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&is paper presents a new variant of vehicle routing problem with paired transshipment demands (VRPT) between retail stores
(customers) in addition to the regular demand from depot to retail stores.&e problem originates in a real distribution network of
high-end retail department stores in &ailand. Transshipment demands arise for one-order-per-season expensive items, whose
inventories at the depot may become shortage after the middle of a season, while they remain available at some retail stores. A
transshipment demand is a request for items that need to be picked up from a specific store that has the items and delivered to the
store that requests the items.&e objective of solving the VRPT is to find delivery routes that can satisfy both regular demands and
transshipment demands in the same routes without incurring too much additional transportation distance. Amixed integer linear
programming model is formulated to represent the VRPT. Six small problem instances are used to test the model. A hybrid
threshold accepting and neighborhood search heuristic is also developed to solve large problem instances of VRPT. &e heuristic
is further extended to include a forbidden list of transshipment demands that should not be included in the same routes. &e
purpose is to prevent incurring too much additional distance from satisfying transshipment demands. With the forbidden list, the
problem becomes vehicle routing problem with optional transshipment demands (VRPOT). Computational testing shows
promising results that indicate effectiveness of the proposed hybrid heuristics as well as the forbidden list.

1. Introduction

&e vehicle routing problem (VRP) involves finding optimal
routes for a fleet of delivery trucks, each with limited ca-
pacity, so as to minimize the total transportation distance. A
vehicle routing network consists of one or more depots and
customer nodes. Each customer has a request of items that
can be satisfied by inventories at the depot. &is type of
request is called regular demand in this paper. A truck is
then assigned to deliver the items to the customers within
the load capacity limit of the truck, according to a delivery
route. &is paper extends the classical VRP to include
transshipment demands. A transshipment demand is de-
fined in this paper as the demand for items that the depot
cannot directly satisfy. Instead, the demand can be satisfied
by items at another node, i.e., a retail store. Incorporating
transshipment demands, which requires picking up some

items from one specific retail store and delivering them to
another specific retail store, makes the problem become a
VRP with transshipment (VRPT).

&e VRPT is motivated by a real problem faced by one of
the largest chains of retail department stores in &ailand. &e
retail chain has many store locations scattered around the
capital city, Bangkok, and vicinity areas. &ese stores are
served by a central warehouse (depot). At the stores, some
merchandise are expensive, one-order-per-season items with
a product life cycle of one year or less. Examples are brand
name or designer products, fashionable clothes, and swim-
suits. For these types of items, the depot places a large order
from overseas before the selling season to serve the demand of
all stores for the whole season. At themiddle (and towards the
end) of the season, inventories of these items would have
already been distributed to all the retail stores, i.e., the depot
no longer has the items. After that, transshipment demand
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arises when these items are sold out and become shortage at a
store, but are still available at another store.

To better satisfy end customer demands, a sold-out store
requests a transshipment of items from another store that has
the items remaining in stock. &is can satisfy the demand of
the end customers that are willing to wait and satisfy future
demand that may arise by balancing the inventory among
different stores using transshipment. A transshipment requires
two operations, picking up the item from a particular store and
delivering the item to the store that requests the transship-
ment. After the transshipment demand is placed by the
requesting store, the depot proceeds to identify a pickup node,
i.e., a store that has the item. &us, in the VRPT, the demand
that each retail store places to the depot can be classified as (1)
regular demand placed on a periodic basis that can be satisfied
with items at the depot and (2) transshipment demand that
must be satisfied with items at another store. Currently,
transshipment items are relocated from the store that has the
items (i.e., pickup node) to the store that requests the items
(i.e., delivery node) through the depot. In other words, there
are two operations when a truck visits the pickup node: (1) to
deliver its regular demand and (2) to pickup the transshipment
items. &en, the truck would bring the transshipment items
back to the depot and deliver the items to the delivery node as
part of the regular demand shipment in the next trip. &is
results in a delay of delivering the transshipment items to the
requesting store and subsequently to the end customers, which
may result in lost sales. It may also incur additional costs of
handling and delivery to the end customers or a delayed
pickup by the end customers at the store.

&e depot has sought to improve this practice by de-
signing delivery routes that can satisfy all or partial trans-
shipment demands on the same delivery routes. &e
objective is to reduce the time to deliver the transshipment
demand without incurring too much additional trans-
portation distance. In other words, the depot attempts to
make the item available faster at the requesting store and
improve its customer services. Note that the merchandise is
mostly expensive items for high-end customers. For such
items, responsiveness is relatively more important than
efficiency. An example of a network (Figure 1) demonstrates
the delivery routes, where vehicles handle regular demand
and a transshipment demand on the same trip.

From Figure 1, each customer node is set to be visited
once by a vehicle. To satisfy the transshipment demand,
the pickup node (node 6) and delivery node (node 7) are
on the same trip, with the pickup node being visited before
the delivery node. Every route starts and ends at the depot.
&e objective of solving the VRPT is to generate good
delivery routes that can satisfy both regular and trans-
shipment demands in the same delivery routes. In addi-
tion, a special case of VRPT, where the transshipment
demand is optional, denoted as VRPOT, is also considered
in this paper. Adding transshipment demand to the VRP
will incur additional travel distance due to more re-
strictions on the delivery routes, i.e., pickup and delivery
nodes must be visited in the same routes with an order of
precedence. Making transshipment demands optional
would allow the depot to decide which transshipment

demand(s) should be satisfied without incurring too much
additional distance. In a VRPOT, the unsatisfied trans-
shipment demands would be picked up and brought back
to the depot for the next delivery trip.

Significance of the VRPT is that the problem is origi-
nated in a real distribution network of depot to high-end
retail stores in &ailand. To the best of our knowledge,
previously studied VRP and its variants in the literature do
not exactly match the problem imposed by the industrial
user (depot) in this paper. &e outcomes of this study not
only fill a gap in the VRP literature (see next section) but also
address the real-world problem to improve the current
practice of an industrial user. In addition, impact of con-
sidering transshipment demand in a VRP is on reduction of
delivery time as transshipped items are delivered on the
same day as the regular demand. &is is clearly beneficial to
the retail store that requests the items because the items
become available faster, which improves service to the end
customers. It should be emphasized that in VRPT, the types
of items that are requested for transshipment are expensive
items. Most end customers prefer to purchase these item at
the store, rather than purchasing them online.

&e main contributions of this paper are threefold. First,
we define a new VRPT that reflects a real problem found in
the retail industry in &ailand. A mixed integer linear
programming (MILP) model that represents the VRPT is
formulated and demonstrated by solving small problem
instances to optimality. &e proposed model can be con-
sidered an improvement from a mixed integer model, which
contains a nonlinear constraint, of a relatively similar
problem, the one-to-one pickup-and-delivery problem with
time windows in [1]. Second, a hybrid metaheuristic algo-
rithm of threshold accepting (TA) and neighborhood search
(NS), a so-called TA-NS heuristic in this paper, is developed
to solve a medium to large-scale VRPT.&ird, a component,
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Figure 1: Vehicle routing problem with transshipment demand.
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called a forbidden list of transshipment pairs, is added to the
TA-NS hybrid method to solve the VRPOT. Its purpose is to
identify pairs of transshipment demands that should not be
included on the same routes, to prevent incurring too much
additional distance for satisfying the conflicting transship-
ment demands.&e proposed TA-NS heuristics, without the
forbidden list for VRPT and with the forbidden list for
VRPOT, are extensively tested to compare their effective-
ness. To summarize, the novelty of our research includes the
newly defined VRPT and its MILP formulation, the devel-
oped TA-NS hybrid for solving large-scale problem in-
stances, and the forbidden list that effectively balances
between satisfying transshipment demands and trans-
portation distance.

2. Literature Review

&ere is a vast literature on the VRP. Recent comprehensive
reviews of the VRP and its variants can be found in [2]. &e
scope of the literature review given in this section focuses
primarily on (1) single-depot VRP that features pickup and
delivery or transshipment because overview of these prob-
lems can indicate the research gap that the VRPT under
study aims to fill, (2) multiechelon, multicenter VRPs that
consider transshipments, and (3) heuristic methods to solve
these problems.

2.1. PDP, VRP with Pickup and Delivery, and VRP with
Transshipment. An important relevant class of the VRP is
the pickup and delivery problem (PDP). &e PDP is a
routing problem with different pickup locations and
delivery locations for transporting goods (or people). For
comprehensive reviews of the PDP, see [1]. &e PDP can
be classified into three types: many-to-many, one-to-
many-to-one, and one-to-one, based on the pickup and
delivery relations.

In a many-to-many PDP, each item may have multiple
pickup nodes and delivery nodes, while any node can request
pickup and delivery of the items. Ting et al. [3] introduced
the MVSPDP, where some selected pickup nodes are chosen
to supply all delivery nodes. &e objective is to find minimal
cost delivery routes for multiple vehicles with capacity and
distance constraints. Xu et al. [4] considered a multiproduct,
unpaired PDP that allows multiple visits to each customer,
where more than one product can be delivered in a visit, but
each product demand delivery cannot be split.

A one-to-many-to-one PDP is where the delivery op-
eration is carried out from one depot to many customers,
and the pickup operation is performed to bring items from
many customers back to the depot [5–10].&e one-to-many-
to-one PDP is also known as the VRPPD and its variants.

&e VRPPD is an important extension of the VRP. In the
VRPPD, there are two groups of customers: linehaul and
backhaul. Linehaul customers request items to be delivered
from the depot, while backhaul customers request items to
be picked up and returned to the depot. &e VRPPD has
many variants classified by using the transportation behavior
in response to the linehaul and backhaul customers.

(i) VRPB (VRP with backhauls) specifies that vehicles
must serve all linehaul customers before serving the
backhaul customers [8, 10, 11].

(ii) VRPMPD (VRP with mixed pickups and deliveries)
allows vehicles to serve both linehaul and backhaul
in any order [7, 12].

(iii) VRPSPD (VRP with simultaneous pickups and
deliveries) is the problem where customers require
pickup and delivery at the same time. Each cus-
tomer is allowed to be served by only one vehicle
that performs pickup and delivery, simultaneously
[5–7, 9, 13].

(iv) SVRPDSP (single vehicle routing problem with
deliveries and selective pickups) by [14] is another
variant of the VRPSPD. &e difference is that the
pickup operations can be omitted if they are not
profitable.

(v) VRPDDP (VRP with divisible deliveries and
pickups) may divide the delivery and pickup at a
customer into two operations such that the cus-
tomer may be visited twice either by the same ve-
hicle or by two vehicles in different routes [15]. &is
relaxation makes it possible to create feasible routes,
which would be infeasible in the VRPSPD, VRPB,
and VRPMPD due to the fluctuation of loads. Note
that “divisible” refers to separating delivery and
pickup operations at one customer, which is dif-
ferent from partial delivery or pickup in split de-
livery VRP (see [16]).

(vi) Recently, Wassan and Nagy [17] further extended
the VRPMPD and VRPDDP to include a restriction
that deliveries and pickups can be mixed only if a
certain amount of free space is available on the
vehicle.

Finally, a one-to-one PDP consists of pickup and de-
livery requests in which each pickup location is specifically
tied to one delivery location [18]. &is type of problem can
also be referred to as the dial-a-ride problem (DARP) for
transporting people [19–22]. &e transshipment demand,
defined in this study, can be viewed as a one-to-one pickup
and delivery request.

Recent studies on the one-to-one PDP that considered
green aspects and other restrictions are [23, 24]. Madan-
kumar and Rajendran [23] formulated two mathematical
models for green VRPPD for a semiconductor supply chain.
&e first model focused on alternative fuel vehicles for the
basic green semiconductor supply chain that has restrictions
on product-vehicle compatibility and start and completion
times and different request priorities for pickup and delivery.
&e second model was extended to handle having different
fuel prices at different refueling stations so as to minimize
the total cost of refueling and routing. Soysal et al. [24]
proposed amathematical model for a one-to-one pickup and
delivery system with road segments. &e proposed model
considered the fuel consumption that is related to emissions,
variable vehicle speed, and road categories (i.e., urban and
nonurban) with different traffic regulations. &e model was
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solved using a case study from the Netherlands. &e results
showed significant savings from adding these new factors.

Other relevant research studies to transshipment are
[25–31]. Mues and Pickl [25] introduced the PDP with
transshipment and time windows (PDPTTW) restriction,
which is a one-to-one PDP that is extended to include
transshipment points, where loads can be transshipped
between transportation means that have different routes.
Mathematical models for one transshipment location and
arbitrary transshipment locations have been developed.
Yang and Xiao [26] studied VRP with transshipment centers
that serve as transfer points for arranging freight and storage
from suppliers to customers. &e decision for each vehicle is
to choose between a route that travels directly to customer
and a route that goes through transshipment centers. &is
concept of transshipment centers is not related to pickup
and delivery of load.

Another relevant class of VRP is the inventory routing
problem (IRP). In IRP, VRP is combined with inventory
management problem such that pickups and delivery
quantities from depot to customers are decided based on an
inventory policy, which take into account the inventory
holding cost. Coelho et al. [27] introduced the transship-
ment concept to IRP (the problem becomes IRPT), where
items can be shipped to customers from the supplier or from
another customer. Also, transshipments are performed by a
subcontract carrier, which means that transshipment de-
mands are not considered in the vehicle route from the
depot. Azadeh et al. [28] later extended the IRPT to consider
a single perishable product. With limitation of product shelf
life, the complexity of the inventory management part is
more complex.

Drexl [29] introduced the vehicle routing problem with
trailers and transshipments (VRPTT). &e problem origi-
nates in raw milk collection at farmyards, i.e., customers
with given supply, where supplies are picked up by a set of
heterogeneous vehicles stationed at one or several depots.
Heterogeneous vehicles include autonomous vehicles, called
lorries, that can move on their own, and nonautonomous
vehicles, or trailers, that need to be attached to autonomous
vehicle in order to move. &e problem includes physical
constraints that separate customers into a group accessible
with lorry only and the other accessible with lorry and a
trailer. In this problem context, transshipments only occur at
transshipment locations on the routes to transfer load and
couple and decouple trailers. Mathematical models of the
problem were formulated and solved using branch-and-cut
algorithms in [30].

Ahmad et al. [31] introduced a location routing in-
ventory problem with transshipment (LRIPT), which inte-
grates three logistics problems: location allocation, inventory
management, and VRP, with additional decision of choosing
a customer as a transshipment point. &e transshipment
point simply acts as a location where the supplier sends
inventory to be distribute to other customers. A mathe-
matical model of the problem and numerical examples to
demonstrate the model are given.

Based on the above reviews, the research gap that the
VRPT in this paper aims to fill can be seen in Table 1. From

the table, it is clear that variants of VRP that consider
transshipment demand with paired pickup and delivery are
DARP and PDPTTW, but the two problems do not include
the regular demand from the depot. While IRPTand LRIPT
involve transshipment, the context is for selecting trans-
shipment location, rather than transshipment demand of
paired pickup and delivery. To the best of our knowledge, the
definition of VRPT in our paper is the first that combines
VRP (i.e., one-to-many-to-one PDP) for delivering items
from depot to the customers and transshipment demands of
paired pickup and delivery nodes of customers (i.e., 1-to-1
PDP) on the same route. In addition, our paper includes a
variant of the problem, called VRPOT, where transshipment
demand is optional and the unsatisfied transshipment de-
mand is brought back to the depot (i.e., backhaul) to be
dispatched to the delivery node on the next delivery route.

2.2. Multiechelon, Multicenter VRP and Extensions.
Another class of VRP that is more complex is the two-
echelon, multicenter VRP and its extensions. Some examples
of recent works on MCVRP are [32–35]. &e collaborative
MCVRP was studied in [32] where collaboration is made
among centers by reassignment of customers to centers
(through clustering) as well as transshipments among
centers. Wang et al. [34] then extended the problem so that
collaboration can be made between multiple periods. A two-
echelon location routing problem with simultaneous pickup
and delivery was investigated in [33]. In this problem, de-
livery and pickup demands are unpaired (i.e., not tied to the
same parcel), which is different from our problem. In ad-
dition, transshipments in the context of MCVRP occur
among centers (i.e., distribution centers and logistics cen-
ters) in the first echelon, rather than among customers in the
second echelon, which makes the problem settings different
and not directly relevant to this paper.

An extension of MCVRP involves the delivery and
pickup problem, which considers linehaul delivery and
backhaul pickup of eco-package back to the recycling center
[35]. In this problem, delivery requests are satisfied from a
delivery center before pickup requests are satisfied to bring
eco-package back to the pickup center, which makes the
delivery and pickup request unpaired. Gansterer et al. [36]
considered a multicenter pickup and delivery problem,
where pickup and delivery requests are paired. &e focus is
on collaboration by redistributing the pickup and delivery
request among centers (or carriers). Major differences from
our paper are as follows: (1) capacity of the vehicles are not
considered, which makes the problem become multicenter
traveling salesman, and (2) there are no regular demands
that request items from the depot in the problem.

2.3. Methods to Solve VRP and Extensions. Methods for
solving the VRP can be categorized into exact algorithms
and heuristic algorithms. &e VRP is an NP-hard problem,
which means that exact methods are not effective in solving
medium to large problems. For such problem sizes, heu-
ristics methods, which require much less computational
time, but do not guarantee optimality, are good alternatives.
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A comprehensive review of the VRP and methodology can
be found in [2, 37]. &e review given here focuses on recent
heuristic algorithms for the PDP.

Two recent studies that involved variants of the many-
to-many PDP are [3, 4]. Ting et al. [3] proposed three
metaheuristics: genetic algorithm (GA), tabu search (TS),
and scattered search (SS), to solve the so-called multivehicle
selective PDP.&e purpose of solving theMVSPDP is to find
the shortest routes for vehicles that transport goods from
some pickup nodes to all delivery nodes. Experimental re-
sults showed that TS outperformed GA and SS in terms of
solution quality and computational time. Xu et al. [4]
proposed an effective tabu search algorithm to solve a
multiproduct, unpaired pickup and delivery vehicle routing
problem, where each customer location can be visited
multiple times. In this problem, the total demand for
multiple products of a customer can be satisfied by multiple
deliveries by one or more vehicles, while the split delivery of
a product is not allowed.

For the one-to-many-to-one PDP class, Gribkovskaia
et al. [14] proposed tabu search (TS) to solve the SVRPDSP.
TS could generate a near-optimal solution to a number of
tested instances from the VRPLIB. Tasan and Gen [5]
proposed a genetic algorithm to solve the VRPSPD. &e
computation result based on medium-sized instances
showed that the best solutions from GA performed better
than the upper bound obtained from CPLEX. Goksal et al.
[6] proposed a heuristic based on particle swarm optimi-
zation (PSO) with variable neighborhood descent (VND)
local search to solve the VRPSPD. &e algorithm can suc-
cessfully improve some best-known solutions of the stan-
dard problem set. &e overall performance is comparable
with other effective heuristics. Avci and Topaloglu [7]
proposed an adaptive local search algorithm that is a hybrid
of simulated annealing and variable neighborhood search.
&e developed adaptive-threshold function enables the

algorithm parameters to be self-tuned. &e algorithm was
used to solve both the VRPSPD and VRPMPD. Computa-
tional results demonstrated the algorithm effectiveness in
solving the problems within reasonable computation times.
Later, Avci and Topaloglu [9] proposed an adaptive hybrid
local search (HSL) that integrates adaptive-threshold ac-
ceptance with tabu search to solve the heterogeneous
VRPSPD. For the VRPDDP, proposed by [15], an efficient
cooperative variable neighborhood search (CVNS) was
constructed to solve the problem. &e algorithm can suc-
cessfully improve best-known solutions of the available
instances of the problem. Finally, Drexl [30] developed
branch-and-cut algorithms for solving the VRPTT. &e
algorithms are tested with problem instances that are
designed to resemble real-world VRPTT.

Recent algorithm development for solving a one-to-one
PDP and its extensions is as follows. Qu and Bard [18]
proposed a greedy randomized adaptive search procedure
(GRASP) with adaptive large neighborhood search for
pickup and delivery with transshipment (PDPT). &e
problem under study allows aircraft to transfer a load to
another aircraft at some location (a transshipment) and
then identify situations where cost savings can be gained
from the transshipment. Parragh and Schmid [19] pro-
posed a hybrid column generation and large neighborhood
search for a DARP that minimized the total routing costs
under the restrictions of maximum user ride time, maxi-
mum trip time, vehicle capacity, and time window. Kirchler
and Wolfler Calvo [20] proposed a granular tabu search
algorithm that features a granular (or reduced) neigh-
borhood, which only contains moves that potentially lead
to good solutions, to solve the DARP. &e proposed tabu
search performance, tested on standard instances, is
comparable with other existing algorithms, i.e., TS, GA,
and VNS. Masson et al. [21] developed an adaptive large
neighborhood search (ALSN) to solve a dial-a-ride problem

Table 1: Research gap.

Problem Variant Problem specific Linehaul
depot to D

Backhaul P to
depot

Transshipment P
to D

Many-to-many PDP MVSPDP Each item is not specific to P and D nodes Unpaired

1-to-many-to-1 PDP
(aka. VRPPD)

VRPB Visit D nodes before P nodes ✓ ✓
VRPMPD Any orders of P and D ✓ ✓
VRPSPD Simultaneous P and D at each node ✓ ✓
SVRPDSP P is selected only when profitable ✓ Selective
VRPDDP Customer node may be visited twice ✓ ✓

VRPTT Transshipments to transfer loads b/w vehicles at
transship points ✓

1-to-1 PDP
DARP Each item is specific to a pair of P and D node Paired

PDPTTW Transshipments between vehicles allowed at
transshipment points Paired

IRPT A mix of inv. management and VRP with
transshipment location ✓ Not in VRP

LRIPT A mix of location, inventory, and VRP with
transshipment location

�is paper VRPT A mix of 1-to-many-to-1 PDP (regular demand)
and 1-to-1 PDP (transshipment demand)

✓ Paired
VRPOT ✓ ✓ Optional

Note. D denotes delivery node and P denotes pickup node.
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with transfer (DARPT). A transfer point, where users can
change vehicles, is introduced into DARP to reduce the
transportation cost. Experimental results indicated that
adding a transfer point could decrease the transportation
cost by 8%. Rais et al. [22] proposed a new mixed integer
programming model for the PDPT. &e transshipment in
this problem is referred to as the transferring of loads
between vehicles at some designated transshipment loca-
tions. &e model is generalized to handle heterogeneous
vehicles and multiple origin and final destination nodes. It
should be noted that the transshipment feature in the
DARPT is for the transferring of loads between vehicles.
&is is different from the transshipment considered in this
paper, which refers to the transferring of items between
nodes of customers. Finally, Mues and Pickl [25] proposed
a column generation technique to solve the PDPTTW in
two numerical examples.

3. Mathematical Model

3.1. Problem Description. &e VRPT is defined as follows:

(1) &e network has a single depot.
(2) &ere are multiple customer nodes, each of which

has a regular demand and may request a trans-
shipment demand.

(3) Each customer node must be visited once by a
vehicle.

(4) Each route must start and end at the depot.
(5) &e total load of a vehicle must not exceed its

capacity.
(6) Each vehicle has the same capacity.
(7) &e total transportation distance is to be

minimized.
(8) &e pickup operation must occur before the de-

livery operation for a transshipment demand, i.e.,
the pickup node must be visited before the delivery
node of the transshipment demand.

(9) At any particular pickup or delivery node, the
transshipment demand is always smaller than the
regular demand. &is indicates that there is no need
to explicitly consider the load of the transshipment
demand. &at is, at the pickup node, the regular
demand is unloaded for delivery first, which always
leaves enough space on the truck for the trans-
shipment demand to be picked up.

(10) Although it is very rare, in the case that there are
two conflicting transshipment demand requests,
one from node i to node j and the other from node j
to node i, only one of the two transshipment de-
mands may be satisfied on the same route. For
example, if the transshipment demand from i to j is
chosen, then the item of the transshipment demand
from j to i will be picked up when the vehicle visits
node j and brought back to the depot, and then the
item will be delivered to node i on the next delivery
day.

3.2. Mathematical Formulation. &e mathematical model
that represents VRPT is formulated as a mixed integer linear
programming (MILP) model. &e model is an extension of
the model in [5]. &e model uses the following notation.

I: set of demand nodes. I � 1, 2, . . . , n{ }.
I0: set of all nodes including depot.
I0 � 0, 1, 2, . . . , n{ }. O: set of depots. O � 0{ }.
V: set of vehicles. V � 1, 2, . . . , m{ }.
PDij: set of transshipment demand from nodes i to j.

3.2.1. Parameters

C: vehicle capacity.
dij: transportation distance associated with traveling
from nodes i to j, where i, j ∈ I0, i≠ j.
Di: amount of regular demand at node i ∈ I.
n : number of nodes including the depot.

3.2.2. Decision Variables

lv: load of vehicle when leaving the depot.
Si: variable used to avoid subtours, interpreted as the
position of node i ∈ I in the route.
xijv: binary decision variable that indicates whether the
vth vehicle travels from nodes i to j.
seiv: variable used to indicate the sequence of demand
node i in vehicle v.

3.2.3. Objective Function.

min 
i∈I0


j∈I0


v∈V

dijxijv, (1)

subject to


i∈I0


v∈V

xijv � 1, ∀j ∈ I, (2)


i∈I0

xikv � 
j∈I0

xkjv , ∀k ∈ I, ∀v ∈ V, (3)


i∈O


j∈I

xikv ≤ 1, ∀ v ∈ V, (4)


i∈I0


j∈I0

Dixijv ≤C, ∀v ∈ V,
(5)

Sj − Si ≥ 1 − n 1 − 
v∈V

xijv
⎛⎝ ⎞⎠⎛⎝ ⎞⎠, ∀i ∈ I, ∀j ∈ I, i≠ j,

(6)

seiv +(n + 1)xijv ≤ sejv + n, ∀i ∈ I, ∀j ∈ I, ∀v ∈ V, i≠ j,

(7)
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seiv ≤ sejv, ∀(i, j) ∈ PDij, ∀v ∈ V, (8)

sejv ≥ 
i∈I0

xijv, ∀j ∈ I, ∀v ∈ V, (9)

sejv ≤ n 
i∈I0

xijv, ∀j ∈ I, ∀v ∈ V, (10)

xikv ∈ 0, 1{ }, ∀i ∈ I, ∀j ∈ I, ∀v ∈ V, (11)

lv ≥ 0, ∀v ∈ V, (12)

Si ≥ 0, ∀i ∈ I, (13)

seiv ≥ 0, ∀i ∈ I, ∀v ∈ V. (14)

&e objective function (1) is to minimize the total
transportation distance by all vehicles. Constraint (2) en-
sures that each customer is visited once by one vehicle only.
Constraint (3) ensures that if a vehicle enters a node, it must
leave the node. Constraint (4) ensures that each vehicle does
not leave the depot more than once. Constraint (5) limits the
load that each vehicle can carry. Constraint (6) is used to
prevent subtours.

Additional constraints that incorporate transshipment
demands are constraints (7)–(10). Constraint (7) specifies
the sequence of nodes that are visited by a vehicle.&at is, if a
vehicle v travels from node i to node j, then xijv � 1. Con-
straint (7) becomes sei+ 1≤ sej, which forces sei to be less
than sej. In other words, if node i is visited before node j, then
their sequences on the route must be consistent. However, if
vehicle v does not travel from node i to node j, then there is
no restriction on sei and sej. Constraint (8) ensures that for
each pair of nodes of a transshipment demand, the pickup
node must be visited before the delivery node (by the same
vehicle). Constraints (9) and (10) specify that the lower
bound and upper bound of the sequence of nodes visited by a
vehicle are 1 and n, respectively. Finally, constraints
(11)–(14) specify the types of decision variables.

4. Model Testing on Small Problem Instances:
Optimal Solution Results and Analysis

To demonstrate MILP model for the VRPT, we develop a
new problem instance set, called set T in this paper, which
consists of six small problem instances. &ese problem in-
stances are generated such that they resemble the real
problem faced by the retail chain where the VRPToriginates.
Each instance has a total of 20 nodes, including a depot and
19 customers (retail stores). Each store has a daily regular
demand. Among the stores, there are four transshipment
demand requests, denoted as T1, T2, T3, and T4. Each
transshipment demand is a pair of pickup and delivery
customers. An example of small problem instance with
actual store locations is illustrated in Figure 2. &ere are two
homogenous trucks to satisfy delivery demands. &e list of
the instances is shown in Table 2.

From the list of small problem instances in Table 2, CEN
represents the instances where the locations of the depot are
relatively at the center and the locations of customers are
scattered randomly around the depot. OFF represents the
instances where the locations of the depot are far away from
the locations of all the customer locations. &e instances of
CEN and OFF with the same codes (i.e., 2TG, 2TH, and 2TJ)
indicate that the store locations, demands, and pickup and
delivery stores of the transshipment demands are identical.

Since the motivation of this problem is from a real
problem, the small problem instances include two locations
of the depot. One depot, currently in use by the retail chain,
is represented as the CEN location, which is located in the
middle of the city, where the current capacity utilization is
almost 100% and expansion is no longer possible. &e other
depot is at the OFF location, which represents the future
location of a new larger depot, around 20 km from the city.
&e 19 customer locations are generated to represent the
department stores with high demand.

To analyze the changes in the objective function from
satisfying one or more of these transshipment demands,
each instance is solved 16 times, one time as a VRP and 15
times as VRPTs, with the parameters in Table 3. &e VRP
(Run 1) instance is solved by excluding all transshipment
demands. &e 15 VRPTs (Runs 2–16) are all possible
combinations that include at least one of the four

Figure 2: Example of a small problem instance.

Table 2: List of set T instances.

Instance code Truck cap. Total demand D/C ratio
CEN T2G 140 266 0.95
CEN T2H 140 252 0.90
CEN T2J 140 238 0.85
OFF T2G 140 266 0.95
OFF T2H 140 252 0.90
OFF T2J 140 238 0.85
Note. D/C ratio is the ratio between total demand and total truck capacity.
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transshipment demands that must be satisfied. For exam-
ples, Run 8 includes two transshipment demands (T1 and
T3), and Run 16 includes all four transshipment demands.
&e instances are solved with CPLEX solver. &e results
from all instances are also shown in Table 3, including the
optimal total distance and the percentage difference in the
optimal total distance between each VRPT instance and VRP
instance.

&e results demonstrate that small problem instances of
VRPT can be solved optimally by the proposed MILP. &e
optimal total transportation distance increases as more
transshipment demands are satisfied. An important insight
learned is that there are pairs of transshipment demands that
are relatively in conflict with each other, such that including
these transshipment demands together on the same route
results in a significant increase in the total transportation
distance. &ese are demand pairs where their respective
direct paths (from the pickup and delivery nodes) intersect
with each other. &e results of the runs that include one or
more of these pairs are highlighted in bold in Table 3. By
eliminating one of the transshipment demands whose direct
paths intersect, the total transportation distance is likely to
be reduced significantly. &is observation leads to the de-
velopment of a mechanism that helps to choose the trans-
shipment demands that should not be included together on
the same route, given that satisfying a transshipment de-
mand is optional.

5. Hybrid Threshold Accepting and
Neighborhood Search Heuristics

To solve medium to large instances of VRPT, we develop two
heuristic algorithms for the VRPT, where all transshipment
demands are enforced and where partial transshipment
demands are satisfied (the problem becomes a so-called VRP

with optional transshipment or VRPOT). Both algorithms
are a hybrid of the threshold accepting (TA) algorithm and
neighborhood search (NS). &e optional transshipment
version adds a predetermined forbidden list that contains
pairs of transshipment demands that are not allowed to be
satisfied on the same route.&e algorithmwith forbidden list
can then generate a good solution that delivers a partial of
transshipment demands without incurring too much ad-
ditional delivery distance. &e hybrid algorithms are shown
in Figure 3.

&e algorithm description is based on the following
notation and definitions.

New solution: a solution generated by neighborhood
search.
Current solution: a solution that is used in the
comparison.
Best solution: solution with the best-so-far value.
Tmax: the highest level of threshold.
Tcur: the current threshold value.
Tmin: the minimum threshold value.
α: threshold reduction parameter.

&e algorithm consists of five main components. &e
pseudocode of TA-NS is shown in Figure 4. &e function
and description of each component are described as follows.

5.1. Component 1: Generating Initial Solution. &e initial
solution has a significant impact on the algorithm perfor-
mance. A good initial solution may help to reduce the
number of iterations required to obtain a good quality final
solution. In this component, we use four methods to gen-
erate an initial solution. All four methods to generate initial
solutions are used when solving each problem instance. &is

Table 3: Optimal total costs for VRP (Run 1) and VRPT (Runs 2–16) and percentage difference between VRPT and VRP total costs.

Run
Trans. demand CEN T2G CEN T2H CEN T2J OFF T2G OFF T2H OFF T2J
T1 T2 T3 T4 Opt. % difference Opt. % difference Opt. % difference Opt. % difference Opt. % difference Opt. % difference

1 429 437 408 407 423 446
2 x 433 0.93 437 0.00 429 5.15 421 3.44 423 0.00 446 0.00
3 x 433 0.93 445 1.83 418 2.45 411 0.98 460 8.75 459 2.91
4 x 433 0.93 462 5.72 426 4.41 446 9.58 450 6.38 446 0.00
5 x 459 6.99 447 2.29 408 0.00 443 8.85 453 7.09 471 5.61
6 x x 433 0.93 473 8.24 440 7.84 421 3.44 465 9.93 469 5.16
7 x x 433 0.93 492 12.59 429 5.15 447 9.83 456 7.80 446 0.00
8 x x 459 6.99 468 7.09 440 7.84 476 16.95 453 7.09 489 9.64
9 x x 433 0.93 475 8.70 434 6.37 458 12.53 479 13.24 459 2.91
10 x x 473 10.26 483 10.53 418 2.45 464 14.00 474 12.06 476 6.73
11 x x 513 19.58 477 9.15 455 11.52 486 19.41 475 12.29 474 6.28
12 x x x 433 0.93 523 19.68 454 11.27 458 12.53 491 16.08 478 7.17
13 x x x 480 11.89 504 15.33 440 7.84 476 16.95 474 12.06 501 12.33
14 x x x 514 19.81 502 14.87 482 18.14 489 20.15 489 15.60 494 10.76
15 x x x 513 19.58 509 16.48 455 11.52 493 21.13 500 18.20 476 6.73
16 x x x x 514 19.81 532 21.74 483 18.38 501 23.10 500 18.20 501 12.33
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is because, based on initial performance testing, none of the
methods can consistently outperform the other methods.

5.1.1. Random Generation. Initial solution is randomly
generated.

5.1.2. Sweep Algorithm. &e standard sweep algorithm [38]
proceeds as follows. &e algorithm chooses a node as the
starting point of a route and looks for the closest node to
visit. Note that the closest node in the sweep algorithm is the
closest node from sweeping of a clock hand, rather than in
terms of the closest distance. A clockwise sweep looks for the
closest node on the right of the current node, while counter-
clockwise looks for the closest node on the left side. &e
algorithm is performed in both directions, clockwise and

counter-clockwise. In each direction, each customer node
alternates as the starting point of the sweep. &e best sweep
solution is then used as the initial solution to the TA-NS
algorithm.

5.1.3. Savings Algorithm. &is is a well-known heuristic for
VRP developed by Clarke and Wright [39]. &e algorithm
starts by generated one round trip from the depot to each
demand node.&en, the algorithm proceeds to combine two
routes with the most distance (or cost) savings first and
repeatedly combines the routes with the next best savings,
until the final routes are generated (no more combining is
possible). &is method can provide a good solution for VRP,
but may not be a good solution for VRPT since the method
does not consider the pickup and delivery requirements.

5.1.4. Pickup-Delivery Heuristics. We develop a heuristic to
generate a good initial solution for VRPT. &is heuristic
proceeds as follows. First, the VRPT is solved using TA-NS
without considering the transshipment demand, i.e., solving
a VRP. With the VRP solution as an initial solution, the
heuristic adds one randomly chosen transshipment demand
at a time. Suppose for a particular transshipment demand,
the pickup node and delivery nodes are on different routes in
the VRP solution. A good pickup and delivery is generated
by deletion of a pickup (or delivery) node from its route and
insertion to the other route that contains its corresponding
delivery (or pickup) node so that they are on the same route.
Choosing the order at which the transshipment demands are
satisfied, the nodes (pickup or delivery) to delete, as well as
the insertion point, is performed by choosing the one that
results in relatively little change in the total route distance

Generate initial solution

Neighborhood search

Better solution? Accept as best solutionYes

Within
threshold?

No

Accept as current solution

Last iteration?

No

Yes

Report best solution

Yes

No

Adjust
threshold?

Evaluate solution

No

Adjust threshold level In forbidden
list?

Yes

Yes

No

Figure 3: A TA-NS algorithm diagram.

Start
C.5 Identify forbidden transshipment pairs 
For i= 1:4
C.1 Generate Initial Solution

For j = 1:n(loop1)
C.4 �reshold Adjustment

For k = 1:n(loop2)
C.2 Neighborhood Search
If Forbidden list = False, Then
C.3 Evaluate Solution
End If
Next k

Next j
Next i
Report Best Solution
End

Figure 4: Pseudo-code of the TA-NS algorithm.
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first. After satisfying the added transshipment demand, the
heuristic proceeds to add the next transshipment demand.

5.2. Component 2: Neighborhood Search. Neighborhood
search is an important mechanism to generate a new so-
lution in this algorithm. We use four methods for NS:
swapping, inserting, 2-opt, and grouping.

Swapping: randomly swap the positions between two
selected nodes.
Inserting: randomly eliminate one node and insert it
elsewhere.
2-opt: randomly select two arcs and swap the node pairs
of those arcs.
Grouping: randomly cluster nodes into groups of ad-
jacent nodes and then swap the position of the groups.

&ese methods are randomly applied to the current
solution to obtain the new solution.

5.3. Component 3: Evaluating the Solution. To evaluate a
solution, we define the objective function and accepting
mechanism as follows.

5.3.1. Objective Function. To solve the VRPT, we modify the
objective function that originally contains only the total
distance, which does not consider whether or not the
transshipment demand(s) are satisfied. &e new objective
function includes a penalty for a solution that does not
satisfy the transshipment demand. &is increases the chance
for the algorithm to discover better solutions that satisfy
transshipment demands with lower distances. Let p be the
percentage of transshipment demand satisfaction. &e new
objective function is defined as follows:

objective function �
total distance∗ (1 +(k − p)), p< 1,

total distance, p � 1.


(15)

From equation (15), if all transshipment demands are
satisfied, then the objective function is simply to minimize
the total distance. However, if a percentage p of all trans-
shipment demands is satisfied, then the objective function is
penalized by a multiplication factor of 1 + (k − p). Based on
our extensive tests, k� 1.1 is effective for the algorithm to
find good solutions that properly choose transshipment
demands to be satisfied. In addition, by using equation (15)
as the objective function, the algorithm becomes effective in
diversifying its search space. In other words, given a solution
and the mechanism of TA and NS, the penalty function can
make the algorithm jump to a solution space that cannot be
previously reached.

5.3.2. Accepting Mechanism. After evaluating a new solu-
tion, it is compared with the best solution and the current
solution. &ree scenarios can occur: (1) accepting as best
solution, if the new solution is better than the previous best
solution; (2) accepting as current solution, if the new so-
lution satisfies the condition (new solution–current sol-
ution)≤Tcur, which allows the new solution to have a worse
objective function value than the current solution by the
value of Tcur; or (3) rejecting the new solution.

5.4. Component 4: �reshold Adjustment. Adjusting the
threshold level plays an important role since an improper
threshold level increases the computational time and may
lead to low-quality results. &e threshold value begins with
the Tmax value. &en, it is reduced by a fractional factor α,
i.e., Tcur � Tcur∗α when the iteration number reaches a
specified value. &e adjustment process repeats until the
threshold value reaches Tmin.

5.5. Component 5: IdentifyingForbiddenTransshipmentPairs.
&is component is applied only when the objective is to
partially satisfy the transshipment demand, i.e., the
VRPOT. &e purpose is to avoid solutions that include
pairs of transshipment demands that may significantly
increase the transportation distance. A procedure is de-
veloped to identify a list of forbidden transshipment pairs
before solving the problem. An example of forbidden
transshipment pairs is shown in Figure 5. &e steps are
described as follows:

(1) For a given pair of transshipment demands (from
nodes 3 to 5 and from nodes 7 to 16 in Figure 5),
determine the intersection point between two
straight lines that connect the pickup and delivery
nodes of the pair of transshipment demands.

(2) If the two lines intersect (i.e., the two lines form a
crossed path in the route), then compute the total
distance of the two lines.

(3) Compute the border length of the map. In Figure 5,
the border length is the total distance from node 15
⟶ node 17⟶ node 9⟶ node 10⟶ node 8
⟶ node 3⟶ node 18⟶ node 15. If the total
distance of the two lines is greater than a factor of
25% of the border length, then the transshipment
pair is considered to be forbidden. Note that an
extensive testing is conducted to fine-tune the value
of this factor.

After all possible pairs of transshipment demands are
evaluated to obtain a list of forbidden transshipment pairs,
the TA-NS algorithm proceeds to search for a new solution
as if all transshipment demands will be satisfied. After a new
solution is created, if it contains one or more pairs of
transshipment demands in the forbidden list, then the
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solution is discarded without being evaluated. As a result, an
accepted solution is restricted to satisfy up to only one
transshipment demand in each forbidden transshipment
pair, but not both.

6. Computational Experiments

6.1. Problem Instances. &e performance of TA-NS is
evaluated by using two problem instance sets. First, the
TA-NS is tested on the small problem instance Set T,
which contains 20-node instances with 20% transship-
ment demands with respect to the number of nodes, as in
the previous numerical example. Second, for the medium
to large problem instances, we adapt the standard
problem instances, set A [40]. &is standard problem set
is selected because the problem instances are very similar
to the current network of the industrial user of the study,
i.e., the DC is in the city with retail stores geographically
scattered around the DC. &en, the transshipment de-
mands were randomly generated and added to the
standard problem instances. To make the performance
evaluation consistent with that of the small problem
instances, the number of transshipment demands is
also set to 20% of the total number of nodes of each
instance of set A. In the computation test, TA-NS is
applied to solve the VRPT (i.e., all transshipment de-
mands are enforced) and VRPOT (with the forbidden list
added to TA-NS).

6.2. Small Problem Instance Results. Table 4 shows the
optimal solution of Run 16 of the VRPT (i.e., all four
transshipment demands must be satisfied), the best-found
solutions, the off-optimal percentage of the VRPT solved
by TA-NS heuristic, and VRPOT solved by TA-NS heu-
ristic with the forbidden list. From the VRPT results, TA-
NS can obtain optimal solutions in two out of six

instances, with an average percent off-optimal of 0.82%
(0.51% for CEN instances and 1.13% for OFF instances).
In addition, from the VRPOTresults, the TA-NS heuristic
with forbidden list can find optimal solution in three out
of six instances, with an average off-optimal percentage of
1.82% (0.61% for CEN instances and 3.03% for OFF
instances).

6.3. Large Problem Instance Results. Table 5 shows the off-
optimal percentage for the optimal solutions of the VRP and
TA-NS best solutions, for both the VRPT and VRPOT. For
performance evaluation, we use the optimal solution of the
VRP as the lower bound of the VRPT.

From the table, the best-found CVPRT solutions from
the TA-NS algorithm are, on average, 26.44% higher than
those of the lower bound. &is is to be expected, given that
the optimal solutions of the VRPT for these instances are
unknown, and that the lower bounds are likely to be much
lower than the optimal solution of the VRPT. It is important
to emphasize that, based on the 20-node small problem
instances (set T) where the optimal solutions of the VRPT
are found, the average percent difference for the lower
bound (Run 1 or the first row of Table 3) and the optimal
solution of the VRPT is 18.93% (Run 16 or the last row of
Table 3). &is implies that the best-found solutions of the
VRPT from the TA-NS algorithm should be much closer to
the optimal VRPT than to the lower bound, which suggests
that the TA-NS algorithm is effective.

For the VRPOT, on average, 67% of the transshipment
demands are satisfied with an average percent difference of
13.75% between the best-found VRPOT solution and the
lower bound. Moreover, the best-found solutions of the
VRPOT are approximately 50% closer to the lower bound,
when compared with the best-found solution of the VRPT
(i.e., 13.75% vs. 26.44%). &e results clearly demonstrate the
effectiveness of TA-NS with the forbidden list in finding

Figure 5: Example of forbidden transshipment pairs.
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good delivery routes which satisfy only the transshipment
demands that would not incur much additional distance.

Among all instances of set A, there are only seven in-
stances where the upper bound can be obtained by solving
the VRPT using CPLEX solver for 3,600 seconds. A com-
parison of the results for these seven instances is shown in
Figure 6. For these instances, the best-found solution of the
VRPT is better than the upper bound obtained by CPLEX
solver by an average of 9.25%.

Finally, Table 6 shows the average percentage of the
additional distance (from the lower bound) per each satisfied
transshipment demand, for the best-found VRPT solutions
and the best-found VRPOT solutions. &e percentage of the
additional distance per satisfied transshipment demand is a
fair index to evaluate the performance of the forbidden
transshipment pairs. From the results, 20 out of 27 instances
have lower percentages of the additional distance per

satisfied transshipment demand with the use of a forbidden
list of transshipment pairs. &e average percentage of the
additional distance per transshipment in the VRPT and
VRPOT is 2.75% and 2.19%, respectively, with an average of
0.56% improvement from implementing the forbidden list of
transshipment pairs.

6.4. Discussion. &e computational test results on the small
problem instance set T and large problem instance set A
indicate effectiveness of the proposed TA-NS heuristic for
VRPT and forbidden list for VRPOT. In the real problem,
there are two business units (BUs) of the retail chain con-
sisting of 22 store locations in Bangkok. &e depot makes
delivery service to 15 high demand locations out of 22 lo-
cations on a daily basis, except on Sunday, and to 7 medium
demand locations on alternate day basis. In other words, the

Table 4: Solution comparison for Run 16 of set T instance.

Problem instance
VRPT (Run 16) VRPOT (Run 16)

Opt. Best found % OFF-OPT. Opt. Best found TD satisfied % OFF-OPT.
CEN T2G 514 514 0.00 433 433 T1, T2, T3 0.00
CEN T2H 532 539 1.32 437 445 T1 1.83
CEN T2J 483 484 0.21 440 440 T1, T2, T4 0.00
OFF T2G 501 501 0.00 458 458 T1, T2, T3 0.00
OFF T2H 500 507 1.40 423 450 T3 6.38
OFF T2J 501 511 2.00 478 491 T1, T2, T3 2.72

Table 5: Comparison between the best-found solutions from TA-NS and the lower bound (optimal solution of VRP) of set A.

Problem
instance

Lower bound
(optimal CVRP)

No. of
TD

Upper bound
CVRPT

Best Sol.
CVRPT

%Diff from
lower bound (%)

Best sol.
CVRPOT

# of TD
satisfied

%Diff from
lower bound (%)

A n32 k5 784 6 1065 934 19.13 862 3 9.95
A n33 k5 661 6 807 775 17.25 762 5 15.28
A n33 k6 742 6 862 847 14.15 809 5 9.03
A n34 k5 778 7 1015 888 14.14 888 7 14.14
A n36 k5 799 7 1138 1019 27.53 928 6 16.15
A n37 k5 669 7 — 839 25.41 743 4 11.06
A n37 k6 949 7 1395 1141 20.23 989 4 4.21
A n38 k5 730 8 — 948 29.86 847 7 16.03
A n39 k5 822 8 — 935 13.75 909 7 10.58
A n39 k6 831 8 1117 1055 26.96 978 7 17.69
A n44 k6 937 9 — 1175 25.40 1104 7 17.82
A n45 k6 944 9 — 1243 31.67 1073 5 13.67
A n45 k7 1146 9 — 1354 18.15 1331 7 16.14
A n46 k7 914 9 — 1139 24.62 1013 6 10.83
A n48 k7 1073 10 — 1490 38.86 1216 6 13.33
A n53 k7 1010 11 — 1402 38.81 1188 6 17.62
A n54 k7 1167 11 — 1446 23.91 1336 7 14.48
A n55 k9 1073 11 — 1350 25.82 1203 7 12.12
A n60 k9 1354 12 — 1790 32.20 1495 5 10.41
A n61 k9 1035 12 — 1297 25.31 1194 8 15.36
A n62 k8 1288 12 — 1744 35.40 1484 7 15.22
A n63 k9 1634 13 — 1983 21.36 1851 7 13.28
A n63 k10 1315 13 — 1749 33.00 1518 6 15.44
A n64 k9 1402 13 — 1802 28.53 1558 7 11.13
A n65 k9 1177 13 — 1647 39.93 1378 9 17.08
A n69 k9 1159 14 — 1588 37.01 1357 9 17.08
A n80 k10 1764 16 — 2214 25.51 2047 10 16.04
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problem has to be solved six days per week in two sizes: 22-
store problem on Monday, Wednesday, and Friday and 15-
store problem on Tuesday, &ursday, and Saturday. &ese
problem sizes can be effectively solved as a VRPOT by the
proposed TA-NS heuristic with the forbidden list.

Expanding the problem to include all business units
results in a large problem of 68 store locations. &is problem
should also be solved as CRPOTsince it is more economical
to satisfy only the transshipment demands that can be added
to the regular demand without incurring much additional
transportation distance (i.e., cost). &e results from testing
the TA-NS heuristic with forbidden list on the problem of
this size in set A gives a solution with approximately 17%
higher than the lower bound solution, while it can satisfy 9
out of 14 transshipment demands (64%). From the small
problem instance solution, for problem instances where
three out of four transshipment demands (75%, which is
close to 64% of the large problem) are satisfied (i.e., see rows
12–15 in Table 3), the percent off-optimal between the
VRPOT and VRP (lower bound) is 13.95% and 14.14% for
the CEN and OFF instances, respectively. Since for the
problem of this size, (1) the TA-NS solution is approximately
17% higher than the lower bound and (2) the optimal so-
lution of CVRPOT at a relatively close percent of trans-
shipment demand satisfied is around 14% higher than the
lower bound, we can imply that the optimal solutions of
VRPOT are closer to the TA-NS solution than the lower
bound. &erefore, a practical implication can be made that
the proposed heuristic for the large real problem is also
effective.
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Figure 6: Result comparison of VRPT and VRPOT to the lower bound and upper bound.

Table 6: Percentage of additional cost per unit of satisfied
transshipment demand.

Problem instance
%Diff/TD

VRPT (%) VRPOT (%)
A n32 k5 3.19 3.32
A n33 k5 2.87 3.06
A n33 k6 2.36 1.81
A n34 k5 2.02 2.02
A n36 k5 3.93 2.69
A n37 k5 3.63 2.77
A n37 k6 2.89 1.05
A n38 k5 3.73 2.29
A n39 k5 1.72 1.51
A n39 k6 3.37 2.53
A n44 k6 2.82 2.55
A n45 k6 3.52 2.73
A n45 k7 2.02 2.31
A n46 k7 2.74 1.81
A n48 k7 3.89 2.22
A n53 k7 3.53 2.94
A n54 k7 2.17 2.07
A n55 k9 2.35 1.73
A n60 k9 2.68 2.08
A n61 k9 2.11 1.92
A n62 k8 2.95 2.17
A n63 k9 1.64 1.90
A n63 k10 2.54 2.57
A n64 k9 2.19 1.59
A n65 k9 3.07 1.90
A n69 k9 2.64 1.90
A n80 k10 1.59 1.60
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7. Conclusions

&is paper presents the newly defined VRPT and its MILP
model for small problem instances, as well as hybrid TA-NS
heuristic for medium to large-scale problem instances. Small
problem instances of 19 customer nodes are solved to op-
timality to assess the impact of satisfying the transshipment
demands on the total distance. It was found that the optimal
solutions of VRPT expectedly have longer distances than
those of the VRP when transshipment demands are not
satisfied. For VRPT, the more the transshipment demands
are satisfied, the longer the additional distance they incur.
&ere is clearly a trade-off between efficiency of delivery
operation (traveling distance) and responsiveness (end
customer service).

Further analysis of the optimal solutions of VRPT at
various levels of transshipment demand reveals that some
transshipment demands can be satisfied without incurring
much additional distance, whereas some significantly in-
crease the distance. &is indicates that in practice, trans-
shipment demands should be optional. As a result, the
forbidden list of transshipment pairs is constructed, which
can help to identify and eliminate the transshipment pairs
that should not be in the same delivery routes. &is is to
prevent incurring too much additional distance from sat-
isfying the transshipment demands.

&e developed TA-NS algorithms, without and with
implementing the forbidden list, are tested on small
problem instances and medium to large problem instances
of VRPT and VRPOT, respectively. Computational test
results show that the TA-NS heuristic outperforms the
CPLEX solver when the computation time for the CPLEX
solver is limited to 3,600 seconds. &e results demonstrate
the effectiveness of the TA-NS heuristic and the forbidden
list in identifying appropriate transshipment demands that
should be satisfied. In practice, the depot has to set either
the level of responsiveness (transshipment demand to
satisfy) or efficiency (additional distance incurred) to
obtain the desired result with respect to end customer
service requirements and the resources required to satisfy
the transshipment demands.

Future research directions are as follows: (1) extending
the scope of the problem to include delivery time windows
and (2) incorporating other real-world aspects to the
problem, such as asymmetric distance between nodes or
stochastic travel time depending on the traffic level during
the time that vehicles are on the road.
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