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+is work proposes a framework for the optimization of postdisaster road network restoration strategies from a perspective of
resilience. +e network performance is evaluated by the total system travel time (TSTT). After the implementation of a
postdisaster restoration schedule, the network flows in a certain period of days are on a disequilibrium state; thus, a link-based
day-to-day traffic assignment model is employed to compute TSTT and simulate the traffic evolution. Two indicators are de-
veloped to assess the road network resilience, i.e., the resilience of performance loss and the resilience of recovery rapidity. +e
former is calculated based on TSTT, and the latter is computed according to the restoration makespan. +en, we formulate the
restoration optimization problem as a resilience-based bi-objective mixed integer programming model aiming to maximize the
network resilience. Due to the NP-hardness of the model, a genetic algorithm is developed to solve the model. Finally, a case study
is conducted to demonstrate the effectiveness of the proposedmethod.+e effects of key parameters including the number of work
crews, travelers’ sensitivity to travel time, availability of budget, and decisionmakers’ preference on the values of the two objectives
are investigated as well.

1. Introduction

Road infrastructure forms the backbone of transport ac-
tivities, which plays an important role in boosting economic
development and increasing accessibility. Due to extreme
weather, road networks are inclined to suffer from the
disruptions caused by natural disasters such as floods, ty-
phoons, and landslides. Hence, restoration activities are
needed to recover the networks as soon as possible. How-
ever, the available budget in a short time after the disaster
cannot afford to repair all the disrupted road segments.
+ere is an increasing demand for making a cost-effective
postdisaster road network restoration strategy (RNRS) [1, 2],
which refers to determining the road segments to be repaired
and the restoration time sequence.

In recent years, resilience has attracted growing attention
in the road infrastructure management field [3–6]. How to
keep the infrastructure networks at a high level of resilience

has become a challenge for transportation agencies. +e
concept of road network resilience is defined as the ability to
absorb disruptive events and recover to normal operation
within a reasonable period of time [7, 8]. Based on the
definition, a variety of metrics have been introduced to
assess the resilience of an infrastructure network. +is as-
sessment is indispensable for the optimization of a resilient
infrastructure system. Despite the wide range of studies
focusing on the resilience-based RNRS, there are still two
gaps to be filled. Firstly, it is rare in the literature to in-
vestigate a joint optimization of budget allocation and
restoration scheduling for an effective RNRS. Secondly, most
of the previous studies apply user equilibrium (UE) models
to evaluate the total system travel time (TSTT) during the
restoration process. UE models assume that the network
flow patterns achieve an equilibrium state overnight given
new network conditions, which cannot reflect the day-to-
day traffic dynamics.
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In view of this, this study aims to investigate the optimal
postdisaster restoration problem for road networks from the
perspective of resilience considering the day-to-day network
flow fluctuation. +e main contribution of our work is to
build a resilience-based bi-objective mixed integer pro-
gramming model combined with a link-based day-to-day
traffic assignment model to determine the optimal RNRS
based on the tradeoff between the maximal resilience of
performance loss and the maximal resilience of recovery
rapidity. With our proposedmethod, decisionmakers would
determine a set of prioritized road segments to be restored
and the optimal time sequence of the restoration tasks.

+e remainder of this paper is organized as follows.
Section 2 introduces the literature review. Section 3 presents
two resilience metrics, proposes a link-based day-to-day
dynamics model, and develops a resilience-based optimi-
zationmodel for the postdisaster RNRS. Section 4 proposes a
genetic algorithm to solve the optimization model. In
Section 5, we employ a case study to validate our proposed
method. Conclusions and future work are discussed in
Section 6.

2. Literature Review

Due to the increasing natural hazards, recovering damaged
road networks in a resilient manner has attracted growing
attention in recent years. +e existing studies in this realm
can be classified into two categories, i.e., the
budget allocation problem and the restoration scheduling
problem. +e budget allocation problem aims to determine
the road segments to be repaired from a set of damaged road
segments with budget limits. For instance, Liu et al. [9]
developed a two-stage stochastic programming model to
allocate limited retrofit budget over multiple road bridges to
maximize the resilience and robustness of the entire road
network. In order to mitigate the predisaster risk and im-
prove network resilience, Zhang and Wang [10] proposed a
resilience-based optimization model to identify the road
network retrofit projects. As for the restoration scheduling
problem, it focuses on identifying the time sequence of
restoration activities. Bocchini and Frangopol [11] devel-
oped a multiobjective optimization model aiming at max-
imal resilience, minimal restoration time, and minimal
restoration cost to formulate the restoration scheduling
problem for road-bridge networks after an earthquake. Li
et al. [12] established a resilience-based bilevel programming
model to investigate the optimization of the road network
recovery strategy under uncertainty aiming at the maxi-
mization of network resilience. Generally, traffic dynamics is
an important issue that needs to be considered in the RNRS
problem. Most of the previous studies employ the classic UE
traffic assignment model to estimate TSTT assuming that
the traffic flow patterns across the road network are always in
an equilibrium state [13]. +e only exception is Nogal et al.
[14], where a new dynamic equilibrium-restricted assign-
ment model is presented to simulate the postdisaster day-to-
day flow evolution process. According to the work of De
Palma and Rochat [15], travelers are highly sensitive in their
route choice behaviors to the occurrence of an event in the

road network. Hence, travelers reselect their routes shortly
after the restoration activity of any disrupted road segment is
completed, which makes the network flows evolve con-
stantly to reach a new equilibrium state within a period of
time from the old equilibrium state. Simulation on a 3× 3
grid network with 9 nodes, 12 links, and 6 routes by He et al.
[16] indicated that all links have some flow fluctuations after
a 50% capacity reduction and it takes about 20 days for the
network flow patterns to achieve a new equilibrium state.
+is fluctuating traffic flow pattern is defined as partial UE
(PUE) by Sumalee and Watling [17], namely, the network
flows in a certain period of time are not on an equilibrium
state. +erefore, it is problematic to use the UE model to
evaluate TSTT during the network restoration process. +e
day-to-day model can better capture the PUE [18], which is
appropriate for dealing with TSTT calculation in the road
network restoration context.

Day-to-day traffic assignment models are capable of
predicting day-to-day traffic fluctuations and the evolution
process itself when the traffic network is perturbed by un-
expected events, construction actions, and traffic controls.
As noted by Watling and Hazelton [19], day-to-day traffic
models have great flexibility, which accommodates a wide
range of behavior rules, levels of aggregation, and traffic
modes. +e first effort can be attributed to Horowitz [20],
who proposed a discrete time day-to-day dynamic traffic
model for a two-link network from the perspective of sys-
tem-optimal principle. Generally, two types of day-to-day
models have been studied in the literature, i.e., continuous
time models and discrete time models, and each type can be
subcategorized into two groups, i.e., deterministic models
and stochastic models [21, 22]. +e continuous time models
utilize differential equations to describe traffic evolution
based on the assumption that travelers have a perfect per-
ception of travel cost, which can capture the mathematical
features in traffic transition [23–25]. +e discrete time
models assume that travelers repeat their route choice be-
havior each day following the traffic condition, which is
more suited to the real world as mentioned by Watling and
Hazelton [19]. Since the uncertainty associated with the
random nature exists in the traffic evolution process, sto-
chastic day-to-day traffic models get more attention from
scholars than the deterministic day-to-day models. Most
stochastic day-to-day traffic models follow Markov pro-
cesses, which predict the traffic state by calculating transition
matrices based on the previous traffic flow patterns [26–29].
Due to the advantages claimed above, day-to-day traffic
models recently have been used in combination with other
methods to solve some practical transportation problems.
For example, Liu et al. [30] combined a path-based day-to-
day traffic model with a robust optimization method to
investigate distance-based congestion pricing problems.
Faturechi and Miller-Hooks [18] developed a methodology
framework composed of three-stage stochastic mathematical
programming and a day-to-day traffic model to simulate
postdisaster travel time resilience of roadway networks.
However, most of the previous day-to-day traffic models are
path-based and assume that travelers have infinite
memories.
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3. Formulation of the Problem

3.1. Assumptions and Notations. +is study makes the fol-
lowing assumptions:

(1) +e travel demands between each origin-destination
(OD) pair keep constant during the restoration process.

(2) Each restoration activity is implemented by a single
work crew. Once a restoration activity begins, the
work crew has to finish the restoration activity prior
to conducting the next restoration activity.

(3) Each restoration activity only begins once during the
entire restoration process, i.e., the restoration
strategy is non-preemptive.

(4) +e capacity of each damaged road segment is re-
duced when the disaster occurs, and the capacity is
not restored to the predisaster level until the dam-
aged road segment is completely restored.

(5) Due to sufficient preparations, the decision makers
have a complete understanding of the damage state
information for the road network; thus, the resto-
ration time, the restoration cost, and other parameter
values are known.

+e notations used in this study are presented as follows.

3.1.1. Indices.

(1) d: time period
(2) i: road segment to be restored or restoration activity
(3) r: work crew

3.1.2. Parameters.

(1) I: total number of road segments to be restored or
restoration activities

(2) ei: duration of restoration activity i, i � 1, 2, . . . , I

(3) ci: cost of restoration activity i, i � 1, 2, . . . , I

(4) R: total number of work crews
(5) B: availability of budget
(6) Mmax: maximum acceptable makespan of the

restoration

3.1.3. Variables.

(1) C: total costs of the restoration
(2) M: makespan of the restoration
(3) π(d): network performance on day d,

d � 1, 2, . . . , Mmax

(4) T(d): total system travel time on day d,
d � 1, 2, . . . , Mmax

(5) Rp: resilience of performance loss
(6) Rr: resilience of recovery rapidity

(7) xid: binary variable that represents xid � 1 if road
segment i is to be restored on day d; otherwise,
xid � 0, i � 1, 2, . . . , I, d � 1, 2, . . . , Mmax

(8) yir: binary variable that means yir � 1 if road seg-
ment i is to be restored by work crew r; otherwise,
yir � 0, i � 1, 2, . . . , I, r � 1, 2, . . . , R.

3.2. Resilience Metrics. Consider a road network, denoted as
G � (N, A), whereN is the set of nodes andA is the set of road
segments (or links). A disaster caused by extreme weather
occurs on day d � ds, which damages I road segments in the
network. Hence, the network performance π(d) drops to
π(ds) from the predisaster network performance π(d0).
Figure 1 plots the postdisaster network performance recovery
process. Assume that the restoration is conducted immediately
on day d � ds, which aims to recover π(d) to π(d0). Since the
restoration budget cannot cover all the disrupted road seg-
ments, π(d) is recovered to π(ds + M) when the budget is
exhausted on day d � ds + M.+e restoration activities have to
be completed with Mmax days. π(d) will be further improved if
more investments are available in the future.

Since there is a negative relationship between the road
network performance and TSTT, we define π(d) as the
reciprocal of TSTTon day d divided by the reciprocal of the
predisaster TSTT on day d0, as in equation (1). π(d) is the
ratio of T(d0) to T(d), which reveals efficiencies in the use of
a road network. +e lower TSTT is, the higher π(d) is.

π(d) �
T(d)

− 1

T d0( 
− 1 �

T d0( 

T(d)
. (1)

It is clear that π(d) ∈ (0, 1] and the predisaster network
performance π(d0) equals to 1. When all the damaged road
segments are restored, π(d) will be recovered to 1.

+en, we develop two resilience metrics, i.e., the resil-
ience of performance loss and resilience of recovery rapidity
to evaluate the postdisaster network resilience [12, 31].

3.2.1. Resilience of Performance Loss. +e shaded area in
Figure 1 represents the performance loss. Figure 1 shows that
the performance loss still exists after the restoration activities
are completed on day d � ds + M. For simplicity, we calculate
the total performance loss TPL from day d � ds to day
d � ds + Mmax, which is formulated in the following equation:

TPL � 
ds+Mmax

ds

π d0(  − π(x) dx ≈Mmax × π d0( 

− 

ds+Mmax

d�ds

π(d).

(2)

+en, we formulate the resilience of performance loss as

Rp � 1 −
Mmax × π d0(  − 

ds+Mmax
d�ds

π(d)

Mmax × π d0( 
, (3)

where Rp represents the proportion of residual performance
(i.e., overall performance minus lost performance) in overall
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performance within Mmax days and Rp reflects the function of
the road network. +e higher Rp is, the lower the total per-
formance loss is and the less the traffic congestion is.
Rp ∈ [0, 1].

3.2.2. Resilience of Recovery Rapidity. Since recovery ra-
pidity has a great priority during the restoration process, we
employ the resilience of recovery rapidity as another resil-
ience metric. We normalize and formulate the resilience of
recovery rapidity as in the following equation:

Rr �

1 −
M

Mmax
, M≤Mmax,

0, M>Mmax,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where Rr represents the speed of recovery. If M>Mmax, the
recovery rapidity is too low, which is unacceptable. If
M≤Mmax, the higher Rr, the faster the road network can be
repaired. Rr ∈ [0, 1].

3.3. Link-Based Day-to-Day Dynamics Model. Before mod-
eling the optimal RNRS problem, we first propose a link-based
day-to-day dynamics model. For simplicity, we assume that
restoration activities are conducted on day d � ds � 1. +e
restoration activities will result in changes in the travelers’ route
choice behaviors, giving rise to day-to-day flow fluctuations. In
order to estimate TSTT, a mechanism is needed to simulate the
postdisaster network flow evolution trajectory [32]. Since the
initial link flow pattern is easily observed by a well-designed
field survey and each restoration activity is involved with a road
segment, a link-based traffic model is more suitable to predict

the network flow evolution trajectory in the context of the road
network restoration.

In a link-based day-to-day dynamics model, link flows on
any day d, denoted by q(d) � (qi, i ∈ N)T, tend to evolve
towards the “target” link flows q(d + 1) � ( qi, i ∈ N)T on day
d + 1 at a rate of v [16]. Hence, q(d + 1) can be formulated as a
weighted combination in the following equation:

q(d + 1) � q(d) + v · [q(d + 1) − q(d)]. (5)

For a given q(d), q(d + 1) solves the following mini-
mization problem:

min
Q∈Ωd

λ · h(q, d + 1)
TQ +(1 − λ) · D[q(d),Q], (6)

Ωd � q(d)|q(d) � Δf(d),Λf(d) � Θ, f(d)≥ 0 , (7)

whereΩd is a feasibility vector set of link flows on day d. Δ is
the link-path incidence matrix,
Δ � (Δi,k,w, i ∈ N, k ∈ Kw, w ∈W). Δi,k,w � 1 if link i ∈ N

lies on path k ∈ Kw, and Δi,k,w � 0 otherwise. Λ is the OD
pair-path incidence matrix, Λ � (Λk,w, k ∈ Kw, w ∈W).
Λk,w � 1 if path k ∈ Kw connects OD pair w ∈W, andΛk,w �

0 otherwise. f(d) is the vector of path flows on day d.
f(d) � (fk,w(d), k ∈ Kw, w ∈W)T. Θ is the vector of traffic
demands betweenODpairs.Θ � (Θw, w ∈W)T. λ(0≤ λ≤ 1)

is travelers’ sensitivity to travel time. +e larger the pa-
rameter value of λ, the more travelers will change their
routes. h(q, d + 1) is the travel time perceived by the
travelers on day d + 1. Equation (6) is a weighted combi-
nation of minQ∈Ωd

h(q, d + 1)TQ and minQ∈Ωd
D[q(d),Q].

+e former aims to minimize the total travel time of
q(d + 1), and the latter guarantees the minimal distance
between q(d) and Q.

D[q(d),Q] can be calculated by

D[q(d),Q] � 
i∈N


Qi,d+1

qi,d

ti,d(u) − ti,d qi,d  du, (8)

where ti,d(u) is the link travel time function.
As for h(q, d + 1) in a link-based day-to-day dynamics

model, it can be formulated as a weighted average between
their perceived travel time on day d and the experienced
travel time on day d [33].

h(q, d + 1) � μ · t(q, d) +(1 − μ) · h(q, d). (9)

+en, we expand equation (9) recursively as follows:

h(q, d + 1) � μ · t(q, d) +(1 − μ) · h(q, d)

� μ · t(q, d) +(1 − μ)[μ · t(q, d − 1) +(1 − μ) · h(q, d − 1)]

� μ · t(q, d) + μ · (1 − μ) · t(q, d − 1) +(1 − μ)
2

· h(q, d − 1)

� μ · t(q, d) + μ · (1 − μ) · t(q, d − 1) +(1 − μ)
2

· [μ · t(q, d − 2) +(1 − μ) · h(q, d − 2)]

. . . . . .

� μ · t(q, d) + μ · 
d− 1

s�2
(1 − μ)

s− 1
· t(q, d − s + 1) +(1 − μ)

d
· h(q, 1).

(10)

d

π (d0)

π (ds)

π (d)

Performance
loss

ds ds + M ds + Mmaxd0

Figure 1: Postdisaster network performance recovery process.
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where t(q, d) is the travelers’ experienced travel time on day
d. +e initial perceived travel time h(q, 1) can be estimated
by reassigning the traffic flows following the network ca-
pacity reduction on day d � 1. q(1) is an optimal solution to
the following minimization model:

min
q(1)∈Ω1


i∈N


qi(1)

0
ti u, Ci(1) du, (11)

where Ci(1)is the capacity of link i on day d � 1. Ω1 can be
obtained using equation (7).

Equation (10) reveals that travelers’ perceived travel time
is largely dependent on all of their previous experienced
travel time. Equation (10) assumes that travelers have infinite
memories, which is not realistic. As mentioned by Cascetta
[27], travelers’ perceived travel time is mainly affected by
their finite memory, namely, travelers cannot remember all
of their experiences in the past. +us, we make the following
assumption:

Assumption 1. . Travelers’ perceived travel time on day d is
affected by their most recent m days’ experienced travel time.
m is defined as the travelers’ memory length.

Based on Assumption 1, equation (10) can be rewritten
as follows:

h(q, d + 1) � μ · t(q, d) + μ · 
m

s�2
(1 − μ)

s− 1

· t(q, d − s + 1) +(1 − μ)
d

· h(q, 1).

(12)

It is easy to know that the sum of the two coefficients, i.e.,
μ and μ · 

m
s�2 (1 − μ)s− 1 in equation (12) does not equal to 1.

Hence, we employ a scaling factor to make the coefficients
sum to 1. Equation (12) is further transformed to the
following:

h(q, d + 1) �
μ

1 − (1 − μ)
m+1 · t(q, d) +

μ
1 − (1 − μ)

m+1

· 
m

s�2
(1 − μ)

s− 1
· t(q, d − s + 1)

+(1 − μ)
d

· h(q, 1),

(13)

where (μ/1 − (1 − μ)m+1) + (μ/1 − (1 − μ)m+1)· 
m
s�2

(1 − μ)s− 1 � 1.
Hence, TSTT on day d in equation (1) can be calculated

as

T(d) � q(d) · t(d). (14)

It is easy to know that the postdisaster road network
capacity will change when every single road segment is
restored, thus giving rise to a new day-to-day flow evolution,
namely, there are multiple “new evolutions” during the
restoration process. +erefore, when a “new evolution”
occurs, i.e., at the end of each restoration activity, the value
of d in the link-based day-to-day dynamics model should be
reset to 1.

3.4. Optimization Model. In this subsection, we formulate
the postdisaster RNRS problem as a resilience-based bi-
objective mixed integer programming model under resource
constraints, which makes a tradeoff between the maximal
resilience of performance loss and the maximal resilience of
recovery rapidity. For simplicity, this model assumes ds � 1.

maxRp � 1 −
Mmax × π d0(  − 

ds+Mmax
d�ds

π(d)

Mmax × π d0( 
, (15)

maxRr �
1 −

M

Mmax
, M≤Mmax,

0, M>Mmax,

⎧⎪⎪⎨

⎪⎪⎩
(16)

which subject to the following:

max
i



Mmax

d�1
d · xi d + ei

⎧⎨

⎩

⎫⎬

⎭ � M≤Mmax, (17)



Mmax

d�1
d · xid � 1, i � 1, 2, . . . , I, (18)



R

r�1
yir � 1, i � 1, 2, . . . , I, (19)



d

τ�max 1,d− ei+1{ }



I

i�1
xiτ · yir ≤ 1,

d � 1, 2, . . . , Mmax, r � 1, 2, . . . , R,

(20)



d

τ�max 1,d− ei+1{ }



I

i�1
xiτ ≤R,

d � 1, 2, . . . , Mmax,

(21)



I

i�1


Mmax

d�1
xi d · ci � C≤B, (22)

xid � 0, 1{ }, (23)

yir � 0, 1{ }. (24)

Equations (15) and (16) are two objectives, which
maximize the resilience of performance loss and the resil-
ience of recovery rapidity, respectively. Equation (17) defines
the makespan of the restoration schedule, i.e., the finish time
of the last restoration activity, which cannot exceed Mmax.
Equation (18) ensures that each restoration activity is
implemented only once during the restoration period,
namely, the restoration strategy is non-preemptive. Equa-
tion (19) guarantees that each restoration activity is carried
out by a single work crew. Equation (20) ensures that each
work crew can only conduct one restoration activity at most
every single day. Equation (21) makes sure that the number
of ongoing restoration activities every single day cannot
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exceed the number of work crews. Equation (22) is the
budget constraint, i.e., the total restoration costs cannot
exceed the budget. Equations (23) and (24) define the type of
decision variables.

4. Model Solution

Bi-objective models are usually solved to obtain a set of
Pareto optimal solutions [34]. Although all the obtained
Pareto optimal solutions are feasible, the best solution
cannot be determined because of the different scales and
bounds of the two objectives. In order to solve the issue, we
first transform the bi-objective model into a single objective
model using the weighted combination method as follows
[12]. A genetic algorithm (GA) is then adopted to deal with
the single objective model.

F � ω · Rt +(1 − ω) · Rr, (25)

where F is the weighted value and ω is the weighting factor,
which means the decision makers’ preference for the two
resilience metrics.

+e mixed integer programming model has been widely
employed to solve network design and network restoration
problems, which are known to be NP-hard. Due to the NP-
hardness, finding the exact solution is an intractable issue
even for small problems; thus, heuristic algorithms are more
suitable than exact algorithms for solving these problems.
GA has been well recognized as an effective tool to solve the
optimization problem [35–37]. GA searches for the optimal
solution by simulating the natural evolution process; spe-
cifically, it simulates the solution of problems as a process
similar to the crossover and mutation of chromosome genes
in biological evolution [38]. GA is also used in combination
with other algorithms (e.g., simulated annealing algorithms
[39, 40], swarm intelligence algorithms [41], neural network
algorithms [42], and tabu search algorithm [43]) to solve
optimization problems. Compared with the previous algo-
rithms, GA in this study represents the chromosome with
two line sections using the integer codingmethod, which can
reduce the possibility of generating a large number of in-
feasible solutions and avoid unnecessary searches. +e flow
chart of GA is presented in Figure 2.

4.1. Chromosome Encoding and Decoding. +e RNRS
problem in this study consists of two subproblems, i.e., the
selection of work crews for road segments to be restored and
the time sequence of restoration activities. We apply the
integer coding method to represent the chromosome with
two line sections shown in Figure 3. Each line section has I

genes. +e gen value g1
i (i � 1, 2, . . . , I) of line section 1

represents the work crew that will restore the corresponding
link. It is noting that the gen value 0 in line section 1 means
that the corresponding link will not be restored.
g1

i � 0, 1, 2, . . . , R. +e gen value g2
i (i � 1, 2, . . . , I) of line

section 2 indicates the precedence relationship among all
restoration activities. g2

i � 1, 2, . . . , I. +e smaller g2
i , the

higher the priority of the restoration activity. All gen values
in line section 2 are different.

Let MAr(r � 1, 2, . . . , R) be the set of restoration ac-
tivities assigned to work crew r, where restoration activities
are ranked by their priorities from high to low, and the
number of restoration activities in MAr is Numr. It is noting
that these restoration activities with g1

i � 0 are not included
in MAr. We denote EAr as the set of eligible restoration
activities, namely, the unscheduled restoration activities that
have all predecessor restoration activities scheduled, and we
let STrj(j � 1, 2, . . . ,Numr) represent the start time of the
jth restoration activity inMAr.+en, the following decoding
procedure can be used to transform the solution into a
restoration schedule.

(i) Step 1. Set r � 1, MAr � 1{ }, and STr1 � 0.
(ii) Step 2. Update EAr, i.e., remove the scheduled

restoration activities from EAr and put the new
eligible restoration activities into EAr.

(iii) Step 3. Judge whether EAr � ∅ or not. If the answer
is true, output all STrj and go to step 5; otherwise, go
to step 4.

(iv) Step 4. Calculate STrj of all the eligible restoration
activities, STrj � STr,j− 1 + dj, and return to step 2.
(v) Step 5. Judge whether r � R or not. If the answer
is false, let r � r + 1 and return to step 2; otherwise,
terminate the procedure.

4.2. Population Initialization. +e initial population consists
of popSize feasible initial solutions. Each feasible initial
solution can be generated using the following steps:

(i) Step 1. Randomly generate a value for g1
i ,

g1
i � 0, 1, 2, . . . , R, i � 1, 2, . . . , N, namely, select a

work crew for each restoration activity randomly,
generating line section 1.

(ii) Step 2. Randomly generate a value for g2
i ,

g2
i � 1, 2, . . . , N, i � 1, 2, . . . , N, namely, set a pri-

ority value for each restoration activity randomly,
generating line section 2.

(iii) Step 3. Transform the generated g1
i and g2

i into a
restoration schedule using the decoding procedure
presented in Section 4.1. Judge whether
maxi,r STri + di ≤Mmax or not. If the answer is
true, a feasible solution has been generated; oth-
erwise, return to step 1 and repeat the procedure
until a feasible solution is generated.

4.3. Selection. We use equation (25) as the fitness function in
this algorithm. +e fitness value of the parent individual
determines the probability that the child individual is se-
lected. Specifically, the higher the fitness value of the parent
individuals, the higher the probability that they will be se-
lected to generate offspring individuals. +e roulette wheel
method is employed to select individuals. Denote Fk(k �

1, 2, . . . , popSize) as the fitness value of the kth individual.
+e total fitness value Ftotal of a population of size popSize
can be calculated as
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Ftotal � 

popSize

k�1
Fk. (26)

+e selection probability pk for each individual k is
formulated in the following equation [44]:

pk �
Ftotal − Fk

Ftotal · (popSize − 1)
. (27)

+en, a random number φ ∈ (0, 1] is generated. If
pk− 1 <φ<pk, the kth individual is selected.

4.4. Crossover Operator. A crossover operator is used to
generate two new offspring individuals from two parent

chromosomes by exchanging their genetic information [45],
which can maintain population diversity. +e crossover
operator is performed based on a crossover rate that de-
termines the probability that two parent individuals will be
selected to exchange their genetic information. A single
point crossover method is applied in this study. It is noting
that only line section 1 is selected to crossover so as to
change the job sequence of work crews. +e crossover op-
eration is performed by choosing a position i in line section 1
of the chromosome randomly and swapping all the gen
values before that position. +us, the first i gen values in line
section 1 of an offspring chromosome are selected from one
parent chromosome and the remaining gen values inherit
the other parent chromosome. Figure 4 illustrates an ex-
ample of a single point crossover operation.

4.5. Mutation Operator. +e mutation operation is per-
formed to a single chromosome, which can help the algo-
rithm to avoid local optima. Based on a mutation rate, the
mutation operation randomly changes one or more gene
values of a chromosome. +e widely used swap mutation

Start

Input the parameters for the algorithm;
code the chromosome

popsize: population size
Gen: number of generations
Pc: crossover rate
Pm: mutation rate

Generate the initial population Pop0 using the 
solution generator presented in section 4.2; g = 1

Calculate and evaluate the fitness value

Select the next generation

Perform the crossover and mutation to create the 
offspring population Og

g = g + 1

Stop

G ≥ Gen

Figure 2: Flow chart of GA.

1 2 3 4 5 6 i I 1 2 3 4 5 6 i I
1 3 2 2 0 1 … 4 1 2 3 4 5 6 … I

Link ID:

Line section 1 Line section 2

Figure 3: +e chromosome representation.
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strategy [46] that randomly exchanges two gene values of a
chromosome is applied to the two line sections. Figure 5
shows an example of a swap mutation strategy.

5. Numerical Experiment

5.1. Road Network. A road network with 19 nodes and 36
links shown in Figure 6 is applied to validate the proposed
method. +e attributes of all links are presented in Table 1.
+ere are two OD pairs, i.e., 1⟶ 17 and 8⟶ 19, the daily
OD demands of which are 40,000 and 60,000, respectively.
For simplicity, the predisaster link flows are obtained using a
UE model.

+e link travel time is estimated by the Bureau of Public
Roads (BPR) function:

ti qi(  � t
0
i · 1 + α ·

qi

Ci

 

β
⎡⎣ ⎤⎦, ∀i ∈ N, (28)

where t0i is the free flow travel time on link i, Ci is the
capacity of link i, and α and β are two parameters, where
α � 0.15 and β � 4.

Disasters usually cause two types of damage to the road
infrastructure: (1) complete damage, which means that the
capacity of each damaged road segment drops to zero and
the damaged road segments are out of service, and (2) partial
damage, which indicates that the capacity of each damaged
road segment is reduced to a certain extent and the damaged
road segments have some partial passage. For simplicity, we
assume that a disaster, which occurs on day d � 1, com-
pletely damages 21 road segments (in the dashed-line circle
in Figure 6). It is worth noting that our proposedmethod can
be easily extended to the cases with partially damaged road
segments. +e damaged road segments are marked by red
arrows in the dashed-line circle in Figure 6. +e restoration
duration and cost of each disrupted link are listed in Table 2,
where the unit of ci is fund-unit. +e total budget is 5,000
fund-unit.+e other parameters are valued as in Table 3.+e
procedure is coded in MATLAB R2018b (version 11.4). All
experiments are conducted on a Windows Server 2012 R2
server with an Intel Xeon E5-2640v4 CPU (2.4GHZ) and
64GB DDR4 RAM.

5.2. Results. We define the solution with the highest fitness
value after convergence is the optimal solution. Figure 7
illustrates the optimal RNRS generated by the proposed

method. Figure 7(a) shows the start time and completion
time of the restoration activity for each link, where the
number on each bar is the duration of each restoration
activity. Figure 7(b) presents the restoration activities
assigned to each work crew, where the letter and number on
each bar represent the link ID and restoration duration,
respectively. +is optimal RNRS covers 12 out of 21 dis-
rupted links to be restored by three work crews, given that
the restoration budget is 5,000 fund-unit. +e makespan is

1 3 2 2 0 1 … 4 1 2 3 4 5 6 … IParent 1

Parent 2 2 1 3 1 4 0 … 2 1 2 3 4 5 6 … I

2 1 3 2 0 1 … 4 1 2 3 4 5 6 … IOffspring 1

Offspring 2 1 3 2 1 4 0 … 2 1 2 3 4 5 6 … I

Crossover point

Figure 4: An example of a single point crossover operation.

1 3 2 2 0 1 … 4 1 2 3 4 5 6 … I

0 3 2 2 1 1 … 4 1 2 6 4 5 3 … I

Figure 5: An example of a swap mutation strategy.

8 9 10 11 12 13

14 15 16 17

18 19

4 5 6 7

1 2 3

A
B C D

E F G H
I J K L

M N O P

Q R S

T U

Figure 6: Layout of the testing road network.

Table 1: Link attributes of the road network.

Link t0i (h) Ci (Veh/h) Link t0i (h) Ci (Veh/h)

1–2 3.6 1,600 9–10 2.2 2,000
1–4 1.5 1,700 9–14 2.8 1,600
2–3 2.4 1,700 10–11 1.8 2,200
2–6 2.1 2,200 10–15 2.5 1,700
3–7 1.8 1,900 11–12 1.5 2,400
4–2 3.4 1,600 11–15 1.9 2,000
4–5 2.3 2,000 12–13 1.7 2,200
4–10 2.4 1,500 12–16 1.8 2,200
5–6 1.8 2,200 12–17 2.3 2,400
5–11 2.1 1,600 13–17 1.9 1,600
6–7 2.0 2,400 14–15 1.7 1,700
6–12 2.0 1,400 14–18 1.7 2,200
7–12 2.4 2,200 15–16 1.7 2,000
7–13 1.9 1,600 15–19 2.0 1,600
8–4 3.3 2,000 16–17 1.3 2,000
8–9 1.4 2,100 16–19 1.8 1,700
8–18 4.4 1,700 17–19 2.9 2,000
9–4 2.1 2,200 18–19 2.6 2,200
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26 days. Figure 8 depicts the convergence process of the
fitness values, which converges after 197 iterations. +e best
fitness value in the initial GA population is 0.231, and the
fitness value reaches 0.612 after convergence.

In practice, the empirical restoration strategy, i.e., flow-
first strategy (FFS), is commonly used. FFS determines the
time sequence of restoration activities by link flows from
highest to lowest and covers as many links as possible until
the budget is exhausted. According to the link flows listed in
Table 2, we generate a restoration scheme shown in Figure 9
following the FFS. In order to assess the efficiency of the
optimal RNRS, we compare this optimal RNRS with the FFS.
Table 4 lists the restoration results of the two strategies. Both
strategies exhaust almost the same portion of the budget and
cover 12 disrupted links. However, the optimal RNRS has a
shorter makespan and produces much higher Rp and Rr.
Obviously, the optimal RNRS outperforms the FFS, which
indicates that the proposed method can recover the dis-
rupted road network more quickly and generate fewer traffic
delays.

Figure 10 presents the postdisaster TSTT evolution
trajectories of the two restoration strategies. It is clear that
TSTT has a significant fluctuation following the day-to-day
traffic dynamics. Under the optimal RNRS, the postdisaster
TSTT increases evidently and reaches the maximum equal to
3.12 × 106 on day d � 2. As more links are recovered, TSTT
gradually decreases. It is noting that although all the res-
toration activities are completed on day d � 26, TSTT does
not stop immediately and converges to a stationary (equi-
librium) state on day d � 31. Under the FFS, it takes 7 days
for the network flows to reach the equilibrium state after the

disaster and the equilibrium state continues for 14 days. +is
is because the FFS does not recover a new route till day
d � 20; thus, the network capacity does not increase until
day d � 20.

Since the road network flows cannot reach an equilib-
rium state overnight due to the network capacity variation, it
is problematic to adopt UE models to simulate the traffic
dynamics in this case. TSTT during the restoration make-
span (i.e., 26 days) obtained by a day-to-day dynamics model
and UE model for the two restoration strategies is compared
in Figure 11. From the comparison of results, it is known
that TSTT is less under a UE model than under a day-to-day
dynamics model.

More damage scenarios are generated to verify our
proposed method and analyze the two objectives. We
consider 3 damage scenarios, where 18–20 links in the
dashed-line circle in Figure 6 are randomly selected as the
damaged road segments. For each scenario, there are Ci

21(i �

18, 19, 20) cases when i road segments are selected randomly
to be damaged from the 21 road segments. +e box plot for
Rp andRr of each scenario is presented in Figure 12. It can be
found from Figure 12(a) that the maximum, minimum,
median, upper quartile, and lower quartile of Rp all decrease
as more road segments are damaged. As shown in
Figure 12(b), the maximum and upper quartile of Rr de-
crease as more road segments are damaged. +is phe-
nomenon is in line with the fact that a network with more
damaged road segments has lower resilience. It is also ob-
served from Figure 12(b) that the lower quartile and the
minimum of Rr keep constant in the three damage scenarios,
which reveals that the three damage scenarios have the same
worst-case optimal RNRS.

5.3. Sensitivity Analysis. In this subsection, we discuss the
effects of key parameters including the number of work
crews, travelers’ sensitivity to travel time, availability of
budget, and decision makers’ preference on the restoration
results. +e sensitivity of every single parameter is analyzed
by assuming other parameters are constant [47,48].

5.3.1. Number of Work Crews. Table 5 presents three op-
timal RNRSs for three differentR. It is clear that the variation
in R only affects the restoration time sequence but does not

Table 2: Restoration duration and cost of each disrupted link.

Link ID ei (day) ci qi,0(Veh) Link ID ei (day) ci qi,0 (Veh)

A 6 360 193 L 7 360 206
B 7 440 548 M 6 290 364
C 4 280 304 N 8 600 353
D 6 370 201 O 5 460 458
E 6 360 255 P 6 500 302
F 7 450 280 Q 8 510 268
G 8 640 260 R 8 480 630
H 5 170 175 S 5 450 423
I 9 590 752 T 7 420 515
J 5 240 615 U 5 350 832
K 6 340 478

Table 3: Parameter values used in this study.

Parameters Value
Maximum allowed makespan Mmax � 60
Link flow evolution rate v � 1
Travelers’ sensitivity to travel time λ � 0.5
Travelers’ memory length m � 3
Total number of work crews R � 3
Population size popSize � 50
Number of generations Gen � 300
Crossover probability Pc � 0.9
Mutation probability Pm � 0.6
Decision maker’s preference ω � 0.5
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Figure 7: Optimal restoration strategy: (a) time sequence of maintenance; (b) job sequence of work crews.
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change the damaged links to be restored. +e optimal RNRS
of R � 1 has the minimum Rp and Rr, which indicates this
restoration schedule is the worst. When R � 1, M � 76,
which is more than 60; thus Rr � 0. Obviously, a higher R

can reduce M, but the relationship between R and M is
nonlinear. Generally, the restoration results are gradually
improved with the increase in R. However, the growth rates
of Rp and Rr decrease as R increases, i.e., the marginal
benefits of manpower decrease. Additional experiments
indicate that the marginal benefits of Rp and Rr equal to 0
when R � 12, which reveals that overmuch manpower
cannot improve the restoration results but produces re-
source waste. Additionally, insufficient manpower will delay

the restoration period. +us, our proposed methods can be
employed to evaluate manpower allocation plans in real-life
road network recovery.

5.3.2. Travelers’ Sensitivity to Travel Time. Table 6 shows
three optimal RNRSs for three different λ. λ has a significant
impact on the optimal RNRS including the restoration time
sequence and the damaged links to be restored. As λ in-
creases, the makespan is shortened, and both Rp and Rr

increase. +e larger the parameter value of λ, the more
travelers will change their routes and the faster the link flows
evolve to the new equilibrium state, thus causing less TSTT.
Hence, in the actual RNRS, timely release of restoration
information and effective traffic control strategies should be
applied to help travelers to select the optimal route timely,
which can improve the restoration schedule.

5.3.3. Availability of Budget. Table 7 lists the optimal RNRSs
under three different scenarios of budget constraints. +e
optimal RNRSs of B � 5, 000 and B � 7, 000 differ greatly
both in the restoration time sequence and the damaged links

Table 4: Restoration results of the optimal RNRS and FFS.

Evaluation index Optimal RNRS FFS
Rp 0.472 0.404
Rr 0.567 0.533
M 26 28
C 4,990 4,940
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Figure 10: Total system travel time evolution trajectories of the
optimal RNRS and FFS.
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Figure 11: Total system travel time under a day-to-day dynamics
model and UE model.
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to be restored. Compared with B �5,000, the optimal RNRS
under B � 7, 000 covers 5 more damaged links, which ex-
tends the makespan by 9 days and has higher Rp but lower
Rr. It is noting that the restoration schedule does not change
when B increases from 7,000 to 8,000.+is is because that the
manpower is insufficient.+us, simply increasing the budget
and keeping the workforce unchanged cannot improve the
restoration schedule. +erefore, the monetary resources and
the manpower should be matched.

5.3.4. Decision Maker’s Preference. Table 8 indicates two
optimal RNRSs for two different ω. Obviously, ω has a
significant effect on the restoration schedule including the
restoration time sequence and the damaged links to be
restored. Compared with ω � 0.5, the optimal RNRS with
ω � 0.3 is involved with 2 less damaged links, thus resulting
in a lower Rp, M, and C but higher Rr, which represents
more traffic delays and a shorter makespan. Hence, decision
makers should make an optimal tradeoff between Rp and Rr.

Table 5: Effect of R on the optimal RNRS.

R 1 3 5
Rp 0.364 0.472 0.519
Rr 0.000 0.567 0.717
M 76 26 17
C 4,990 4,990 4,990
Optimal RNRS Work crew 1: E-M-T-I-R-Q-K-J-P-S-U-O Work crew 1: E-I-J-S Work crew 1: E-Q
— — Work crew 2: M-R-K-U Work crew 2: M-K-U
— — Work crew 3: T-Q-P-O Work crew 3: T-J-O
— — — Work crew 4: I–S
— — — Work crew 5: R–P

Table 6: Effect of λ on the optimal RNRS.

λ 0.3 0.5 0.7
Rp 0.357 0.472 0.505
Rr 0.533 0.567 0.600
M 28 26 24
C 4,940 4,990 4,480
Optimal RNRS Work crew 1: A-K-E-J-U Work crew 1: E-I-J-S Work crew 1: A-I-E
— Work crew 2: D-B-T-L Work crew 3: P–F-M-O Work crew 2: M-R-K-U
— Work crew 3: T-Q-P-O Work crew 2: G-Q-O Work crew 3: P-T-M-U

Table 7: Effect of B on the optimal RNRS.

B 5,000 7,000 8,000
Rp 0.472 0.517 0.517
Rr 0.567 0.383 0.383
M 26 37 37
C 4,990 6,890 6,890
Optimal RNRS Work crew 1: E-I-J-S Work crew 1: E-A-Q-J-H-D Work crew 1: E-A-Q-J-H-D
— Work crew 2: M-R-K-U Work crew 2: M-G-S-I-L Work crew 2: M-G-S-I-L
— Work crew 3: T-Q-P-O Work crew 3: T-P-R-K-O-U Work crew 3: T-P-R-K-O-U

Table 8: Effect of ω on the optimal RNRS.

ω 0.3 0.5
Rp 0.413 0.472
Rr 0.617 0.567
M 23 26
C 4,390 4,990
Optimal RNRS Work crew 1: E-A-B-C Work crew 1: E-I-J-S
— Work crew 2: M-G-I Work crew 2: M-R-K-U
— Work crew 3: T-P-Q Work crew 3: T-Q-P-O
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6. Conclusions

+is paper focuses on the resilience-based optimization of
postdisaster road network restoration strategy. A TSTT-
based function is used as the network performance indicator.
Since the equilibrium-based methods cannot capture partial
user equilibrium, a link-based day-to-day traffic model is
employed to compute TSTT. We develop two resilience
metrics to evaluate the effectiveness of the restoration
strategy, i.e., the resilience of performance loss and the
resilience of recovery rapidity.+e former is calculated based
on the network performance, and the latter is developed
according to the restoration makespan. +e restoration
optimization problem is formulated as a resilience-based bi-
objective mixed integer programming model, which aims to
maximize the network resilience considering resource
constraints.+en, a genetic algorithm is applied as themodel
solution.

+e proposed method is validated through a case study.
+e results show that our method can provide an effective
reference for transportation agencies to schedule post-
disaster restoration activities. Compared with FFS, the
optimal restoration strategy can reduce traffic congestion
and shorten makespan. +e comparison between the
computational results using the day-to-day dynamics
model and UE model explains why a link-based day-to-day
dynamics model is preferred in this study. +e sensitivity
analyses of several key parameters reveal that the increase
in the number of work crew or budget can improve the
restoration schedule, but the marginal benefits of these two
kinds of resources decrease. When either of the two re-
sources exceeds a certain level, the restoration schedule will
not be further improved. Travelers’ sensitivity to travel time
or decision makers’ preference has a significant effect on
the restoration schedule including the restoration time
sequence and the damaged links to be restored. As trav-
elers’ sensitivity to travel time increases, the resilience of
performance loss and the resilience of recovery rapidity will
increase.

Future work should (1) consider some uncertainties, e.g.,
duration of restoration activities, traffic demands, and the
restoration cost during the decision process; (2) develop a
path-based day-to-day traffic model to simulate the PUE
during the restoration process; (3) investigate the joint
optimization of road network restoration and traffic control
strategy; and (4) develop more intelligent algorithms and
compare the efficiency of these algorithms to find a more
suitable model solution.
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