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Accurate identification of ships is the key technology of intelligent transportation in water. At the same time, it also provides a
judgment basis for water traffic safety control. )is paper proposed a detection method of ships in water based on improved You
Only Look Once version 3 (YOLOv3), which is called Feature Attention, Feature Enhancement YOLOv3 (AE-YOLOv3). )e
feature attention module was constructed by introducing the attention mechanism, which was embedded in Darknet-53 for
feature recalibration, which improved the feature extraction ability of the model in the complex navigable background. For the
problem of insufficient semantic information of low-level features in the feature fusion process, a feature enhancement module
was constructed and applied to the feature fusion part to enhance the receptive field size of the corresponding feature layer and the
correlation degree of feature extraction network. Experiments were carried out on the public SeaShips dataset. Experiments show
that the detection accuracy is as high as 98.72%, which is better than that of other mainstream ship identification models, fully
verifying the superiority of this method in the detection of waterborne traffic ships.

1. Introduction

With the development of shipping industry in the world, the
number of ships is increasing, the ships are developing in the
direction of large scale and high speed, and the navigation
safety is becoming more and more important. )is objec-
tively promotes the development of ship navigation and
automated driving technology [1]. In order to improve the
efficiency, reliability, and safety of ship navigation, shipping
industry is now gradually developing towards the direction
of intelligent and full automation of ship autopilot, auto-
matic avoidance, and automatic docking and leaving dock,
making intelligent ships gradually become a new research
direction [2–4]. With the increase of water traffic flow
density [5], the navigation environment is becoming more
and more complex. )e target detection of surface ships is
one of the key technologies of intelligent navigation. It is of
great significance to accurately identify ships in water areas.
)is is an important part of water traffic safety monitoring
and management, which provides a basis for water traffic
management and control [6–8].

In the process of ship navigation, the ship target de-
tection can help maritime participants take measures to
avoid potential water traffic accidents [9]. Before Con-
volutional Neural Network is applied to ship target detec-
tion, traditional ship detection algorithms mainly include
region selection, combined feature extraction, and back-
ground texture modeling [10]. In recent years, with the rapid
development of computer vision, deep learning algorithms
have achieved good results in the field of target detection and
image processing [11]. Ren et al. proposed an improved
Faster R-CNN (Faster Region-based Convolutional Neural
Network) algorithm for ship target detection, and the ac-
curacy of target detection is improved [12, 13]. When Faster
R-CNN performs target detection, the feature maps
extracted by features are used to generate region proposals
using Region Proposal Networks (RPN), and 300 region
proposals are generated for each image, while each region of
interest (RoI) is made to generate a fixed size feature map by
RoI pooling layer and is finally discriminated by fully
connected network, which greatly increases the calculation
time and the complexity of the network. Guo et al. proposed
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a DepthFire Single-Shot MultiBox Detector (DF-SSD)
framework, which improves detection accuracy [14], but
SSD algorithm predicts output through multilayer convo-
lution, and the semantic information is lost too much, which
is not friendly to the detection of small targets. Huang et al.
did a comparative experiment on trajectory compression
and visualization in different water areas, applied to mari-
time intelligent traffic management and collision avoidance
[15]. )is provides a theoretical basis for the design of the
ship detection and tracking system.

Ship-YOLOv3 algorithm was proposed by Huang et al. It
improved the detection accuracy by changing the YOLOv3
network structure, reducing some convolution operations,
and increasing the jump connection mechanism [16].
Redmon et al. proposed YOLO algorithm for target de-
tection [17], which leads the learning boom. However, when
applying the YOLO algorithm to ship detection, the existing
research often strives to improve the overall detection ac-
curacy, while ignoring the very small targets that actually
exist [18]. What is more, YOLO algorithm only predicts a set
of category probability values. It brings many difficulties to
researchers. With the increase in the density of water traffic
flow, there are more and more types of ships that need to be
identified on the waterway. Under the complex navigation
background, the detection accuracy is relatively low for
extremely small-sized ships, and the generalization ability of
the model is poor. In this context, an algorithm that can
detect all ships in time is particularly important [19, 20].

)rough the analysis of the existing ship target detection
algorithms, we find that YOLOv3 has greater advantages
than YOLOv1 and YOLOv2. )e details are as follows:
YOLOv3 provides three types of suggestion boxes for large,
medium, and small objects. 13×13 is used to detect large
objects, 26× 26 is used to detect medium objects, and 52× 52
is used to detect small objects. In addition, 1× 1 convolution
replaces the fully connected layer, and the multiscale feature
map is convolved with the 1× 1 convolution to obtain the
detected feature map of the corresponding size, which in-
creases the nonlinear characteristics of the network and
achieves feature information integration while the current
feature map size remains unchanged. Because only the box
with greater confidence is detected, the calculation time is
faster, and the detection of small targets can also be friendly.
YOLOv4 is improved on the basis of YOLOv3, and the
network performance has been improved. However, in
actual experiments, we considered that there is only one
GPU card; YOLOv3 was selected for this work. Compared
with R-CNN series and SSD algorithm, it has higher ac-
curacy and faster calculation time. Based on the require-
ments of detection accuracy and speed, we chose YOLOv3
algorithm to design the ship detection frame, as it accurately
locates the position of ships in maritime images.

Our primary academic contributions can be summarized
as follows: (1) We proposed the AE-YOLOv3 water ship
detection algorithm to realize the end-to-end detection of
ship objects. At the same time, aiming at the problem of too
little data in the ship dataset, the dataset was expanded
through the technical means of data enhancement to avoid
the occurrence of overfitting. (2) We built a feature attention

module based on the attention mechanism, embedded the
feature extraction network of AE-YOLOv3 to recalibrate the
feature channel, and enhanced the spatial connection of the
feature map [21]. (3) )en, we built a feature enhancement
module based on the idea of multiscale feature fusion to
improve the feature fusion part and used dilated convolution
to enhance the receptive field of network layer, which solved
the problem of the feature disappearance caused by too deep
network [22]. (4) We generated boundary box and accu-
rately predicted ship position, and the ship dataset was
trained on a complete frame and compared with mainstream
ship detection algorithms to verify the effectiveness of the
AE-YOLOv3 algorithm, which provides a theoretical basis
for water traffic safety.

2. Data Description

Anew large-scale dataset of ships was proposed by Shao et al.
It is called SeaShips and is designed for training and eval-
uating ship object detection algorithms [23]. )e SeaShips
dataset consists of 7000 images. All of the images were taken
from approximately 7000 real-world video clips obtained by
surveillance cameras in a deployed shoreline video sur-
veillance system. )ey are carefully selected to cover all
possible imaging variations, such as different scales, hull
sections, lighting, viewpoints, backgrounds, and occlusion.
All images are annotated with ship type labels and high-
precision border boxes. In practice, the SeaShips dataset is
expected to advance the research and application in ship
detection. It contains 6 ship classes: ore carrier, bulk cargo
carrier, general cargo ship, container ship, fishing boat, and
passenger ship. )e number of images in each ship category
is shown in Table 1. Among them, the mixed type represents
six classes of mixed categories with ships occluding each
other in the image.

In order to improve the generalization of the framework,
we use data enhancement technology to generate more ship
images by applying generic enhancements [24]. )e dataset
was randomly scaled and rotated to increase to 14000.
During the training process, 90% of the ship images were
randomly selected as the training dataset, and the remaining
10% were used as the test dataset. Six types of ships are
shown in Figure 1.

3. Methodology

)e AE-YOLOv3 algorithm does not need to generate a
region of interest in advance; instead, it directly trains the
network in a regression way. By using the K-means algo-
rithm to cluster the bounding boxes of the training samples,
3 groups of predefined bounding boxes were preset on 3
scale sizes, and the subsequent positioning prediction would
be based on these 9 bounding boxes. Firstly, feature ex-
traction was carried out on the original 416× 416 input
image through the feature extraction network, and then the
feature vectors were fed into the Feature Pyramid Networks
(FPN) structure to generate 3 grid regions on the scale,
which were 13×13, 26× 26, and 52× 52, respectively. Each
grid region predicted three bounding boxes. A total of
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(52× 52 + 26× 26 + 13×13)× 3�10647 boundary boxes
were generated. A vector N is predicted in each bounding
box, and the composition of vector N is shown in the fol-
lowing equation:

N � tx + ty + tw + th  + N0 + N1 + N2 + · · · + Nn( .

(1)

)e first 4 elements in the vector N represent the 4
coordinates related to the bounding box. )e calculation
formulas for the distance from the center of the final pre-
dicted result’s bounding box to the upper left corner of the
feature map are shown in (2) and (3), and the calculation
formulas for the length and width of the predicted bounding
box are shown in (4) and (5):

bx � δ tx(  + Cx, (2)

by � δ ty  + Cy, (3)

bw � pw × e
tw , (4)

bh � ph × e
th . (5)

Among them, δ represents Sigmoid function, Cx and Cy

represent the offset of the grid to which the bounding box
belongs relative to the upper left corner of the picture, ph and
pw represent the length and width of the predefined

bounding, bx and by represent the distance from the center
of the final predicted result’s bounding box to the upper left
corner of the image, and bh and bw represent the length and
width of the predicted bounding box. N0 represents the
probability value of the object in the prediction box. )e
remaining n values in the vectorN represent the scores of the
predicted object belonging to one of the n categories, which
are obtained by the Sigmoid function. Finally, nonmaximum
suppression is performed on the generated prediction frame
to obtain the final prediction result. )e overall detection
process of the AE-YOLOv3 algorithm is shown in Figure 2.
It consists of three parts: Darknet-53 feature extractor,
multiscale feature fusion, and multiscale detection branch
structure.

)e target detection process of AE-YOLOv3 is as follows:
In the first step, feature extraction of training data is carried
out through Darknet-53 embedded in feature attention
module. In the second step, the spatial correlation degree of
the target features is enhanced by the improved feature
fusion part, and the extraction capability of small target
feature information is enhanced. )e third step is the
generation of bounding box and ship position prediction,
and the calculation of the boundary box is shown in (2)–(5).
)en, the final ship mark box is obtained after applying the
nonmaximum suppression (NMS) algorithm.

In Figure 2, Res-FAn represents a residual structure with
n Res-FA modules, and Res-FA represents the residual
structure of the embedded feature attention module.

Table 1: Number of images in each ship category.

Ship category Images Percentage
Ore carrier 1141 0.1630
Bulk cargo carrier 1129 0.1613
Container ship 814 0.1163
General cargo ship 1188 0.1697
Fishing boat 1258 0.1797
Passenger ship 705 0.1007
Mixed type 765 0.1093
Total 7000 1

(a) (b) (c) (d) (e) (f )

Figure 1: Example images of six ship types: (a) ore carrier; (b) bulk cargo carrier; (c) general cargo ship; (d) container ship; (e) fishing boat;
(f ) passenger ship.
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Darknetconv2d_BN_Leaky (DBL) consists of convolution,
Batch Normalization (BN) [25], and Leaky Rectified Linear
Unit (ReLU) [26].

Due to the complex background and irregular size of
ship images, the recognition difficulty of the YOLOv3 al-
gorithm increases. At the same time, aiming at the defect of
YOLOv3 algorithm for small target recognition, considering
the recognition accuracy and speed issues, this paper
designed AE-YOLOv3 based on multiscale feature attention
(FA) module and feature enhancement (FE) module.)e FA
module is embedded in the Darknet-53 network for weight
redistribution of feature channel. Because the Darknet-53
network uses a large number of residual connections, the
structure needs to be adjusted when the feature attention
module is added. At the same time, the feature enhancement
module is designed to embed the feature fusion part to
enhance the ability to extract the feature information of
small ship targets, and the FE module solves the problem of
high-level feature maps becoming smaller due to convolu-
tion operation.

)e specific network design process is as follows: ① In
the Darknet-53 network, the designed FA module is em-
bedded in the adjusted residual structure, and the weight of
the feature channel relationship in the feature extraction
network is redistributed, which strengthens the spatial
connection of ship targets at different scales. ② )en, the
calculated weight is weighted to the original ship image
feature map through the scale operation, which strengthens
the ability to extract features of multiscale targets, and finally
outputs the corresponding feature map.③)e three feature
maps of Darknet-53 network are output as the input of
feature fusion part; then, through the feature enhancement
module, the detection performance of small target ships is
enhanced.

3.1. Darknet-53 Structure. )e Darknet-53 feature extractor
uses a series of convolutional layers of 1× 1 and 3× 3, and
each convolutional layer is connected to two neural network
structural units: Batch Normalization and Leaky ReLU; two

convolutional layers constituted a residual convolution
group. )ere were five residual convolution groups in
Darknet-53, and the residual convolution group adopted a
jump-layer connection method, forming the residual block.
After multiple convolution operations, the image of
416× 416× 3 can be output to the image of 13×13×1024.
While improving the calculation speed of the algorithm, the
complexity of the network is reduced, and the occurrence of
overfitting is avoided.

3.2. Feature Attention (FA) Module. Like the human visual
system, the attention mechanism consciously grabs the most
useful information from enormous target information, can
learn useful features, and suppresses useless features. By
adding different weights to the feature channels transmitted
by the neural network, the network will pay attention to the
channel with larger weights for parameter update. In the
process of forward propagation, the important feature
channels occupy a larger proportion, and the final detection
output image is also more prominent to show the focus of
the network. Wang proposed a Convolutional Neural
Network using attention mechanism through the study of
feature networks [27]. With the deepening of the network,
the attention module will learn adaptively to extract useful
information from the images.With the attentionmechanism
being used by more and more researchers, it has been
verified that it has a positive effect on the improvement of
network performance.

When the YOLOv3 algorithm is used for ship detection,
researchers usually focus on improving the overall accuracy
but ignore the extremely small ships in the water area, which
has certain safety risks in practical applications. Nowadays,
more and more cargo is transported on the water, and the
ship inertia is relatively large. )erefore, improving the
detection accuracy of extremely small ships in the distance
can be judged in advance, to avoid collision accidents. For
the above problems, this paper constructs a feature attention
(FA) module to recalibrate the feature channel to improve
the feature extraction ability of the network. )e structure is

input

DBL

Res-FA1

Res-FA2

Res-FA8

Res-FA8

Res-FA4

DBL×5
DBL FE DBL Conv

DBL Upsampling

416×416×3

FE DBL
DBL×5

DBL Conv

DBL Upsampling
FE DBL DBL Conv

13×13×255
output

26×26×255
output

52×52×255
output

DBL×5

Res-FA =
Residual

block scale

FA

= conv BN Leaky
ReLUDBL

H×W×C
H×W×C

Figure 2: )e algorithm network structure of AE-YOLOv3.
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shown in Figure 3, where FC means fully connected, ReLU
means Rectified Linear Unit.

)e specific steps of the feature attention module are as
follows: Firstly, convolution of 1× 1 and 3× 3 is added in
front of global average pooling to realize cross-channel
information integration, which enhances the spatial con-
nection of ship images at different scales and the ability to
extract multiscale features. )en, through global average
pooling, the global spatial information of the feature map is
transformed into a one-dimensional vector for summation,
and the global information of the feature map is obtained.
Global average pooling is a special pooling proposed by Lin
et al. [28]. It is commonly used to aggregate spatial infor-
mation, perform average pooling of the entire feature map,
and finally get a value. )e specific formula is shown as
follows:

Gc �
1

H × W
 H

i�1 
W

j�1
Uc(i, j). (6)

Among them, Gc is the vector sum after global average
pooling of the feature map, H and W are the width and
height of the input feature map, and Uc(i, j) is the value of
the c-th channel Uc at (i, j); then, the size of the feature map
changes from C × H × W to C × 1 × 1.

In order to strengthen the spatial connection between
feature channels and obtain the weights of feature maps of
different channels, the following processing needs to be
performed on Gc:

Xc � σ W2δ W1Gc( ( . (7)

Among them,Xc is the weight of the corresponding
feature map, W1 ∈ R(C/r)×C and W2 ∈ RC×(C/r) are the weight
matrices of the fully connected layer, δis the ReLU function,
and σ is the Sigmoid function.

Finally, the feature channel is recalibrated, and then the
weight (Xc) is multiplied by the input feature map (Uc). )e
specific formula is shown as follows:

Gc � Uc ⊗Xc, (8)

where Uc is the output matrix of the c-th channel after
weight calibration.

3.3. Feature Enhancement (FE) Module. When the YOLOv3
algorithm is used for ship detection, the feature fusion part
adopts the top-down fusion method. Due to the layered
convolution, the high-level feature layer is greatly reduced in
sensitivity to the small target feature information of the
input image, and the learning ability is insufficient. Even if
the original network will integrate the high-level feature
layer with strong semantic information and the low-level
feature layer, the problem of insufficient detection capa-
bilities of the network for small targets cannot be avoided.
For the above problems, a feature enhancement (FE) module
is designed to directly act on the feature fusion part of the
YOLOv3 algorithm, which increases the receptive field of the
convolutional layer and the semantic information of the
output feature layer.

)is paper uses dilated convolution that can increase the
receptive field of the convolution layer, but not the amount
of training parameters, by using different sizes of traditional
convolution and different steps of dilated convolution to
construct feature enhancement (FE) module; it is embedded
in the feature fusion process. In the channel latitude, the
feature correlation between networks is enhanced, thereby
improving the performance of small target detection. )e
structure is shown in Figure 4.

Branch1, branch2, and branch3 are the three branch
structures of the FE module. After the input ship image
passes through the residual module of Darknet-53, it will
output 5 feature maps, among which the output feature
maps 3, 4, and 5 will be the input of the next module (see
Figure 2). Since the feature fusion part adapts the top-down
fusion method, after the FE module is embedded in the
feature fusion part, the input of branch1 and branch2 is the
high-level output feature map, and the input of branch3 is
the adjacent low-level output feature map. After the concat
operation, the feature fusion goal is achieved.)e calculation
formulas of the three multiscale output feature maps after
feature fusion are shown as follows:

Xi �
concat b1 xi( , b2 xi(  , i � 5,

concat b1 xi( , b2 xi( , b3 xi+1(  , i � 3, 4.
 (9)

Among them, b1(xi), b2(xi), b3(xi+1) represent the
corresponding convolution combination of branch1,
branch2, and branch3; xi and xi+1 represent the output
feature map of Darknet-53; and concat[] is the feature
connection operation. Branch1 uses a traditional convolu-
tion of 1× 1 and a dilated convolution with the size of 3× 3
and the step size of 2; branch2 uses a traditional convolution
of 3× 3 and a dilated convolution with the size of 3× 3 and
the step size of 3; and branch3 uses deconvolution to operate,
and to a certain extent it solves the problem that the high-

input

1×1 3×3

Global average 
pooling

FC

ReLU

FC

Sigmoid

Figure 3: Feature attention module structure.
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level feature map becomes smaller due to the convolution
operation. F1 is the calculation result of branch1, and the
calculation formula is shown in (10); F2 is the result of
convolution with different size and step, and the calculation
formulas of F2 is shown in (11); F3 is the result of decon-
volution, and the specific calculation formula is shown in
(12).

F1 � F
H×W×C ⊗ b

1×1×(C/2) ⊗ A
3×3×(C/2)

 
2
, (10)

F2 � F
H×W×C ⊗ b

3×3×(C/2) ⊗ A
3×3×(C/2)

 
3
, (11)

F3 �
is + 2p − k

s
+ 1. (12)

Among them,⊗ is the convolution operation, FH×W×C is
the input feature map of the current layer of the feature
enhancement module, b is the traditional convolution, A is
the dilated convolution, isis the size of the input feature map
in the next layer of the feature module, k is the size of the
convolution kernel, s is the step size, and p is the boundary
padding (0 in this paper). Finally, F1, F2, and F3 are
concatenated.

4. Experiments

)e proposed algorithm is applied to ship target detection,
which has been described in detail in the above sections. )e
experiment in this paper was carried out on Google Cola-
boratory. )e GPU version is NVIDIA Tesla P100, which
contains 16GB RAM, and the simulation platform is
PyTorch framework on Python (version 3.7).

In order to verify the superiority of the AE-YOLOv3
algorithm in this paper, we conduct comparative experi-
ments in the horizontal and vertical directions based on the
same experimental environment, and mean average preci-
sion (mAP) is used as the evaluation index, including
precision and recall. )e calculation formulas for precision
and recall are shown as follows:

Precision �
TP

TP + FP
, (13)

Recall �
TP

TP + FN
, (14)

where TP is the number of ships detected by the AE-
YOLOv3, FP is the wrong detection of the ship target, and
FN is the number of ship targets not detected. A larger mAP
means that the algorithm’s target detection accuracy is
better. )e mAP calculation formula is shown as follows:

mAP � 
1

0
P(R)d(R), (15)

where P is precision, R is recall, and the area of the P-R curve
(see Figure 5) is the size of mAP.

Comparison experiment is conducted in the same ex-
perimental environment. )e algorithm proposed in this
paper, Faster Region-based Convolutional Neural Network
(Faster R-CNN) [29], Single-Shot Detection (SSD) [30], and
You Only Look Once version 3 (YOLOv3) [31] are used for
ship target detection experiments. When the model stops
converging, the training is terminated. After the training is
completed, the weight file is called and tested based on Faster
R-CNN, SSD, YOLOv3, and AE-YOLOv3. Frames per
second (FPS) of the algorithm are tested at the same time,
representing the number of pictures that can be processed
per second. )e test results are shown in Table 2.

According to Table 2, the detection accuracy of the water
transportation ship detection algorithm proposed in this
paper is higher than the mainstream detection algorithm,
and it has achieved 98.72%. )e improvement of accuracy is
mainly due to the excellent network design of YOLOv3
algorithm and the addition of feature attention module and
feature enhancement performance of feature fusion part.
However, it is inferior to the original YOLOv3 algorithm in
FPS; the main reason is that the FE module uses decon-
volution to increase the resolution of the high-level feature
map, which increases the amount of calculation and causes
the model to slow down. Taking into account the require-
ments of detection accuracy and speed, the algorithm
proposed in this paper can meet the requirements of ship
target detection. Aiming at the reduction of FPS, future
research will solve the problem of computation and infor-
mation redundancy in the network, while ensuring accuracy,
and improve the detection accuracy and speed of the model.

In order to better reflect the superiority of the model in
this paper, recall rates and accuracy of the four algorithms
were calculated respectively, and the corresponding P-R
curve is drawn, as shown in Figure 5. Low recall means that
there are few ship targets in the maritime image, and pre-
cision represents the detection accuracy of the algorithm.
Experiments show that the algorithm proposed in this paper
has a significant improvement in accuracy and recall and
correctly detects more ship objects, which proves its supe-
riority in ship detection.

Figure 6 shows the mAP comparison chart of the AE-
YOLOv3 algorithm and the current three mainstream al-
gorithms, and it also covers the various categories of the
SeaShips dataset. In this paper, the score threshold is
designed to be 0.6; that is to say, the detected ship target
coincides with the boundary box to 60%, and the detection is
regarded as successful. Among them, the average detection
accuracy of AE-YOLOv3 for six types of ships is as high as

Previous layers

1×1 conv

3×3 conv 
rate=2

3×3 conv

3×3 conv 
rate=3

concat deconv

branch 1 branch 2

F1 F2

F3
branch 3

Figure 4: Feature enhancement module structure.
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98.72%, which is 2.83% higher than the original YOLOv3
algorithm, 3.27% higher than the SSD algorithm, and 6.89%
higher than the Faster R-CNN. For each category, the AE-
YOLOv3 algorithm has a significant increase in the AP value
of the small target fishing boat compared to the other three
algorithms, indicating that adding a feature attention (FA)
module to perform feature channel calibration can improve
the detection of small targets. Another notable change is the
ore carrier category; by observation of SeaShips dataset, it
can be found that the image target containing ore carrier has
a highmixing rate with the background, and the background
has a great disturbance. However, the AP value of the ore
carrier category of AE-YOLOv3 algorithm is 12%, 3%, and
1% higher than the other three. )e main reason is that the
embedded FE module can strengthen the feature informa-
tion of the high-level feature layer, which increases the
ability of the model to grasp the target information and
avoids the error identification.

It can be seen from Table 3 that precision and recall have
a significant improvement compared with the other three
algorithms, indicating that the number of missed targets of
the AE-YOLOv3 algorithm is significantly reduced (the ship
image is judged as a nonship image) and its performance is
significantly improved. Good target detector performance
can provide reference for maritime personnel and avoid the
danger of ship collision caused by the negligence of maritime
personnel [32]. More specifically, applying the AE-YOLOv3
algorithm to the video tracking system will issue an early
warning when a collision is about to occur, which greatly
reduces the probability of marine accidents and promotes
the development of intelligent shipping.

)e visual inspection comparison is shown in Figure 7. It
shows the detection results of different algorithms using the
same training strategy. Among them, the first line is the
detection result of AE-YOLOv3 algorithm, the second line is
the detection result of the original YOLOv3 algorithm, the
third line is the detection result of SSD algorithm, and the
fourth line is the detection result of Faster R-CNN

algorithm. According to Figure 7, compared with the other
three algorithms, AE-YOLOv3 has a significant improve-
ment. )e number of ship categories detected by AE-
YOLOv3 is significantly more than that of the other three. In
particular, the detection effect of small targets is significantly
improved, and the recognition rate of occluded targets is also
higher, while the original YOLOv3, SSD, and Faster R-CNN
have many missed targets. It can be seen from the com-
parison in the first column that AE-YOLOv3 has good re-
sults for the detection of multiple targets and small targets,
while the original YOLOv3, SSD, and Faster R-CNN all have
missed detection and low accuracy; it can be seen from the
comparison between the second column and the third
column that AE-YOLOv3 also has a good effect on the
detection of occluded targets.

From what has been discussed above, AE-YOLOv3 in
this paper has a good detection effect for small targets, target
occlusion, and incomplete target information and can circle
the ship target with a suitable bounding box, especially for
small fishing boats. )e effect is significantly improved; it
benefits from the design of feature attention module and
feature enhancement module. )rough the feature channel
calibration of the feature extraction network, the spatial
connection is strengthened. At the same time, the FEmodule
of the feature fusion part strengthens the correlation and
resolution between the high-level networks and enhances
the feature extraction ability. An excellent target detector is
extremely important. )e excellent performance of AE-
YOLOv3 can provide a reference basis for maritime affairs
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Figure 5: P-R curve comparison chart.

Table 2: Comparison of SeaShips dataset test results.

Detection algorithm mAP (%) FPS
Faster R-CNN 91.83 7
SSD 95.45 30
YOLOv3 95.89 35
AE-YOLOv3 98.72 32
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bureaus and ship design, as well as providing a judgment
basis for maritime related personnel to control ship navi-
gation in advance to avoid water traffic accidents, so as to
achieve the effect of safe navigation.

)e use of video surveillance technology for automatic
monitoring of ships plays an important role in marine safety
and maritime transportation, fishery management, ship
traffic monitoring, and so on [33–35]. Ship tracking is based

entirely on the results of ship detection. If the detected target
is wrong, then subsequent target tracking based on this will
also make an error. For target detection algorithms, it is
currently difficult to achieve very high accuracy, and oc-
clusion has always been a difficult problem to solve. )e
improved algorithm in this paper solves this problemwell, so
it can provide a theoretical basis for the subsequent tracking
of ships on the water.

Table 3: Ship detection performance for different algorithms.

Algorithm Recall (%) Precision (%)
Faster R-CNN 88.235 89.615
SSD 91.938 92.995
YOLOv3 93.145 94.628
AE-YOLOv3 97.568 97.388
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Figure 6: Comparison of AP curves of different algorithms: (a) Faster R-CNN’s mAP; (b) SSD’s mAP; (c) YOLOv3’s mAP; (d) AE-
YOLOv3’s mAP.
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5. Conclusions

Ship target detection and tracking are very important to the
development of intelligent shipping, which requires ships to
overcome all difficulties in the complex navigable environ-
ment, so as to avoid the occurrence of water traffic accidents.
We proposed an algorithm model based on YOLOV3 to
detect ships in maritime images. AE-YOLOv3 was imple-
mented in three steps. )e first step is to construct a feature
attentionmodule by introducing an attentionmechanism and
embed it in Darknet-53 for feature recalibration. )e second
step is to build a feature enhancement module and apply it to
feature fusion to enhance the receptive field size of the
corresponding feature layer and the relevance of the feature
extraction network. )e third step is to output multiscale
feature map by predicting the branch structure to obtain the
best detection frame.

Although ourmethod has achieved excellent performance
in ship target detection, there are still some limitations in this
work; we can do some research to improve the performance of
the algorithm in the future. First, we considered that the ships

in the SeaShips dataset are all in a horizontal position, and this
work was carried out on the SeaShips dataset; therefore, it is
necessary to collect multiangle ship images as training dataset
in the future. Second, maritime images were collected in a
good environment (without disturbance from storm, rain,
and snow), so detecting ship objects at complex environment
will be an important research in the future. Last but not least,
the image of the surveillance video will be blurred due to
vibration when the ship is sailing, so testing the performance
of our model under the vibration background will be a good
exploration.
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