responds to the scheduled station in time based on the
regular route. It is oriented to areas with dense urban
passenger flow. ,e dispatching process and the line situ-
ation in the area are shown in Figure 2.

(1) Customized bus dynamic dispatch is based on the
taxi travel reservation mode. ,e sample value of the
station passenger flow in this study is combined with
the design characteristics of the bus station and
referenced the peak hour passenger flow of the
ground station and elevated station of the subway
stations [34, 35].

(2) Mobile phones or computers are used to dynamically
reserve travel requirements (reservation starting
point, number of reservations, and destination site)
on the APP terminal. After the dispatch center re-
sponds, it selects a reasonable type (three types of
fixed-rate vehicles). ,ere are 12 stations in an area
in the red line frame in Figure 2, and A∼ L,
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respectively, represent their station numbers. ,e
distance between every two stations is known, and
passengers can make an appointment to get on or get
off at any station. Finally, the optimization goal is to
minimize the operating cost of the company and the
cost of passenger waiting so as to maximize the
overall benefits of passengers and bus companies.

(3) Under the customized dynamic bus dispatching
mode, the optimal multiline hybrid vehicle combi-
nation plan can be finally obtained and a reasonable
dispatching operation plan can be formulated.

3. Customized Bus Dynamic Dispatch
Model Construction

3.1. Basic Assumption. ,e process of the customized bus
dynamic dispatch system for passenger reservations is an-
alyzed, and the line conditions are combined in the area in
Figure 2; the basic assumptions are as follows:

(1) Single direction operation means that only the one-
way operation of the vehicle is considered.

(2) ,e distance between any two stations is known.
(3) Passenger demand is known; that is, the number of

people getting on and off at each station is known.
And passengers getting on and off at each station are
random and independent of each other.

(4) ,e dispatch center completes the dispatch of ve-
hicles and drivers within 3minutes.

(5) ,e vehicles provide point-to-point services without
stopping in the middle station based on passenger
reservations.

(6) In this study, passenger reservation requirements are
all corresponding. Passengers can make dynamic
reservations during the appointment time period of
APP, except for the last time node, which cannot be
cancelled.

(7) Passengers can enter the station to check the ticket
with the reservation code during the reserved time
period. ,e arrival time of passengers can be read by
the data of the inbound ticket gate.

3.2. Model Parameters. ,e meanings of the main param-
eters and decision variables in the model are shown in
Table 1.

3.3. Model Building. ,e customized dynamic dispatching
model of multiline hybrid vehicles is as follows:

(1) Operating cost of bus companies is as follows:
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Figure 1: Research direction of bus dispatch.
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(3) ,e lowest total cost is as follows:

minf � minf1 + minf2, (3)

s.t.
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Among the constraints, Equation (4) indicates that the
vehicle entering the station should leave; Equation (5) in-
dicates the number of passengers getting on at each station;
Equation (6) indicates the number of passengers getting off
at each station; Equation (7) indicates the range of the
number of passengers getting on at each station; Equation
(8) indicates the range of the number of passengers getting
off at each station; Equation (9) indicates the passenger flow
range at ground stations; Equation (10) indicates the range of
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Figure 2: Dispatch system process and route conditions for customized bus.
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passenger flow at elevated stations; Equation (11) indicates
the limit of the number of vehicles of all types at each station;
Equation (12) indicates the waiting time of passengers at
stations; and Equation (13) indicates the waiting time range
of each passenger at each station.

4. Genetic Algorithm Application

To obtain the optimal solution for the model constructed by
the customized bus dynamic dispatching system for Section
3, it is necessary to select a suitable algorithm to solve the
problem. ,rough literature research, the pros and cons of
some methods are analyzed.

Wang et al. [36] used the simulated annealing algorithm
to solve the vehicle routing problem with both pickup and
delivery time windows. Kumar et al. [37] proposed an
improved simulated annealing algorithm to simulate electric
buses for Dehradun Smart City, which improves the cal-
culation accuracy to a certain extent but still continues the
shortcomings of the traditional simulated annealing algo-
rithm that the global search ability is poor. Pessoa et al. [38]
used an improved branch price cut algorithm to solve the
problem of heterogeneous fleet vehicle routing in warehouse
transportation. However, its convergence needs to be

improved when solving the multiobjective complexity
problem. Cheikh et al. [39] used a variable neighborhood
search algorithm to study the variable multitrip vehicle
routing problem, but the algorithm has low convergence in
calculations.,emixed integer solver has certain advantages
for solving the relaxation problem in multiobjective opti-
mization [40], but it still has certain difficulties in obtaining
the global optimal solution [41].

,e genetic algorithm can solve multiobjective optimi-
zation problems combining the strong global search ability
and implicit parallel search characteristics [42, 43]. It is a
practical, efficient, and robust optimization technology,
which is widely used in various fields [44–46]. For example,
MaŕınMoreno et al. [47] used genetic algorithms to solve the
reality of the Colombian transportation system (2 ware-
houses and 719 services) in warehouse cargo transportation,
and the fleet size has been reduced. ,e study by Xiao and
Konak [48] combined with the genetic algorithm solved the
problem of green vehicle routing and scheduling in road
transportation, which reduced carbon dioxide emissions and
fuel consumption.

In this study, how to achieve the best matching of dif-
ferent vehicle combinations and multiple paths to optimize
the target value is a difficult point in the solution. It can be

Table 1: Notation.

Symbol Definition and description
Sets
S ,e set of stations
T ,e set of vehicle types
P ,e set of passengers
Parameters
i, j Bus station, indexed as i, j ∈ S

l Passenger, indexed as l ∈ P

k Type of the vehicle k, indexed as k ∈ T

N Total number of vehicles
Ck Capacity of the vehicle of type k/person
dij Travel distance from station i to station (j/m)

c
f

k Fixed cost of the vehicle of type k (yuan·vehicle−1)
cu

k Unit distance cost of the vehicle of type k (yuan/m)
cw ,e cost of waiting time (yuan/min)
n

pq

ik ,e number of passengers getting on the vehicle of type k at station i

n
ph

ik ,e number of passengers getting off the vehicle of type k at station i

n
pq
i ,e number of passengers getting on at station i

n
ph
i ,e number of passengers getting off at station i

n
gp

i Passenger flow volume in ground station each hour
n

ep
i Passenger flow volume in elevated station each hour

Y
gp
i Passenger flow volume in ground station at peak hour

Y
ep
i Passenger flow volume in elevated station at peak hour

td
li Appointment deadline set by the app (h)

ta
li Arrival time of passenger l at station i(h)

tw
li Waiting time of passenger l at station i (min)

Tr Appointment time interval set by APP (min)
Tc Iteration time of computer (min)
Td Time for dispatching vehicles and drivers (min)
Decision variables
xijk xijk � 1 If a vehicle of type k travels from station i to station j and xijk � 0 otherwise
nv

ik ,e number of vehicles of type k dispatched at the station i
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solved through double coding and chromosome pairing in
the genetic algorithm.

,erefore, this paper adopts the genetic algorithm
natural number two-layer coding strategy to solve the ve-
hicle scheduling model. ,e process of applying the genetic
algorithm to the customized bus dynamic dispatching model
of multiline hybrid vehicles is shown in Figure 3.

4.1. Double Coding. ,e first layer of coding: length g � the
number of all OD pairs, which means the OD pair belongs to
the line number.

,e second level of coding: length h� all OD logarithms
K∗, which means the OD pair corresponds to the type
number. If the gene is 0, the type is not selected; otherwise,
the type is selected.

For example, there are g � 4 stations (A∼D), h� 6 OD
pairs, 3 types, using double-layer coding. ,e green part is
the first layer of coding, and the yellow part is the second
layer of coding. ,e coding analysis is shown in Figure 4.

1,2 means the first OD pair from site A to site B.
1,3 means the second OD pair from site A to site C.
1,4 means the third OD pair from site A to site D.
2,3 means the fourth OD pair from site B to site C.
2,4 means the fifth OD pair from site B to site D.
3,4 means the sixth OD pair from site C to site D.
,en, S1� [1,2; 1,3; 1,4] (the starting point of the OD

pair is 1); it can be seen that the maximum number of OD
pairs governed by S1 is 3 (because there are 3 elements);
similarly, S2� [2,3; 2,4], the maximum number of OD pairs
that can be numbered 2; and S3� [3,4], the maximum
number of OD pairs that can be numbered 1. ,en, a legal
chromosome can be expressed as [3,3,3,2,2,1].

Its meaning is the first paragraph [3,3,3] means that the
three OD pairs of S1 are all numbered 3. ,en, they need to
be merged into one route; that is, the starting point is 1 (A),
the halfway stop is 2 (B) and 3 (C), and finally 4 (D) is
reached, so as to realize path 3. ,e second segment S2 and
the third segment S3 merge the route in the same way (note:
the line numbers of OD pairs at different starting points are
independent and do not interfere with each other).

4.2. Variation and Crossover

4.2.1. Single-Point Mutation. A natural number is generated
by random mutation, as shown in Figure 5, where 1 changes
to 5.

4.2.2. Use Two-Point Crossover. Two chromosomes are
randomly selected as the paternal parent, and the gene
fragments are exchanged between the two paternal chro-
mosomes to obtain two offspring chromosomes. As shown
in Figure 6, [8,0] in parent 1 and [2,8] in parent 2 are
exchanged.

4.2.3. Calculate the Objective Function. ,e objective
function and constraints are calculated according to the set

objective function, and the fitness function is expressed as
follows:

Fi �
1

yi + Pi

,

yi � minf(x).

(14)

Among them, Fi is the fitness value of chromosome i, yi

is the objective function of chromosome i, and Pi is the
penalty value of chromosome i.

4.3. Roulette Selection. Roulette selection is also called
proportional selection operator. ,e basic idea is that the
probability of an individual being selected is proportional to
the value of its fitness function. Gene selection uses a roulette
method, and the ratio of the fitness of each chromosome to
the sum of the fitness of all chromosomes is used as the
probability of being selected for the chromosome. Assuming
that the population size is n and the fitness of individual i is
Fi, the probability that individual i will be selected and
inherited to the next population is as follows:

Pi �
Fi


n
i�1 Fi

. (15)

Suppose that the probability of each chromosome being
selected is Pi and Si is a number randomly generated by
chromosome i, with a value between 0 and 1. If Si <Pi,
chromosome i is selected for the next operation.

5. Simulation Analysis

5.1. Case Analysis. Table 2 gives the input parameters of
some constant variables, based on Table 1.

Table 3 shows the distance matrix between stations.
Table 4 shows the running time matrix between stations.

According to the maximum passenger flow during peak
hours on ground platforms and elevated platforms, the data
in the table refer to the peak hour passenger flow of ground
platforms and elevated platforms. Assume that the passenger
reservation time interval set by the APP is 10minutes. For
example, select 9 : 01–9 :10 time period data. Table 5 is the
dynamic statistics table of the number of reservations for
each station during this period (passengers can cancel the
reservation at any time between 9 : 01–9 :10; all data pro-
cessed and analyzed by APP at 9 :10). Table 6 shows the
number of passengers on/off at the last appointment time of
each station (the number of passengers boarding at each
station is equivalent to the number of passengers dropping
off at other stations; for example, the total number of people
getting on the bus at station A is equal to the total number of
people getting off the bus, which is 587 people).

,e data in Tables 5 and 6 are shown in Figure 7, re-
spectively, to show the dynamic change effect about pas-
senger flow on/off at each station at the time of APP
processing. Among them, Figure 7 (a)indicates the dynamic
reservation number (9 : 01–9 :10), and the module in the
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Table 2: Constant variables in the calculation example.

Variable name Variable
Number of stations 12
Length of the maximum line (km) 15
Speed of vehicle (km·h−1) 72
Total number of vehicles 300
Passenger flow volume in ground station at peak hour 1408
Passenger flow volume in elevated station at peak hour 3520
Capacity of the vehicle C1/person 5
Capacity of the vehicle C2/person 11
Capacity of the vehicle C3/person 22
Fixed cost c

f
1 (yuan·vehicle−1) 50

Fixed cost c
f
2 (yuan·vehicle−1) 90

Fixed cost c
f
3 (yuan·vehicle−1) 160

Unit driving cost cu
1 (yuan/m) 0.018

Unit driving cost cu
2 (yuan/m) 0.033

Unit driving cost cu
3 (yuan/m) 0.05

,e cost of waiting time cw (yuan/min) 0.23

Table 3: ,e distance matrix between stations (m).

Site A B C D E F G H I J K L
A — 1100 2300 3850 5300 6500 8150 10000 11200 12500 13800 15000
B — — 1400 2800 4350 5600 7100 8900 10200 11400 12750 13900
C — — — 1500 2950 4200 5800 7500 8800 10000 11350 12500
D — — — — 1450 2700 4300 6000 7300 8500 9850 11000
E — — — — — 1250 2850 4550 5800 7050 8400 9550
F — — — — — — 1600 3300 4600 5800 7150 8300
G — — — — — — — 1700 3000 4200 5550 6700
H — — — — — — — — 1300 2500 3850 5000
I — — — — — — — — — 1200 2550 3700
J — — — — — — — — — — 1350 2500
K — — — — — — — — — — — 1150
L — — — — — — — — — — — —

Table 4: Running time matrix between stations (min).

Site A B C D E F G H I J K L
A — 0.9 1.9 3.2 4.4 5.4 6.8 8.3 9.3 10.4 11.5 12.5
B — — 1.2 2.3 3.6 4.7 5.9 7.4 8.5 9.5 10.6 11.6
C — — — 1.3 2.5 3.5 4.8 6.3 7.3 8.3 9.5 10.4
D — — — — 1.2 2.3 3.6 5 6.1 7.1 8.2 9.2
E — — — — — 1 2.4 3.8 4.8 5.9 7 8
F — — — — — — 1.3 2.8 3.8 4.8 6 6.9
G — — — — — — — 1.4 2.5 3.5 4.6 5.6
H — — — — — — — — 1.1 2.1 3.2 4.2
I — — — — — — — — — 1 2.1 3.1
J — — — — — — — — — — 1.1 2.1
K — — — — — — — — — — — 1
L — — — — — — — — — — — —
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white circle area in Figure 7(b) shows the number of pas-
sengers dropping off from each station to other stations at
the deadline (9 :10).

According to Tables 5 and 6, the passenger flow of each
station of the APP processing node can be obtained. Swipe
the card data from the gate to obtain information such as the
number of people arriving at the site within the scheduled
time period, time node, and so on (note: the number of
arrivals at different times is not cumulative). Set the total
computer dispatch response time (from receiving data to

dispatching the bus) as 5minutes. After the computer cal-
culates the reservation data, the passenger waiting infor-
mation for the gate ticket inspection at the last reservation
time node (9 :10) of each station is obtained in Table 7.
Assume that all reserved passengers leave the station.

5.2. Program of Vehicle Driving. ,e genetic algorithm is
used to calculate based on the data analysis of 4.1. In this
example, there are 12 stations, 66 OD pairs, and 3 vehicle

Table 5: Dynamic statistics of the number of reservations on each station.

Site 9 : 01 9 : 02 9 : 04 9 : 06 9 : 08 9 :10
A 320 460 575 580 590 587
B 130 340 530 520 537 522
C 150 200 290 480 520 499
D 100 240 350 380 420 413
E 130 260 300 360 405 381
F 210 235 310 350 380 359
G 120 156 180 230 263 283
H 67 130 210 270 280 279
I 19 79 150 160 230 225
J 20 130 150 160 163 159
K 24 19 37 58 80 94
L — —

Table 6: Passenger drop-off matrix between stations.

Site A B C D E F G H I J K L Total
A — 64 58 53 41 56 74 43 51 67 45 35 587
B — — 51 54 67 42 39 67 50 68 45 39 522
C — — — 58 63 45 60 47 56 59 65 46 499
D — — — — 57 63 50 46 63 45 36 53 413
E — — — — — 56 64 71 45 52 36 57 381
F — — — — — — 53 65 76 45 56 64 359
G — — — — — — — 55 67 30 67 64 283
H — — — — — — — — 67 84 55 73 279
I — — — — — — — — — 83 75 67 225
J — — — — — — — — — — 83 76 159
K — — — — — — — — — — — 94 94
L — — — — — — — — — — — — —
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Figure 7: Passenger flow on/off at each station at the time of APP processing: (a) dynamic reservation number (9 : 01–9 :10); (b) number of
appointments by deadline (9 :10).
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types. A computer with a processor Intel-Core (i7) and a
memory of 16G is chosen, and MATLAB is used for pro-
gramming. ,e genetic algorithm population size is set to
200, the maximum number of iterations is 300, the mutation
probability coefficient is 0.1, and the crossover probability
coefficient is 0.7. ,e algorithm terminates when the suit-
ability of the optimal individual and the suitability of the
group no longer change. ,e iteration curve calculated by
the genetic algorithm is shown in Figure 8 (iteration time
1min 5 s).

Since the APP sets the appointment time period as
10minutes and the computer iteration time is 1min 5 s, the

rationality of the appointment time interval set by APP can
be verified by (13). Calculated by the genetic algorithm, the
output results are listed in Table 8.

Result Description. 66 routes can be formed randomly
from the starting station A to the end station L, and each
route is composed of three vehicle types. Among them, bus
types 1, 2, and 3, respectively, represent 5-seater, 11-seater,
and 22-seater (the system is set to give priority to the use of
large vehicles). In the driving path, 1 means stop and 0
means no stop (except for the starting and ending points,
intermediate station does not stop). ,e same route number
indicates the combination of vehicle types. For example,

Table 7: Passenger waiting information statistics table at the last time node of each station.

Site Total number of people on the bus Number of people arriving at the station at each time Arriving time (h) Waiting time (min)

A 587

70 9 : 01 14
85 9 : 02 13
45 9 : 03 12
67 9 : 04 11
30 9 : 05 10
24 9 : 06 9
35 9 : 07 8
60 9 : 08 7
45 9 : 09 6
126 9 :10 5

⋮ ⋮ ⋮ ⋮ ⋮

K 94

5 9 : 01 14
6 9 : 02 13
9 9 : 03 12
12 9 : 04 11
25 9 : 05 10
6 9 : 06 9
17 9 : 07 8
5 9 : 08 7
2 9 : 09 6
7 9 :10 5

L — — — —
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Figure 8: ,e optimal value iteration curve.
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Table 8: Output result information table.

Line
number Types Number of

vehicles Driving path Corresponding
track

Mileage
(km)

,e operating cost of
enterprise (yuan)

Total cost
(yuan)

1 3 2 1,0,0,0,0,0,0,0,1,0,0,0 A-I 11.2 1440

18151.44

1 1 2 1,0,0,0,0,0,0,0,1,0,0,0 A-I 11.2 503.2
2 3 1 1,0,0,0,1,0,0,0,0,0,0,0 A-E 5.3 425
2 2 1 1,0,0,0,1,0,0,0,0,0,0,0 A-E 5.3 264.9
2 1 2 1,0,0,0,1,0,0,0,0,0,0,0 A-E 5.3 290.8
3 3 2 1,0,0,1,0,0,0,0,0,0,0,0 A-D 3.85 705
3 1 2 1,0,0,1,0,0,0,0,0,0,0,0 A-D 3.85 238.6
4 3 2 1,0,0,0,0,0,0,0,0,0,1,0 A-K 13.8 1700
4 1 1 1,0,0,0,0,0,0,0,0,0,1,0 A-K 13.8 298.4
5 3 2 1,1,0,0,0,0,0,0,0,0,0,0 A-B 1.1 430
5 2 1 1,1,0,0,0,0,0,0,0,0,0,0 A-B 1.1 126.3
5 1 2 1,1,0,0,0,0,0,0,0,0,0,0 A-B 1.1 139.6
6 3 3 1,0,0,0,0,0,0,0,0,1,0,0 A-J 12.5 2355
6 1 1 1,0,0,0,0,0,0,0,0,1,0,0 A-J 12.5 275
7 3 1 1,0,0,0,0,0,0,0,0,0,0,1 A-L 15 910
7 2 1 1,0,0,0,0,0,0,0,0,0,0,1 A-L 15 585
7 1 1 1,0,0,0,0,0,0,0,0,0,0,1 A-L 15 320
8 3 2 1,0,0,0,0,1,0,0,0,0,0,0 A-F 6.5 970
8 2 1 1,0,0,0,0,1,0,0,0,0,0,0 A-F 6.5 304.5
8 1 1 1,0,0,0,0,1,0,0,0,0,0,0 A-F 6.5 167
9 3 2 1,0,1,0,0,0,0,0,0,0,0,0 A-C 2.3 550
9 2 1 1,0,1,0,0,0,0,0,0,0,0,0 A-C 2.3 165.9
9 1 1 1,0,1,0,0,0,0,0,0,0,0,0 A-C 2.3 91.4
10 3 3 1,0,0,0,0,0,1,0,0,0,0,0 A-G 8.15 1702.5
10 1 2 1,0,0,0,0,0,1,0,0,0,0,0 A-G 8.15 393.4
11 3 1 1,0,0,0,0,0,0,1,0,0,0,0 A-H 10 660
11 2 1 1,0,0,0,0,0,0,1,0,0,0,0 A-H 10 420
11 1 2 1,0,0,0,0,0,0,1,0,0,0,0 A-H 10 460
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
66 3 4 0,0,0,0,0,0,0,0,0,0,1,1 K-L 1.15 870 1220.766 1 2 0,0,0,0,0,0,0,0,0,0,1,1 K-L 1.15 141.4
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Figure 9: Comparison of iterative curves between hybrid types and single type.
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Route 1 consists of 2 buses with 22-seater and 2 buses with 5-
seater. ,e driving track is A-I, the mileage is 11.2 km, and
the company’s operating cost is 1943.2 yuan. ,e waiting
cost at station A is 1259.94 yuan, and the total cost of getting
on the bus at station A is 18151.44 yuan (note: the output
data change with the dynamic changes of the input data.)

5.3. Program Comparison. On the basis of the flexible dy-
namic scheduling scheme of three vehicle types used in 4.2,
the same parameters are set and compared with the single
type scheme; the iteration curve is shown in Figure 9. ,e
iteration times of the four curves of green, blue, black, and
red (5-seater, 11-seater, 22-seater, and hybrid vehicle) from
top to bottom are 1min 1 s, 1min, 58 s, and 1min 5 s. It can
be seen that the 22-seater type takes the least time, and the
hybrid vehicle takes a relatively long time.

,e number of vehicles allocated, total cost, and optimal
applicability of the four options are compared, as listed in
Table 9. It can be obtained from the table that the optimal
applicability of the hybrid vehicle is the largest, its total cost is
the lowest, and the number of vehicles allocated meets
constraint (11). Neither 5-seater nor 11-seater types meet the
requirements. Although the 22-seater type meets the re-
quirements, it is likely to cause a low full load rate. ,e it-
eration time of hybrid vehicle is relatively long but within an
acceptable range. With comprehensive consideration, the
hybrid vehicle scheme is the most economical and reasonable.

6. Conclusion

In order to increase the attractiveness of public trans-
portation and improve the service quality of public trans-
portation enterprises, the dynamic dispatch model of
multiline hybrid vehicles is investigated. ,e contributions
of this study are summarized as follows.

First of all, the customized bus dispatch system in this
study can meet the point-to-point service of multiple lines in
the city center during peak hours. It combines the char-
acteristics of taxis and subways to provide passengers with
punctual, fast, and low-cost travel services.

Secondly, this study uses a hybrid vehicle and compares
it with a single vehicle in terms of vehicle allocation, total
cost, iteration time, and optimal applicability values.
,rough quantitative analysis, it is proved that the hybrid
scheme is optimal.

Furthermore, the dynamic reservation period is set in the
calculation example, and the rationality of the appointment
time interval set by APP has been analyzed and verified. It
can lay a theoretical foundation for making a reasonable
dispatch plan based on passenger flow density.

To match it, some adjustments should be made in
management. For example, based on the large number of
vehicles, different types of vehicles and seats should be
numbered to facilitate vehicle deployment andmanagement.
At the same time, the government should increase rea-
sonable fare preferential policies to increase the attractive-
ness of the new method. Furthermore, the management
department should provide appropriate stations to facilitate
the shift and rest of the drivers.

In short, the research results show that the model can
better reflect the actual bus dispatching situation. ,e dis-
advantage is that this study is mainly for one-way operation,
and the return journey will be further integrated into the
dispatch operation plan in the future.
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