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Dynamic path flows, referring to the number of vehicles that choose each path in a network over time, are generally estimated with
the partial observations as the input. ,e automatic vehicle identification (AVI) system and probe vehicle trajectories are now
popular and can provide rich and complementary trip information, but the data fusion was rarely explored. ,erefore, in this
paper, the dynamic path flow estimation is based on these two data sources and transformed into a feature learning problem. To
fuse the two data sources belonging to different detection ways at the data level, the virtual AVI points, analogous to the real AVI
points (turning movements at nodes with AVI detectors), are defined and selected to statically observe the dynamic movement of
the probe vehicles. ,e corresponding selection principles and a programming model considering the distribution of real AVI
points are first established. ,e selected virtual AVI points are used to construct the input tensor, and the turning movement-
based observations from both the data sources can be extracted and fused. ,en, a three-dimensional (3D) convolutional neural
network (CNN) model is designed to exploit the hidden patterns from the tensor and establish the high-dimensional correlations
with path flows. As the path flow labels commonly with noises, the bootstrapping method is adopted for model training and the
corresponding relabeling principle is defined to purify the noisy labels. ,e entire model is extensively tested based on a realistic
road network, and the results show that the designed CNN model with the presented data fusion method can perform well in
training time and estimation accuracy. ,e robustness of a model to noisy labels is also improved through the bootstrapping
method. ,e dynamic path flows estimated by the trained model can be applied to travel information provision, proactive route
guidance, and signal control with high real-time requirements.

1. Introduction

Unlike the static path flows, which represent the average
path flows during a long period, the dynamic path flows
represent the real-time path flows in a relatively small time
interval and the corresponding estimation problem becomes
more challenging. ,e dynamic path flow data have a wide
range of applications, such as the analysis of user travel
patterns, large-scale traffic network simulation, and traffic
planning and management. ,e path flow and OD matrix
estimates are sometimes similar and interdependent. ,e
OD flows can be assigned to obtain path flows and the sum
of several path flows can be used to obtain one specific OD
flow. Due to the high cost and less efficiency of manual

survey for directly observing path flows, a typical way has
been widely used to indirectly estimate them from observed
link flows.

For this way, numerous mathematical programming
models have been established to solve the OD demands that
are most consistent with observed link flows under certain
assumptions, but the results remain unsatisfactory. ,e
major reason is that the information provided by the ob-
served links is limited. It is common for a network that the
number of OD pairs is much larger than the number of
observed links [1, 2], which is often referred to the under-
specified problem. More information such as prior OD
matrices is needed and the bi-level programming framework
is mostly applied among existing studies [3, 4]. At the upper
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level, optimal solutions are searched according to certain
objectives that minimize the distance between the possible
estimates and observed values, including generalized least
squares, entropy maximization, etc. At the lower level where
dynamic traffic assignment (DTA) is usually conducted,
estimated OD flows are mapped to observed link flows.
Unfortunately, without observed trip information as con-
straints, the assumptions related to path choice and the
driving behavior of a traveler using the DTA model may be
inconsistent with realistic conditions [5].

Compared with link traffic counts, the AVI data and
probe vehicle trajectories can provide more information
about trips. ,e current AVI system is generally composed
by radio frequency identification device-based detector,
Bluetooth detector, and video-based detector. ,e unique
vehicle’s ID and passing time can be recorded with the
vehicle passing the detector. By matching vehicles’ IDs, the
traffic counts and travel time of partial paths can be further
obtained. In the current studies concerning path and OD
flow estimations, the AVI information is generally incor-
porated in the following three ways: matched volume as
prior observed OD data [6, 7] or observed counts of partial
complete paths [2, 8]; the link choice [4] or lagged obser-
vation proportion based on travel time [6]; and recorded link
volume [2, 8]. Compared with the AVI data, the probe
vehicle trajectories are collected by GPS-enabled devices and
the prior OD matrices and users’ path choice behaviors
could be further discovered based on the sampled and
complete trajectories. Several researches have been con-
ducted using either vehicle trajectories alone or as fused with
the observed link flows [9, 10]. ,e information provided by
the AVI system and the probe vehicles has different char-
acteristics. Taking the video-based AVI system widely ap-
plied in China as an example, every vehicle passing the
detector can ideally be detected, but the coverage rate and
matched vehicles may still rapidly degenerate when the
network size increases [8]. Recently, with the rapid devel-
opment of online car-hailing market, more vehicle trajec-
tories can be collected and the spatial coverage is
considerably wide [7], but the comparatively low penetra-
tion rate remains a problem [11]. From the discussion, it is
evident that the AVI and the probe vehicle systems have
complementary characteristics in both spatial coverage and
vehicle collection. Hence, fusing these two types of data is
promising for dynamic path flow estimation but has rarely
been explored.

Typically, dynamic path flow estimation is regarded as an
optimization problem that searches for the most consistent
path flow estimates and the solution is a high-dimensional
time-dependent path flow matrix [12]. For mathematical
programming models, the trip information obtained by
fusing these two data is supposed to be described analyti-
cally. And the model accuracy may improve as rich infor-
mation is added, yet the solving capacity of the model may
become more difficult and inefficient. Considering the rich
and implicit travel features stored in the AVI and the probe
vehicles data, the path flows estimation can potentially be
transformed from an optimization problem to a data-driven
feature learning problem. Neural networks (NNs) have long

been proven as an effective measure to learn hidden patterns
from given samples and make further predictions.

Recently, with the emergence of deep learning algo-
rithms, the NN has undergone a transition from shallow NN
to deep NN (NN with multiple layers), which is much more
powerful in learning complex and abstract features. Several
researchers have explored the use of deep NNs for OD flow
estimation. Huang et al. [7] used the long short-term
memory model with time sequence of trajectory OD flows as
the input. ,e temporal dependency between successive
time steps is considered. ,e labels of partial OD pairs are
provided by AVI data and the label propagation is adopted
to infer uncovered OD pairs. An improved 3D-CNN model
(Res3D), which can capture the features along both spatial
and temporal dimensions, was designed by Tang et al. [13].
,e model input is a cube of three stacked matrices, and for
eachmatrix, the set of links installed by AVI detectors is used
to represent the segment volume, matched volume, and
matched travel time. ,e training samples are provided by a
parallel simulation system and the model can be applied
through transfer learning. In these two models, the AVI and
trajectory data are still used separately as model inputs. ,e
success of deep NNs relies heavily on supervised training
and sufficient labeled data samples. ,e OD flow labels used
by Huang et al. [7] and Tang et al. [13] are, respectively,
obtained from AVI data and an exogenous simulator.
However, it is difficult to guarantee that the label data are
without noises, which is also common in the field of image
recognition. And the label noise is potentially more harmful
than feature noise, which affects the observed values of the
feature [14]. It is inevitable to consider how to learn samples
with noisy labels.

As suggested by Tang et al. [13], the 3D-CNN structure is
effective for capturing the spatial-temporal patterns in link
observation-based tensor. In this paper, the 3D convolutions
are also introduced to design a deep NN for estimating the
dynamic path flows, but the input tensor is constructed
based on the turning movements of network nodes to ex-
press and fuse the multiple types of AVI and probe vehicle
observations. ,e contributions of this study are highlighted
below:

(1) ,e AVI and probe vehicle data produced by dif-
ferent detection ways are fused and the mobile de-
tection of probe vehicles is changed to stationary
detection by properly arranging the virtual AVI
points. ,e principles for selecting the turning
movements as virtual AVI points and a corre-
sponding programming model are established, and
with the distribution of real AVI points, data-driven
feature learning characteristics and input tensor size
related to model efficiency are comprehensively
considered.

(2) Based on the selected virtual AVI points, the turning
volumes, matched volumes, and matched travel time
provided by AVI and probe vehicle data are repre-
sented and hierarchically combined in the input
tensor to implicitly represent the travel patterns of
networks. ,e concrete architecture of the 3D-CNN
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model is designed to automatically recognize the
hidden patterns behind these observations and es-
tablish a high-dimensional mapping to dynamic path
flows.

(3) To cope with noisy path flow labels, especially with
systematic errors, a self-correcting algorithm boot-
strapping commonly applied for image classification
tasks is extended to variable regression problem. ,e
key is the re-labeling process gradually purifying the
noisy labels, and the relationship between the gen-
erated path flows and the observed turning flows is
used to determine whether to correct the original
labels with model outputs.

2. Problem Statement

In this paper, we use the characters lowercase (a), bold
lowercase (a), uppercase (A), bold uppercase (A), and
uppercase calligraphy (A) to represent scalar, vector, set,
matrix, and tensor, respectively. Each set has an attribute of
length that can be expressed by |A|.

Figure 1 illustrates the research background and relevant
definitions and variables. We consider an urban road net-
work specified by a directed graph G � (N, L), where N

denotes the node set of the network, N � 1, . . . , n{ }, n ∈ N,
and L denotes the link set of the network, L � 1, . . . , l{ },
l ∈ L. P is the path set of the network, P � 1, . . . , k{ }, k ∈ P.
,e nodes in N which directly connect to traffic zones are
attracting or generating nodes and constitute the node set
Nse. ,e remaining nodes are cross nodes that represent the
real intersections and constitute the node set Nc. For each
link of node, there are three circles. Along the approaching
direction, the three circles represent left, straight, and right
turns, from left to right. ,e white circle means this ap-
proach has no this turningmovement; otherwise, the circle is
filled with gray. A is the set of all turning movements,
A � 1, . . . , a{ }, a ∈ A. Ase is a subset of A and contains the
turning movements of nodes in Nse. ,e purple circle
represents a real AVI point where the turning vehicles can be
detected by a video-based AVI system. Taking the link l as an
example, several activated lines are drawn near the stop line
in the shooting screens of cameras to automatically detect
and record the passing vehicles’ license plate numbers and
time. ,e set of real AVI points is denoted by Ar.

,e vehicle turning information for each a in Ar can be
directly obtained, and Alibabai and Mahmassani [15] point
out that using intersection turning movements as the basic
field observation instead of links can result in more reliable
estimates of dynamic OD matrices. Hence, the turning
movements of nodes are selected as the basic network el-
ements to construct the input tensor and represent the AVI
and probe vehicle observations. However, compared with
the stationary AVI detection points, the occurrence and
movement of the probe vehicle are dynamic. It is necessary
to study as to how to select the turningmovements fromA to
constitute the virtual AVI point set denoted by Av. For the
virtual AVI point (circle filled with green), it can be thought
that a virtual AVI detector is installed to specially detect the
probe vehicles. ,e turning movement and passing time at

the node for each probe vehicle with unique ID can also be
got through the mapping between the GPS coordinates and
links. ,e real and virtual AVI points can overlap (circles
filled with yellow). Hence, for one network G, the selection
of Av based on the distribution of Ar is important not only
for the representation of probe vehicle data but also for the
fusion with AVI data.

,e 3D-CNN is generally used to process consecutive
video frames for action recognition. ,e corresponding
input is a cube formed by stacking multiple contiguous
frames together. For each frame, like a still image, it is
represented by a three-dimensional tensor involving the
height, width, and channels of the image. For CNNs applied
to the transportation engineering field, in addition to the
model architecture design, the first problem is to organize
the traffic data based on the requirements of CNN. In the
network traffic state estimation, it is common but a little
“rough” to grid the network and use the heatmap as the
input. Based on the virtual AVI point set Av, the selection
and combination of the turning movement-based obser-
vations provided by AVI and probe vehicle systems in input
tensor of NN is important for the implicit representation of
the road network.

,e prior path flows commonly used in traditional
mathematical models can be taken as one of the sources of
path flow labels. From the viewpoint of estimation accuracy,
it is desirable that the prior path flows should be a close
estimate of the true path flows. However, Yang et al. [3]
pointed out that prior OD flows may have random and
systematic errors compared with the true values. ,is is also
true for path flows. Some methods have been developed to
deal with the problem of noisy labels and can be approxi-
mately divided into three categories: (1) noise-robust
models, (2) data cleaning methods, and (3) noise-tolerant
learning algorithms [14]. ,e noise-robust models rely on
initializing the start point of gradient descent and early
stopping mechanism to avoid (over) fitting to noisy labels.
,e second category aims to improve the quality of training
data by identifying and removing the samples with incorrect
labels. Considering the difficulties of obtaining training
samples paired with labels and the desire to make full use of
each sample’s information, the third category’s methods are
focused and the bootstrapping method which has been used
by Reed et al. [16] and Wu et al. [17] is extended from the
classification problem to the variable regression problem.

3. Methodology

To address the problems summarized in the previous sec-
tion, the modeling process is illustrated in Figure 2 and there
are three main steps. In Step 1, the principles of optimally
selecting the turning movements as virtual AVI points to
fuse the AVI and the probe vehicle data is specified and
modeled as a binary linear programming model. In Step 2,
the AVI and probe vehicle observations based on turning
movements are selected and organized in the input tensor.
And the architecture of the designed 3D-CNN model and
working process are explained. Finally, for path flow labels
with errors, the bootstrapping method which can re-label
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and gradually purify the noisy labels is used to train the
model.

Step 1. Virtual AVI Point Selection
,e selected virtual AVI points are directly used to

construct the input tensor of NN. Hence, except for the trip
information of probe vehicles, the distribution of real AVI
points, feature learning characteristics, and tensor size
should also be considered.

Based on the algorithm proposed by Castillo et al. [2]
about selecting links to be scanned for predicting path flows,
a revised binary linear programming model is established.
,e model is shown as follows:

minZ � 􏽘
a∈A

u
v
a + pa

max ∗ u
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se
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Figure 1: Illustration of the research problem.
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where uv
a is the binary decision variable such that it takes the

value 1 when the turning movement a is selected as the
virtual AVI point, and 0, otherwise; use

a and ur
a are 1 when a

belongs to Ase and Ar, and 0, otherwise; pamax is the
maximum number of turning movements traversed by one
path; bk

a belongs to B, which describes the relationship
between the turning movements and each path of P.

,e algorithm proposed by Castillo et al. [2] minimizes
the number of scanned links with respect to two principles.
Here, three principles are presented as follows:

(1) Any path k of P contains at least one virtual AVI
point;

(2) For any two paths k1 and k2of P, each path can differ
from the other through theminimum selected virtual
AVI points of itself;

(3) Attempt to select the minimum virtual AVI points
that are not in Ase set and make the selected points
overlap more real AVI points.

,e first principle is similar to that given by Castillo et al.
[2] and realized by Constraint (2). For the second principle,
Castillo et al. [2] allowed the scanned link which is in path k1
and not in path k2 or vice versa to distinguish the two paths.
,is means that for the two pairs of paths (k1, k2) and
(k2, k1), the selected links can be the same.,is is reasonable
because the relationship between the path flows and ob-
served counts is expressed by mathematical formulations
and each path is guaranteed to have at least one scanned link.
However, too many scanned links can potentially be
assigned to several paths or paths with low demands. For the
deep NN used in this study, the information of each path
should be independent and integrated. Hence, each path
should depend on the turning movements of itself to differ
from other paths and for (k1, k2) and (k2, k1), the selected
turning movements are different. Equations (3) and (5) can
ensure this principle.

,e last principle is reflected in the objective function (1),
which includes all the three terms. To minimize the number
of selected virtual AVI points, the decision variable uv

a must
be added as the first term.,e second term is to constrain the
selected virtual AVI points not from Ase, except in the cases
where only the turning movements that belong to Ase can
distinguish the two paths. ,is setting can help focus on the
operation of probe vehicles in real intersections. ,e third
term urges more overlaps between the virtual and the real
AVI points. When the real AVI points are also selected as
virtual AVI points, the objective value can be further re-
duced while satisfying the first two principles.

After solving the optimization model above, only a small
part of Ase is selected and the dependency of paths and the
passed turning movements cannot be completely expressed
in the input tensor. ,is information is also important and
useful for the estimation problem. ,us, the residual virtual
points ofAse are also added toAv.,en each path has its own
start and terminal virtual points and the number of probe
vehicles between the start/terminal point and each of the
other passed points is the same. Please note that this se-
lection method relies on the exogenous and static path

information (path set P and turning movement-path matrix
B), which can be obtained through other data sources (e.g.,
the probe vehicle trajectories) or methods (e.g., the path flow
assignment from known OD flows). It is suitable for stable
network with not heavy traffic congestions [1, 3, 18]. If the
effect of traffic congestion on travel time is significant, the
path flow dynamics should be considered inside the model
through the flow-related constraints.

Step 2. Input Tensor Construction and Model Architecture
Design

3.1. Data Fusion and Input Tensor Construction. ,ere are
several uniform and continuous time intervals for estima-
tion denoted by H � 1, . . . , h{ }, h ∈ H. ,e operation of
network traffic within one time interval h can be seen as a
video frame (also a still color image). ,e corresponding
abstract expression is the three-dimensional tensor with the
AVI and probe vehicle trajectory data merged, as shown in
Figure 3. To implicitly express the travel patterns of one
network, we define three main types of observations based
on turning movements from these two data sources: turning
volumes, matched volumes, and matched travel time. ,e
last two observations can represent the local and global end-
to-end trip information. As for the turning volumes, it helps
to express richer information.

From Figure 3, we can see that there are three square
matrices like the three channels of one color image and for
each matrix, the rows and columns represent the selected
turning movements of Av. ,e matrix in channel 1, turning
and matched volumes from AVI data, is represented by
Qh ∈ R|Av|×|Av|, where the diagonal element
Qa,a,h(Q ∈ R|Av|×|Av |×|H|) denotes the number of detected
vehicles passing turning movement a during time interval h

and the off-diagonal element Qa,a′,h denotes the number of
matched vehicles from turning movement a to a′. Similar to
Qh, the matrix Qh

′ ∈ R|Av|×|Av| in channel 2 represents the
sampled turning vehicles and matched vehicles from the
probe vehicle data. ,e matrix in the last channel, matched
travel time, is represented by Th ∈ R|Av|×|Av |, where only the
off-diagonal elements may be nonzero, and
Ta,a′ ,h(T ∈ R|Av|×|Av|×|H|) denotes the average travel time for
the matched vehicles from the turning movement a to a′
during interval h. Here, it is assumed that the travel time
measured by the AVI system is more accurate than that of
probe vehicles, because the AVI system can detect more
regular vehicles. If the travel time from a to a′is positive, the
reverse travel time and the number of matched vehicles are
negative.

,e stack of these three matrices forms a temporal cell
Δh ∈ R|Av |×|Av|×3. Considering the complementary charac-
teristics of AVI and the probe vehicle data in vehicle col-
lection, the matrices Qh and Qh

′ are placed in adjacent
channels. ,e travel time obtained from these two data
sources is combined in one matrix Th to avoid possible
inconsistency between them. From the first channel to the
last channel of Δh, we can see the matched regular vehicles
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from the AVI data, the matched probe vehicles, and the
corresponding average travel time between any two turning
movements in order. ,e trip information contained in the
collected AVI and the probe vehicle data within interval h

can be well organized and expressed hierarchically.

3.2. 3D-CNN Architecture Design. For one network, the
prior and estimated path flow matrices are represented by
Y ∈ R|H|×|P| and Y′ ∈ R|H|×|P|. In a dynamic estimation
problem, the generated Yh,k vehicles in the origin of path k

will be observed in the following time intervals h, h, . . .,
h + w′, and (w′ + 1) is the maximum number of time in-
tervals required to travel any path of the network [18].
Hence, for the estimate of one row vector Yh,:, the temporal
cells from h to h + w′ are needed and can be seen as a se-
quence of video frames of network operation.

Referring toVGG-Net, which is a powerful two-dimensional
CNNmodel presented by Simonyan and Zisserman [19], a 3D-
CNN model is designed and shown in Figure 4. ,e VGG-Net
has a very deep convolutional (conv.) architecture and themodel
capability is increased as the network becomes deeper, but it
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leads to a heavier computational cost. Considering this tradeoff
and experimental analysis, the number of 3D conv. blocks and
weight layers (including conv. and fully connected (FC) layers)
are reduced to 4 and 9, respectively. Each block has two conv.
layers, and the corresponding parameters are denoted as “Conv
(kernel size: depth, height, width, channels)–(number of ker-
nels)–(conv. stride: depth, height, width)”. Besides the first conv.
layer, the conv. stride in the height andwidth directions, which is
(1, 1) in VGG-Net, is changed to (2, 2). As the number of conv.

layers decreases, the pooling players used in VGG-Net are
completely removed, which may destroy the spatial features of
maps.

,e input of 3D-CNN containing several temporal cells
Δh is denoted by X ∈ R|H|×|Av |×|Av|×3. As shown at the top of
Figure 4, the 3D convolution kernel is also a cube and can
move not only in height and width but also in depth. ,e
kernel size on height and width (3, 3) is consistent with
VGG-Net to extract spatial features. However, on depth, the
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kernel size is set as (w′ + 1) in the first conv. layer and 1 in
the other conv. layers. Combining the moving stride on
depth set as 1, it means that every (w′ + 1) time interval of X

is treated as a group to extract the spatial-temporal features
and estimate the path flows in the first interval. In addition,

the number of feature maps for each group gradually in-
creases in late conv. block with the rise of convolution
kernels. ,e data-processing procedure in each block can be
formulated as follows:

R
|H|− w′,...,16( ) � Conv 3 d 1 X

(|H|,...,3)
􏼐 􏼑,

R
|H|− w′,...,128( ) � Conv 3 d 4 Conv 3 d 3 Conv 3 d 2 R

|H|− w′ ,...,16( )􏼒 􏼓􏼒 􏼓􏼒 􏼓,
(6)

where R is the output tensor of each conv. block.
After hierarchical feature extraction, combination, and

transformation, multiple local and spatial-temporal traffic
patterns are recognized and finally mapped to prior path
flows through a single FC layer.

Step 3. Robustness to Noisy Labels
,e key to bootstrapping is the designed judgment and

the re-labeling process, which can be placed in the outer loop
or incorporated in the loss function [17]. ,rough re-labeling
the samples while training, more accurate labels may lead to a
better model, which allows for further label clean-up, and the
learner bootstraps itself in this way. An established framework
of bootstrapping with the re-labeling process in the outer loop
is described in Figure 5.

From Figure 5, you can see that there are two parts (2-1
and 2-2) in the training phase. For the pretraining part (2-
1), its existence is not necessary and depends on whether
the defined relabeling principle heavily relies on the output
of the NN model itself. Taking the multi-class classification
task of the NNmodel as an example, in the work of Liu et al.
[20], a confidence policy curve, which is independent of the
model output (the probabilities that the input sample
belongs to each given class), is defined to determine the
selection of training and prediction labels. But for the self-
error-correcting CNN model proposed by Wu et al. [17],
the label of one training sample would be re-labeled if the
probability of the predicted label given by the model is
greater than the threshold probability. In this case, the
pretraining part is needed and the mini-batch stochastic
gradient descent (SGD) algorithm is used. Combining the
right part of Figure 5 and ignoring the elements marked in
red, you can see there are t e epochs and for each epoch,
m b samples are first randomly selected. ,en the input
tensor Xs and label matrix Ys of each sample are stacked to
form X and Y, respectively. Finally, the SGD can optimize
the model parameters based on the batch-size input tensor
X and label dataY. ,rough the pretraining with data
sample set S3 (the size of S3 is not big but the labels of
samples are of higher quality), the model parameters are
initialized to enable the model to find the correct gradient
descent direction during the next iterative training process.

In this study, the bootstrapping algorithm is used to
handle the prior path flow labels with noises. Yang et al. [3]
presented two indexes α and ρ, which indirectly measure the
systematic and the random variations between the true OD

matrix and the prior one. Compared with the random error,
the systematic error may have a significant influence on
model learning. ,e labels belong to different volume levels,
similar to the images belonging to different classes. α is also
used in OD matrix estimation to guarantee that the current
flow levels are reproduced on an average [21]. And with the
mini-batch SGD algorithm used, the gradient descent di-
rection can still be found among the training samples whose
labels contain random errors through iterative training.
Hence, α is selected as the re-labeling indicator and con-
sidering the dynamic path flow estimation and the traffic
counts of turning movements directly obtained from AVI
system, the calculation of α within time interval h is changed
as follows:

αh �
1

A
r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘
a∈Ar

􏽐
h
w�h−w′ 􏽐k∈Py

w
k δ

wk
ha

q
h
a

, (7)

where qh
a is the measured traffic counts of turning movement

a within interval h; yw
k is the flow of path k departing the

origin in interval w; δwk
ha is defined as the contribution of yw

k

passing the turning movement a during interval h and the
calculation can refer to the research of Ashok and Ben-Akiva
[18].

,e elements marked in red in Figure 5 represent the re-
labeling process of part 2-2, which is key to the boot-
strapping method. Combining equation (7), the calculation
of α includes two steps: (1) estimate the flows of the turning
movements (selected in Xs and with AVI detectors installed)
based on the prior path flows Ys and forward result of NN
Y′s , respectively; (2) compare the estimated turning
movement flows and the corresponding measured values in
Xs, and calculate the average ratio α. For theYs andY′s, if the
α′s is closer to 1 than αs, the original path flow labels are
replaced by the estimated labels. It is noted that to use α, the
number of temporal cells Δh of Xs must be larger than
(2 × w′ + 1). Only in this way, the path flows of more than
(w′ + 1) time intervals in Y′s can be estimated and α of at
least one time interval can be calculated. For the α of several
time intervals, the corresponding average value can be used
in the re-labeling process.

3.3. Case Study. In this section, a realistic urban road net-
work in Qingdao, China, is used to validate the proposed
model. Considering the designed 3D-CNN model as the
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basis of the entire model, the architecture of deep NN is not
separately tested. ,e method of turning movement selec-
tion and the robustness of the model with bootstrapping
algorithm to noisy labels are focused.

3.4. Network and Dataset Description. ,e topology of the
validating network is shown in Figure 6. ,e network
contains 297 turning movements and the number of real
AVI points is 70, accounting for 31.5% of the cross nodes’
turns. To generate the large dataset required for model
testing, the study of Tang et al. [13] was referred to and the
micro-simulation model of validating the network is first
established and calibrated to prepare the basic dataset. ,e
model calibration process commonly includes four steps
[22]: (1) ensuring key input data (e.g., digital road network,
traffic management and control plan) are accurate; (2)
calibrating the traffic demands; (3) correcting the related
parameters of the simulation model (e.g., car-following,
lane-changing parameters, and the distribution of desired
speeds); and (4) selecting the evaluation indexes for vali-
dation. Steps 1 and 2 are the base and are completed by using
the macro and micro simulation software VISUM and
VISSIM together. ,e VISUM is good at modeling a large
network and has the TFlowFuzzy module [23], which can
correct the OD and path demand matrix based on the
observed traffic data. Except for the road network image with
high resolution for network modeling, the AVI data for the
real AVI points in validating the network were also collected

from 7:30 AM to 8:30 AM from November 25 to December
1, 2016. ,e average flows of these turning movements were
used as observed values in the VISUM and the improved
static OD matrix and assigned path flows were be obtained.
,e established macro-VISUM model can be directly im-
ported into VISSIM to further complete the Steps 1, 3, and 4.
Considering the micro-simulation model in this paper
mainly used to validate the path flow estimation method, the
related operational parameters like the distribution of de-
sired speeds are focused and calibrated in Step 3. ,e errors
between the estimated and the actual turning flows are used
in Step 4 to evaluate the accuracy of the simulation model.
,e calculated average relative error is 6.26% less than 15%,
and it can be accepted based on the work of Antoniou et al.
[22].

,en, the calibrated dataset during the morning peak
period is taken as the basis to generate rich scenarios
covering noncongested and more congested periods, by
adjusting the input volumes and adding the Gaussian noises.
,ere are six levels of the VISSIM input volumes from −0.3
to 0.2 at 0.1 intervals. And the positive or negative volume
level represents the corresponding ratio the basic input
volumes will increase or decrease by. Under each level, the
Gaussian noises (ranging from 5% to 30%) are superimposed
on the input volumes and path choice probabilities eight
times. For each time, the simulation model with added
noises will run five times with different random seeds.
Hence, there are 40 scenarios for each level and the total
number of scenarios is 240. ,e number of paths is 311 and

1. Input

3. Testing

Input tensor Xs

m_b samples randomly selected from S2

Label dataYs 

NN model

Estimates Y′
s

Forward

Y

N
End

Start

YN

Y

N

2. Training

e = 1

s = 1, X = [], Y = []

Re-labeling index α
calculation

|α′s – 1| < |αs – 1|

Ys = Y′
s

Train the NN model using stochastic gradient descent
algorithm based on (X, Y) 

e = e + 1

e ≤ t_e

s ≤ m_b

X.stack (Xs), Y.stack (Ys), s = s + 1

Data sample sets: S1 pre-
training set, S2 training set, S3
testing set. �e number of
samples in S1 and S3 is less
than that of S2, but their labels
are of higher quality.
Model parameters: t_e
training epochs, m_b batch
size, learning rate, activation
functions.

2-1.
Pre-training

2-2.
Training with

re-labeling

�e performance of NN
model is evaluated using S3.

Figure 5: Framework of model training using bootstrapping algorithm.
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the market penetration for probe vehicles is set as 10%. ,e
expanded dataset may be not real, but it is valid for model
integrity training and testing.

Here, we define the estimation time interval to be 10
minutes and the one hour simulation period of any scenario
can be divided into 6 intervals. ,e longest trip time among
all scenarios is 17 minutes and the value of (w′ + 1) is thus 2.
Considering at least (2 × w′ + 1) temporal cells of input
required for bootstrapping, the X ∈ R3×|Av|×|Av|×3 and the
corresponding true path flows Y+ ∈ R2×311 can be paired to
form a sample, and each scenario can produce four samples.
,e total number of samples is 960, and the sample size of
pretraining, training, and testing sets are, respectively, 120,
720, and 120 samples.

3.5. Evaluation Metrics and Loss Function. Four error
metrics are used for our evaluation: mean absolute error
(MAE), relative MAE (%), root mean square error (RMSE),
and relative RMSE (%). For m pairs of the true and estimated
path flows (Y+ ∈ R|H|×|P|, Y′ ∈ R|H|×|P|), the units of MAE
and RMSE are veh/10min, and the calculation formulas are
as follows:

RMSE �

�����������������������

􏽐
m
s�1 􏽐

|H|
h�1 􏽐

|P|
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(8)

For a batch including m b samples of which each is with
a prior path flow Y ∈ R|H|×|P|, the mean squared error (MSE)
is used as a loss function and the calculation is as follows:

MSE �
􏽐

m b
s�1 􏽐

|H|
h�1 􏽐

|P|
k�1 Ys

h,k − Y′sh,k􏼒 􏼓
2

m b
,

(9)

3.5.1. Test 1. Turning Movement Selection. For the target
network, 110 virtual AVI points, accounting for 37% of all
the turning movements, are selected by solving the binary
programming model. ,e number of selected turning
movements belonging to cross and noncross nodes is 78 and
32, respectively. ,irt-seven of the virtual AVI points also
belong to Ar and the overlap ratio is 33.6%. ,e selection of
noncross nodes’ turns can reduce the overall overlap ratio.
To completely reflect the dependency of paths and the passed
points, the residual 43 turning movements of noncross
nodes are finally added to the solution set of the pro-
gramming model, as shown in Figure 7.

To evaluate the efficiency of the proposed method, two
sets of virtual AVI points are defined as follows:

(1) A1: the 297 turning movements of network are all
selected

(2) A2: the 153 turning movements selected by the
proposed method

,e designed 3D-CNNmodel is used and only the model
input is changed according to different sets of turning
movements. Hereafter, the 3D-CNNmodels with A1 and A2
sets are denoted as Model-A1 and Model-A2. ,e pre-
training set is added to the training set and the total number
of training samples is 840. During model training, the major
hyper parameters, including the training epochs, learning
rate, and batch size, were determined based on a grid search
experiment. Here, the best combination is used for general
evaluation. ,e number of training epochs, learning rate,
and batch size is 5000, 1e-6, and 80, respectively. ,e train
losses varying with epochs for Model-A1 and Model-A2 are
shown in Figure 8.,e corresponding training durations are
marked next to the lines.

Notably, the A2 set is the subset of A1; therefore, the
input tensor using A1 set naturally provides much more
information. It means that after the same number of training
epochs, the Model-A1 can extract more abstract features
associated with the labels from the input tensor, which
underlies the phenomenon that the train loss of Model-A1
drops faster, as presented in Figure 8. However, because of
the larger size of the input tensor using A1 the set, more time
is needed to complete the convolutional calculations of conv.
layers. Model-A1 and Model-A2 ran in the same environ-
ment. ,e training time needed by Model-A1 is 111min,
which is approximately 4 times that of Model-A2. After 2250
epochs, the drop speed of Model-A2’s train loss is higher
than that of Model-A1. ,e final train loss of Model-A2 is
7.1% lower than that of Model-A1.

For the four evaluation metrics (RMSE, RMSE%, MAE,
MAE%), the testing results of Model-A1 and Model-A2 on
the entire testing set are (3.65 veh/10min, 45.79%, 1.92 veh/
10min, 24.04%) and (3.58 veh/10min, 44.93%, 1.88 veh/
10min, 23.55%), respectively. It can be seen that the four
metrices of Model-A2 are improved compared with those of
Model-A1. ,e results reveal that the turning movement
selection method can identify the critical turning move-
ments for path flow estimation and largely reduce the
computation cost.

3.5.2. Test 2: Model Learning on Noisy Labels. According to
the label noise analysis in Part 3 of Methodology, the path
flow labels may have systematic and random errors. ,e
prior path flow Yh,k with noises can be generated by

Yh,k � Y+
h,k ×(1.0 − η) × 1.0 − cvfσhk􏼐 􏼑, (10)

whereY+
h,k is the true path flow of path k during time interval

h, σhk is the independent normal random variable of N(0, 1),
η is the bias, and cvf reflects the magnitude of random
variation.
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Based on the results of Test 1, Model-A2 is used for
validation here. Without using the bootstrapping training
algorithm, Model-A2 is trained with training samples from

pretraining and training sets whose labels are noisy. ,e
number of training epochs and learning rate are kept the
same, while the batch size is changed to 120. Table 1 presents
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Figure 7: ,e distribution of optimally selected virtual AVI points.
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the model performance in the testing set under different
combinations of η and cvf.

Table 1 reveals that the labels with systematic errors
have a great influence on the model performance, while the
model is generally insensitive to random errors. All four
metrics increase significantly with an increase in η.
However, under the same value of η, the variations of the
four metrics are slight when cvf increases from 0.2 to 0.6. It
meets our expectation and the (stochastic) gradient descent
algorithm is immune to training samples with random
errors. However, it should be noted that owing to the over-
parameterized NN, the CNN model has the capacity to
(over) fit a subset of labels with random noises. ,e over-
fitting should be avoided.

Considering the existence of the pretraining phase, the
test for bootstrapping algorithm is divided into two parts.
,e model used in Part 1 is the pretrained Model-A2, while
in Part 2, the pretraining phase is skipped. For the pre-
training set, the labels of samples are just added to the
random errors with the cvf set as 0.2. Based on the model
performance measurements of Table 1, the η and cvf are,
respectively, set as 0.4 and 0.2 to generate noises for the
labels of samples in the training set. As for the percentage of
noisy labels in the training set, 0.1, 0.3, 0.5, 0.7, and 0.9 are
used.

In Part 1 and Part 2, the training sets with different
percentages of noisy labels are used to train Model-A2 and
the corresponding model performances on the testing set are
listed in Table 2.

In Table 2, each parenthesis contains two metric values
separated by a forward slash and the difference lies in
whether the bootstrapping algorithm is used for Model-A2’s
training on the training set. For the pretrained Model-A2
used in Part 1, the corresponding four metrics on the testing
set are 7.03 veh/10min, 88.14%, 2.85 veh/10min, and 35.7%.
From the first values of parentheses in Part 1, it can be
observed that the trained model performs gradually worse as
the percentage of noisy labels in the training set increases.
But for the Model-A2 trained on the training set with the
bootstrapping algorithm, it performs better and the per-
centage of noisy labels has less influence on model per-
formance. ,e trends of the values in Part 2 are similar to
those in Part 1, but the values increase overall. It is not
difficult to understand that the weight parameters are
randomly initialized and the convergence speed is slow
without the pretraining phase.

Take the label noise ratio of 70% as an example. For the
models trained with bootstrapping in Part 1 and Part 2, the
train loss, sample loss distribution within one epoch, and
label replaced ratios are shown in Figure 9.

Figures 9(a) and 9(b) indicate that the loss on the testing
set of Part 1 can converge to a good point within the total
5000 iterations, while that of Part 2 keeps decreasing. It
reveals that the pretraining phase can effectively accelerate
the convergence of the model. Owing to the pretraining
phase, the label replacement ratio for training samples with
noisy labels in Part 1 is nearly 100% within the entire
training process, as shown in Figure 9(e). But in Figure 9(f ),

Table 1: Performance of Model-A2 trained by samples with noisy labels.

η 0 0.2 0.4
cvf 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

RMSE veh/10min 3.58 3.56 3.62 5.49 5.45 5.26 8.87 8.81 8.72
RMSE % 44.90 44.62 45.39 68.84 68.36 65.93 111.28 110.58 109.33
MAE veh/10min 1.88 1.87 1.89 2.39 2.37 2.32 3.56 3.56 3.52
MAE % 23.54 23.48 23.76 29.95 29.73 29 44.69 44.6 44.12
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Figure 9: Continued.

Table 2: Test of bootstrapping algorithm for different percentages of noisy labels.

Percentage 10% 30% 50% 70% 90%

Part 1 (with pretraining)

RMSE (3.63/3.55) (4.29/3.55) (5.37/3.56) (6.57/3.58) (8.08/4.45)
RMSE% (45.56/44.50) (53.84/44.50) (67.35/44.60) (82.37/44.88) (101.35/55.83)
MAE (1.89/1.89) (2.05/1.89) (2.36/1.89) (2.75/1.91) (3.27/2.06)
MAE% (23.73/23.72) (25.67/23.72) (29.64/23.75) (34.50/23.94) (41.07/25.89)

Part 2 (without pretraining)

RMSE (3.71/3.74) (4.36/3.8) (5.43/3.99) (6.57/4.48) (8.12/7.79)
RMSE% (46.60/46.87) (54.72/47.69) (68.18/50.09) (82.42/56.18) (101.89/97.68)
MAE (1.90/1.93) (2.05/1.94) (2.35/1.97) (2.72/2.04) (3.28/2.68)
MAE% (23.86/24.26) (25.7/24.34) (29.52/24.8) (34.14/25.65) (41.14/33.66)
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during the initial iterations, the label replacement ratio for
noisy samples is nearly zero and it increases to 100% after
2000 epochs. For the sample loss distribution at the epoch
No. 250 shown in Figure 9(d), the training samples with
noisy labels are not re-labeled and occupy most of the
training batch; therefore, they become the focus of regres-
sion and the losses of pure samples are naturally higher than
those of Part 1. Figure 9(c) can be used to explain why the
bootstrapping algorithm can reduce the influence of noisy
labels. After resampling the samples and relabeling the
corresponding noisy labels, in the next epoch, the losses for
noisy samples are initially by zero and the start point of
gradient descent is placed in the pure samples. ,e fluc-
tuations of loss in the batch in Figures 9(a) and 9(b) are
reasonable, because the percentages of pure and noisy
samples are different in every resampled sample. With the
improvement in model estimation accuracy, the label re-
placement ratio for pure samples is between 0.2 and 0.4.

4. Conclusions

In this study, to make full use of the rich and complementary
individuals’ trip information provided by AVI and probe ve-
hicle data, and to avoid intractable mathematical program
solution, the dynamic path flow estimation is treated as a data-
driven feature learning problem and these two data sources are
fused at the data level. A 3D convolution-based deep NN is
designed, and the turning movements at network nodes are
used to represent the AVI and the probe vehicle observations in
the input tensor. ,e principles for selecting the key turning
movements and a corresponding programming model are also
proposed. To make the NN robust to the noisy path flow labels
during model training, a self-correcting algorithm named
bootstrapping, which can use the model outputs to correct the
noisy labels based on the defined re-labeling principle, is
established.

In the case study, a realistic urban road network was used
and the correspondingmicroscopic simulationmodel was built

and calibrated by VISSIM to generate large data samples. Two
distinctive tests, numbered 1 and 2, were carried out to validate
the turning movement selection and bootstrapping methods.
In Test 1, the designed 3D-CNN model with the input tensor
constructed by the selected turning movements achieved a
MAE of 1.88 veh/10min, and compared with the model with
all the turning movements used in input tensor, the compu-
tational time and estimation accuracy were both improved.
,is reveals that the designed architecture of 3D-CNN model
presents satisfactory performance, and the virtual AVI point
selection method can retain the key information for each path
and remove redundant information. In Test 2, the path flow
labels were artificially superimposed with systematic and
random errors to test the model robustness. Without over-
fitting, the NN model trained with the gradient descent al-
gorithm is almost immune to the labels with random errors.
Systematic errors were mainly considered and the boot-
strapping can make the model more robust to different per-
centages of labels with errors. ,e pretraining phase is not
necessary in this study, but it can help improve the convergence
speed and estimation accuracy. ,e defined re-labeling criteria
are important and can limit the final estimation accuracy.

Despite the promising results, the study has certain limi-
tations and further works could be focused on three aspects to
extend the topic: firstly, the dynamic path choice in congested
networks should be considered in the virtual AVI points se-
lection model; secondly, the influence of various modes of
market penetration of probe vehicles and feature noises (e.g., the
missing detection phenomenon in AVI system) should be
further investigated; last but not least, a real-world validation
with filed AVI data and probe vehicle trajectories has to be
conducted.

Data Availability

,e AVI and probe vehicle trajectory data used to support
the findings of this study are available from the corre-
sponding author upon request.
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