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Aiming at the traffic flow prediction problem of the traffic network, this paper proposes a multistep traffic flow prediction model
based on attention-based spatial-temporal-graph neural network-long short-term memory neural network (AST-GCN-LSTM).
+e model can capture the complex spatial dependence of road nodes on the road network and use LSGC (local spectrogram
convolution) to capture spatial correlation features from the K-order local neighbors of the road segment nodes in the road
network. It is more accurate to extract the information of neighbor nodes by replacing the single-hop neighborhood matrix with
K-order local neighborhoods to expand the receptive field of graph convolution. +e high-order neighborhood of road nodes is
also fully considered instead of only extracting features from first-order neighbor nodes. In addition, an external attribute
enhancement unit is designed to extract external factors (weather, point of interest, time, etc.) that affect traffic flow in order to
improve the accuracy of the model’s traffic flow prediction. +e experimental results show that when considering the static,
dynamic, and static and dynamic combination, the model has excellent performance: RMSE (4.0406, 4.0362, 4.0234), MAE
(2.7184, 2.7044, 2.7030), accuracy (0.7132, 0.7190, 0.7223).

1. Introduction

Traffic forecasting is an important field in the research of
intelligent transportation [1], and effective traffic flow
forecasting can alleviate traffic congestion, travel planning,
and traffic management for individual drivers and decision-
makers [2, 3].+e complex temporal and spatial correlations
between traffic flows will show huge differences affected by
external emergencies [4], dynamic factors, and static factors.
Ahmed [5] and others proposed an autoregressive integrated
moving average model (ARIMA) model that can only deal
with nonstationary time series data. It is difficult to explore
connections between dynamic data and is no longer suitable
for current application scenarios. In addition, though tra-
ditional linear methods such as a series of Kalman filtering
methods proposed and improved by Stephanedes [6], Xie
(2007) [7], Ojeda (2013) [8], Guo [9] have improved the
accuracy of traffic prediction in some aspects, its ability to fit

nonlinear traffic flow data is still poor, and it increases the
prediction time [10–12].

With the development of computer capabilities, typical
machine learning methods, such as support vector regres-
sion (SVR) [13, 14], k-nearest neighbor algorithm [15, 16]
K-NN (K-NearestNeighbor), and decision tree models
[17–19], can dig out the essential laws and rich information
hidden in traffic flow from massive data [20], and better
promote the development process of traffic flow forecasting.

+e emergence of deep neural network models has
enabled the development of the potential of artificial in-
telligence in traffic prediction. Although some simple net-
work structures can improve the accuracy of model traffic
prediction [21], there are problems such as slow conver-
gence, prone to over-fitting, and prone to error values [22].
Compared with the traditional neural network model, re-
current neural network (RNN) [23], long short-term
memory network (LSTM) [24], and gate recurrent unit
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(GRU) [25] can effectively use the self-loop system and learn
time series features to improve the effectiveness of predic-
tion. +erefore, it is used as a component of each model to
predict traffic speed, travel time, traffic flow, etc.

In order to capture the spatial dependencies in the traffic
road network, researchers [26] extract spatial features
combined with convolutional neural networks (CNN) from
two-dimensional spatiotemporal traffic data. +e descrip-
tion of the traffic structure using two-dimensional spatio-
temporal data is not accurate and does not conform to the
complex road network conditions in real life so some
scholars [27] have begun to try to convert the structure of the
traffic network into images and use CNN to learn the traffic
images in order to capture the spatial characteristics.
However, there is more or less noise in the images converted
by the traffic network structure, and the existence of noise
will inevitably cause CNN to capture false spatial relation-
ships. Traditional methods based on CNN cannot essentially
deal with the topological structure and physical properties of
the traffic network. Recent studies [28, 29] also tried to
convert the traffic state data into a three-dimensional (3D)
matrix and use 3D convolutional networks to extract
characteristics in deeper levels. Researchers [30] learned the
traffic network as a graph and extract features from the graph
structure of the traffic network using convolution operators
based on graphs, which effectively learns the changes in
traffic flow under the temporal and spatial attributes and
achieves great forecast results.

After considering the dynamic change characteristics of
the traffic network, this paper proposes the AST-GCN-
LSTM model, which can predict the future traffic state
according to historical traffic flow information on roads and
external auxiliary information. Since traffic flow is affected
by a variety of external factors (actual factors) such as
weather, holiday, and time, in this article, we predict the
traffic speed in the future based on the traffic speed in the
past period of time and the external factors that affect the
traffic flow.+is is of great significance for realizing dynamic
traffic signal optimization, dynamic traffic management
planning, and traffic management decision [31].

2. Method

2.1. +e Introduction of Basic Algorithms

2.1.1. Graph Neural Network (GCN). +e transportation
network can be regarded as a graph composed of nodes and
edges, so the transportation network as a graph structure has
been used for dynamic shortest path routing [32], traffic
congestion analysis [33], and dynamic traffic allocation [34].

+e most commonly used method for our research on
graph networks is to introduce a spectrum frame in the
spectrum domain [35] and obtain the spectrogram convo-
lution model by designing the spectrum convolution based
on the graph Laplacian matrix. In order to reduce the
number of parameters and save the amount of calculation,
we use the local spectrogram convolution with polynomial
filter, but the Laplacian matrix power operation still requires
a lot of calculation and high complexity, and to reduce the

complexity, the Chebyshev polynomial is introduced to
calculate the K-order local convolution, which can reduce
the computational time complexity from the square level to
the linear level.

As shown in Figure 1, the spectrogram convolution
model using Chebyshev polynomial approximation can
capture features from the K-order local neighbors of the
vertices in the graph, fully taking into account the high-order
neighborhood of the node instead of extracting features
from the single-hop neighborhood only. +is chapter ex-
pands the receptive field of graph convolution by replacing
the single-hop neighborhood matrix with the K-order local
neighborhood, which can extract the information of
neighbor nodes more accurately.

2.1.2. GCN-LSTM Structure. To capture the complex spatial
correlation and dynamic time correlation of traffic data in
the real world, we have added a long- and short-term
memory neural network LSTM. LSTM is an improved re-
current neural network (RNN), and LSTM has better per-
formance than ARIMA when the training time series is long
enough [36, 37]. +e basic unit of the hidden layer of LSTM
is a special cell unit, not a traditional neuron node. It is this
special memory unit that enables LSTM to successfully solve
the defect of RNN gradient explosion and also capture the
temporal correlation of traffic flow. +e overall structure of
the GCN-LSTM structure is shown in Figure 2. In order to
capture the complex spatial correlation and dynamic time
correlation of traffic data in the real world, we combine the
GCN with LSTMmodels. +e function of the GCN model is
to generate a graph of the traffic information of the road
segment based on a given graph structure. It learns the
representation of the road segment by integrating the
characteristics of the local neighbors of the node and cap-
tures the spatial dependence of these road segments in the
road network at each timestamp. +en, these time-varying
feature representations are input into the LSTM model to
capture the time dependence [38, 39].

2.2. AST-GCN-LSTM Spatiotemporal Graph Convolution
Model

2.2.1. Attribute Augmentation Unit. On the basis of the
GCN-LSTM traffic flow model introduced in Section 2.1.2,
we have added an attribute augmentation unit. As shown in
Figure 3, static external attribute features and dynamic
external attribute features expand the dimensions of the
original traffic feature matrix through attribute augmenta-
tion units.

At time t, traffic information matrix Xt is extracted from
the historical feature matrix X � (X1, . . . , Xt), and
{Lt− w, Lt} is the set of dynamic attribute features of w+ 1
time windows. In different timestamps, the static attribute
feature set of H is always unchanged. L and H are merged to
generate an augmented matrix Pt. +e problem of multistep
traffic flow prediction can be expressed as

y � f(A, X, P). (1)
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Figure 1: K-hop neighbors of graph convolution.
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+e model learns the complex spatial dependence, dy-
namic time dependence, and external dependence in traffic
data. In this model, the gate structure and hidden state in
LSTM are unchanged, but the input is replaced by the graph
convolution feature. At time t, the input gate, output gate,
forget gate, and input unit are defined as formulas (2) to (7):

ft�σ Wf · gc pt, A( , ht−1  + bf , (2)

it � σ Wi · gc Pt, A( , ht−1  + bi( , (3)

ct � tanh Wc · gc Pt, A( , ht−1  + bc( , (4)

ct � ft ∘ ct−1 + it ∘c, (5)

ot � σ W∘ · gc Pt, A( , ht−1  + b∘( , (6)

ht � ot ∘ tanh ct( . (7)

+e sign “∙” is a matrix multiplication operator, Wf, Wi,
Wc, and Wo are weight matrices that map the input to the
states of three gates and input units, and bf, bi, bc, and bo

are four deviation vectors. s is the activation function of
the gate, which is usually the sigmoid function. Tanh is
the hyperbolic tangent function, and gc(·) represents
the graph convolution operation (Chebyshev polynomial
approximation).

2.2.2. Loss Function. In the process of model training, loss is
chosen as the training target to optimize the error of
multistep prediction and make the prediction result close to
the real traffic state. +erefore, the loss function used in
multistep traffic prediction AST-GCN-LSTM can be
expressed as follows:

Loss � L yT, yT(  � yT − yT

����
���� + ρLreg. (8)

L (∙) is a function to calculate the error between the
predicted yT value and the true value yT. Here, Lreg rep-
resents a regular term avoiding over-fitting of themodel, and
ρ is a hyperparameter that is learnable in the network.

2.2.3. AST-GCN-LSTM Spatiotemporal Graph Convolution
Model. +e GCN-LSTM traffic flow model introduced in
Section 2.1.2 is combined with the attribute expansion unit
in Section 2.2.1. A multistep traffic flow prediction model
(AST-GCN-LSTM) that considers external factors is also
proposed. +is model fully takes the external attribute
characteristics that affect the traffic flow into account.
Figure 4 shows the overall framework of the model, which is
mainly composed of data preprocessing, attribute expan-
sion, and spatiotemporal graph convolutional layers. In the
model, we set the number of neural units in all hidden layers
to 64, the batch size to 64, the learning rate to 0.001, the order
of the Chebyshev polynomial to 3, and the maximum
number of training iterations to 3000. +e Adam optimizer
is used to train the model. +e data set is divided into two
parts, 80% of the data are used for training, and 20% of the

data are used for testing. After dividing the data set into two
parts, we generate sequence samples through a time window
whose width is T+T′.

2.3.DataSet. +e traffic speed data set of the real-world road
network is used in this article to evaluate the model per-
formance. +is public data set contains the taxi trajectory
data of every 15 minutes setting on 156 roads from January 1
to January 31, 2015. +e data sampling location is Luohu
District, Shenzhen, Guangdong Province. +e data mainly
include the following 4 parts:

(1) Adjacency matrix: the data set selects 156 roads, so
the size of the adjacency matrix A is 156 ∗ 156. +e
adjacency matrix represents the connectivity be-
tween segments. Each row of the matrix represents a
road. If there are links connecting nodes i and j, then
the element in the adjacency matrix Ai,j � 1. If there
are no links connecting nodes i and j, the element in
the adjacency matrix Ai,j � 0.

(2) Feature matrix: the feature matrix size of the data set
is 2976 ∗ 156. +e feature matrix is the speed value
of 156 roads in 31 days. Each column represents a
road, and each row represents the traffic speed value
of 156 roads at a certain time τ. Speed information is
collected every 15 minutes.

(3) Static attribute characteristic matrix: the point-
of-interest (POI) information on 156 roads is
provided in the data set. POI categories include
the following nine types: catering, business,
shopping, transportation, education, life, medical
care, accommodation, and others. When
determining the POI category of each road, the
POI distribution on each road is calculated firstly,
and then, proportions of the various categories of
POIs are calculated. After comparing the pro-
portions of the various categories of POIs, the POI
with the largest proportion is used as the static
feature of the road. +e size of the static attribute
feature matrix is 156 ∗ 1.

(4) Dynamic attribute feature matrix: weather con-
ditions of every 15 minutes in January are provided
by the data set, which can be divided into five
categories: light rain, heavy rain, cloudy, foggy,
and sunny. Time information includes the time of
day, weekdays, and weekends. Because they will
have a significant impact on the traffic state, this
section also takes it into consideration. +e size of
the three types of external attribute feature ma-
trices is 2976 ∗ 156.

2.4. Evaluation Index. +ree commonly used traffic fore-
casting indicators are as follows: mean absolute error
(MAE), accuracy, and root mean square error (RMSE)
[31] are used to evaluate the performance of the proposed
model and the comparison model. +e formula is from (9)
to (11):
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where n is the total number of test sets and yT and yT

represent the true and predicted values of the flow.

3. Analysis of Experimental Results

3.1. Analysis of Static Attribute. In order to evaluate the
overall performance of our proposed AST-GCN-LSTM
model, we compare it with other traditional and common
models. +ese models are as follows:

(1) Historical average model (HA): HA models the
traffic flow as a seasonal cyclical process and uses the
average value of the previous seasons (for example,
the flow value of the same time period in the previous
days) as the predictive value

(2) Autoregressive integrated moving average model
(ARIMA): the autoregressive integrated moving

average model (ARIMA) with Kalman filter is widely
used in time series forecasting. It predicts the series
by fitting time series data.

(3) Support vector regression (SVR): linear support
vector machine is used to predict the regression task
of traffic flow sequence

(4) Diffusion convolution recurrent neural network
(DCRNN): diffusion convolution recurrent neural
network formulates the diffusion process in graph
convolution and uses a two-way random walk to
capture the spatial correlation of the traffic flow in
graphs. An encoder-decoder is used to capture the
temporal correlation of the traffic flow, and the
diffusion convolution GCN is combined with the
recursive model in prediction.

(5) GCN-LSTM: the combination of LSGC and LSTM
model using Chebyshev polynomial approximation
is introduced in Section 2.1.1.

Among them, HA, ARIMA, and SVR are traditional
nonneural network models, DCRNN is a deep learning
model that can capture spatial features, and GCN-LSTM
is a deep learning model that comprehensively considers
the spatial features and dynamic correlation of traffic
data.

Table 1 shows the overall prediction performance of the
AST-GCN-LSTM model and five representative methods.
+ree indicators, root mean square error (RMSE), mean
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absolute error (MAE), and accuracy (accuracy) evaluation,
are used in the comparison of performances.

According to Table 1, it can be concluded that, from the
results of the 15-minute prediction window, compared with
the traditional models, HA, ARIMA, and SVR, the RMSE
value of the AST-GCN-LSTM model decreases by 3.07%,
44.43%, and 2.95%. Compared with the HA model and the
SVR model, the accuracy value is increased by 14.69% and
1.56%, respectively. +is shows that HA, ARIMA, and SVR
cannot compete with other methods because the data have
complex spatiotemporal correlation and high-dimensional
features, and nonneural network methods are not suitable
for such network-wide prediction tasks Accounting for
external attribute features, the RMSE value of the AST-
GCN-LSTM model that takes all external attributes into
account is 10.59% and 2.33% lower than that of the DCRNN
model and GCN-LSTM model. +e value of MAE is lower
than that of the DCRNNmodel and GCN-LSTMmodel and
reduces by 14.73% and 2.42%. According to Table 1,
compared with traditional methods and other methods
based on deep learning, the model proposed by this article
has achieved significant improvements proving the effec-
tiveness of the model.

3.2. Analysis of the External Attribute. In order to verify the
influence of external attribute characteristics in traffic flow
prediction, corresponding comparative experiments are
done. +e experimental settings are divided into four kinds
as follows: adding static attribute characteristics only, adding
dynamic attribute characteristics only, adding dynamic and
static external attribute characteristics at the same time, and
not adding external attributes characteristics. +e results are
shown in Figure 5. Yellow is the result of adding static
attribute characteristics. Gray is the result of adding dynamic
attribute features. Blue is the result of adding dynamic and
static external attributes at the same time.

It can be seen from Figure 5 that when only dynamic
attribute features are considered, the value of AST-GCN-LSTM
(dynamic) RMSE is 10.31% and 2.02% lower than that of
DCRNN and GCN-LSTM models. +e value of MAE is lower
than that of DCRNN and GCN-LSTMmodels and reduced by
14.69% and 2.37%. When only static attributes are considered,

the value of AST-GCN-LSTM (static) RMSE is reduced by
10.21% and 1.91% compared with DCRNN and GCN-LSTM
models, and the value of MAE is reduced by 14.25% and 1.87%
compared with DCRNN andGCN-LSTMmodels.When static
factors and dynamic factors are considered at the same time,
the RMSE value of the AST-GCN-LSTM model is reduced by
10.59% and 2.33% compared with the DCRNNmodel and the
GCN-LSTM model, and the value of MAE is reduced by
14.73% and 2.42% compared with the DCRNNmodel and the
GCN-LSTM model.

It can be seen from Figure 5 that the model per-
formance when only dynamic attribute features are
considered is better than the model performance when
only static attribute features are considered. +is also
indirectly illustrates the importance of considering dy-
namic external attribute features, and we also observed
that when static and dynamic factors are considered at
the same time, the performance of the model is optimal.

Table 1: Performance comparison of different methods.

T (min) Metrics HA ARIMA SVR DCRNN GCN-LSTM AST-GCN-LSTM

15
RMSE 4.2951 7.2406 4.1455 4.5000 4.1193 4.0234
MAE 2.7815 4.9824 2.6233 3.1700 2.7701 2.7030

Accuracy 0.7008 0.4463 0.7112 0.2913 0.7129 0.7223

30
RMSE 4.2951 6.7899 4.1628 4.5600 4.1207 4.0508
MAE 2.7815 4.6765 2.6875 3.2300 2.7739 2.7244

Accuracy 0.7008 0.3845 0.7100 0.2970 0.7126 0.7196

45
RMSE 4.2951 6.7852 4.1885 4.6000 4.1252 4.0587
MAE 2.7815 4.6734 2.7359 3.2700 2.7753 2.7346

Accuracy 0.7008 0.3847 0.7082 0.3021 0.7123 0.7172

60
RMSE 4.2951 6.7708 4.2156 4.6400 4.1262 4.0689
MAE 2.7815 4.6655 2.7751 3.3100 2.7811 2.7403

Accuracy 0.7008 0.3851 0.7063 0.3069 0.7119 0.7165
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Figure 5: Experiments under different conditions.
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In summary, considering the external information has a
good effect on the prediction of the model under actual
conditions.

3.3.Performance inDifferentForecastPeriods. All tests of this
model use 60 minutes as the historical time window, which
means four observation data points are used to predict the
traffic conditions in the future 15, 30, 45, and 60 minutes
(H� 1, 2, 3, 4). Figure 6 shows the visualization results of 15-,
30-, 45-, and 60-minute forecast windows. Each graph is the
prediction result from January 26, 2015, to January 31, 2015.

It can be seen from Table 2 that when the traffic flow
prediction window is 15 minutes, the RMSE value of the
AST-GCN-LSTM model is reduced by 10.59% and 2.33%
compared with the DCRNN model and the GCN-LSTM

Table 2: Performance comparison of different prediction
durations.

T (min) Metric DCRNN GCN-LSTM AST-GCN-LSTM

15
RMSE 4.5000 4.1193 4.0234
MAE 3.1700 2.7701 2.7030

Accuracy 0.2913 0.7129 0.7223

30
RMSE 4.5600 4.1207 4.0508
MAE 3.2300 2.7739 2.7244

Accuracy 0.2970 0.7126 0.7196

45
RMSE 4.6000 4.1252 4.0587
MAE 3.2700 2.7753 2.7346

Accuracy 0.3021 0.7123 0.7172

60
RMSE 4.6400 4.1262 4.0689
MAE 3.3100 2.7811 2.7403

Accuracy 0.3069 0.7119 0.7165
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model. Comparedwith theDCRNNmodel and theGCN-LSTM
model, the value ofMAE is reduced by 14.73% and 2.42%.When
the traffic flowpredictionwindow is 30minutes, the RMSEvalue
of the AST-GCN-LSTM model is decreased by 11.17% and
1.70% compared with the DCRNNmodel and the GCN-LSTM
model. +e MAE value is decreased by 15.65% and 1.78%
compared with the DCRNNmodel and the GCN-LSTMmodel.
When the traffic flow prediction window is 45 minutes, the
RMSE value of the AST-GCN-LSTM model is 11.77% and
1.61% lower than the DCRNN model and the GCN-LSTM
model, and the MAE value is 16.37% and 1.47% lower than the
DCRNN model and the GCN-LSTM model.

When the traffic flow prediction window is 60 minutes,
the RMSE value of the AST-GCN-LSTM model is decreased
by 12.31% and 1.39% compared with the DCRNNmodel and
the GCN-LSTM model. +e MAE value is decreased by
17.21% and 1.47% compared with the DCRNN model and
the GCN-LSTM model. +e above conclusions show the
robustness and stability of our proposed model in long-term
prediction.

For different prediction times, the AST-GCN-LSTM
model proposed in this paper can predict traffic speed well.
+e results show that this model can capture the changing
trend of traffic speed very well, which also verifies the ef-
fectiveness of our model in multistep traffic flow prediction.

Comparing the prediction values of the 15-minute and
60-minute prediction windows, we can see that the pre-
diction effect of the 15-minute window in the short-term

prediction is closer to the true value, which also shows that
the model can better capture short-term dependence.

In order to test the effectiveness of adding static and
dynamic external attribute features, we visualized the model
prediction results. Figure 7 shows a comparison of pre-
diction results between models with static external attri-
butes, dynamic external attributes, and models without
external attributes.

From the visualization results in Figure 7, it can be found
that the deviation between the predicted result of AST-
GCN-LSTM and the real speed value is smaller than that of
AST-GCN-LSTM (static attribute) and AST-GCN-LSTM
(dynamic attribute), which indicates that the diversity of
external information can better promote prediction.

4. Conclusions

+is paper uses the proposed AST-GCN-LSTM model to
obtain dynamic attribute features by adding the attribute
augmentation unit structure of external factors. After the
feature matrix is augmented, the Chebyshev polynomial
approximation spectrogram convolution model is used for
feature extraction. +is model can capture the spatial
characteristics of traffic flow from the K-order local
neighbors of the vertices in the graph. +e K-order local
neighborhood can replace the single-hop neighborhood
matrix to expand the receptive field of the graph convolu-
tion, which can more accurately extract the information of
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neighbor nodes. After the information is extracted, the
characteristic representation of the information that changes
over time is input into the LSTM model to capture the time
dependence. By analyzing the performance of the proposed
model, including the performance analysis of external at-
tribute characteristics and the performance analysis of dif-
ferent prediction windows, and comparing with different
baseline models to verify the effectiveness of the proposed
model, it solves the inability of the previous traffic prediction
models. +e external factors affecting traffic flow are fully
considered.

Results show that the AST-GCN-LSTM model can not
only fully consider the spatial relationship of road nodes but
also capture the time dependence of traffic flow and effec-
tively improve the accuracy of traffic prediction. In addition,
the AST-GCN-LSTM model is suitable for both road net-
work traffic flow prediction and midterm and long-term
traffic flow prediction and multistep prediction.
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