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Micromobility is an evolving form of transportation modality that uses small human- or electric-powered vehicles to move people
short distances. Planners expected that bike sharing, the first form of micromobility, would reduce traffic congestion, cut travel
cost, reduce pollution, enable connectivity with other modes of transport, and promote public health. However, micromobility
options also brought new challenges such as the difficulty of placement decisions to encourage adoption and to minimize conflict
with other transport modes. Sound deployment decisions depend on the unique environmental characteristics and demographics
of a location. Most studies analyzed deployments in high-density urban areas. -is research determines the best locations for 5
new bike-sharing stations in Fargo, North Dakota, a small urban area in the rural United States. -e workflow combines a
geographic information system (GIS), level of traffic stress (LTS) ratings, and location-allocation optimization models. -e spatial
analysis considered 18 candidate station locations and eliminated those that fell within the 700-meter isochrone walking distance
of the 11 existing stations. -is case study demonstrates a scalable workflow that planners can repeat to achieve sustainable
micromobility deployments by considering the land use, population density, activity points, and characteristics of the available
pathways in their unique setting.

1. Introduction

Transportation planners worldwide view new micro-
mobility options such as bike sharing as another important
means towards achieving sustainable transportation [1]. A
bike-sharing system (BSS) is a network of bicycles that
enable short-distance, low-cost travel for the public. Such
services provide short-term rental between self-service
stations distributed throughout an area such as a city or
suburb [2].

Micromobility services have recently exploded across the
world because they provide low-cost, convenient, and ac-
cessible alternatives to public transportation. Some studies
found that in some cities, micromobility services can result
in a mode shift from automobile trips [3]. Additional
motivations for deployments include the promotion of
physical exercise, congestion reduction, pollution reduction,
and support for multimodal transportation connections.
Organizations have also deployed dock-less BSSs, but issues

such as sidewalk clutter, interference with pedestrian traffic,
and increased coordination costs tampered their adoption in
many cities [4]. Even with docked BSS, there are numerous
challenges to integrating them into communities and the
transportation network.

-e demand for a BSS can become induced based on the
choice of station location. Demand is also closely linked to
weather [5], season, and working days. A BSS design scheme
that focuses solely on reducing construction costs can lead to
unsatisfactory service and high operational costs. Planners
also need to balance the important relationship between
design to satisfy dynamic demand and design to accom-
modate supply rebalancing.

Design decisions for rural and small urban areas are
different from those of densely populated urban areas and
large cities. Most studies previously focused on deployments
in large urban areas and large cities. In 2015, the city of
Fargo, North Dakota, launched a bike-sharing enterprise
with only 11 stations. Expanding the system could increase
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accessibility and reduce the demand for cars in the down-
town, shopping, and university districts of this small urban
community.

-e goal of this study is to identify the most appropriate
locations to add new bike-sharing stations in Fargo, North
Dakota. -e contribution of this study is an analytical
workflow that combines level of traffic stress (LTS) network
rating, demand location assessment, and spatial optimiza-
tion models within a geographic information system (GIS)
platform to solve the location optimization problem.

-e remainder of this paper is organized as follows.
Section 2 reviews the body of works related to the case study,
demand modeling, LTS formulation, and the spatial opti-
mization problem. Section 3 presents the methodology and
further defines the location-allocation optimization prob-
lem. Section 4 describes the results and discusses the im-
plications. Section 5 concludes the study and hints at future
work.

2. Literature Review

Since the introduction of a third-generation BSS in the
United States in 2010, the network grew to 3,378 BSSs in 104
cities within six years [6]. Sponsorships and usage fees were
the primary sources of funding for BSS deployments in
North America [3]. -e next subsections describe the case
history for the existing bikeshare locations in Fargo, North
Dakota, and review related work on general decision making
for other BSS deployments.

2.1. Case History. In March 2015, Great Rides Bike Share
(GRBS) began operating the first BSS in Fargo, North Da-
kota, with 11 stations (Figure 1).

After collaborating with North Dakota State University
(NDSU) to produce contactless student identification cards,
the company distributed 101 bikes across the deployed
stations. Consequently, GRBS became the first company in
the United States to integrate contactless identification cards
with the BSS rental system [7]. As shown in Figure 1, the 11
stations formed two clusters approximately two miles apart.
One cluster was on or near the NDSU campus and the other
was in and around the Fargo downtown area. -e deploy-
ment induced a fast growing demand within months, with
79% and 19% of the users being students and guests, re-
spectively [7].

2.2.DemandModeling. -e Latent Demand Score (LDS) is a
commonly used method of demand analysis for locations
where bicycles are not yet a popular option [8]. -e LDS
method is a probabilistic gravity model that produces a
measure of potential demand by considering trip production
sites, trip attraction sites, and the bikeable pathways between
them. For example, the Portuguese city of Coimbra used the
LDS method by considering the number of trips between
production and attraction sites and the shortest path be-
tween them [9].-e authors later developed an optimization
model to maximize demand coverage within a given budget
constraint [10].

Market modeling based on other deployments is another
method used to forecast demand. For example, New York
City identified the three user groups of cyclists based on
trends from deployments by Velib’ (Paris, France), Velo’v
(Grand Lyon, France), and Bicing (Barcelona, Spain) [2].
-e analysts then estimated the size of each group (recre-
ational, errand users, and visitors) and their growth based on
the adoption rates of 3%, 6%, and 9% determined from
surveys conducted in London and Paris. Krykewycz et al.
[11] identified two market areas in Philadelphia, Pennsyl-
vania, by using a raster-based geographic information sys-
tem (GIS) method [11]. Based on low-, medium-, and high-
demand scenarios from the Grand Lyon and Barcelona
surveys, they applied three trip diversion rates to estimate
the mode shift for each market.

Gregerson [12] applied the GIS approach used for
Philadelphia and the adoption rates observed in Paris and
Barcelona to estimate bike-sharing demand for Seattle,
Washington, in the United States. -eir GIS raster dataset
consisted of weighted sum indicators to predict usage. -e
indicators were population density, non-institutionalized
group quarter population density, job density, retail job
density, commute trip reduction, tourist attractions, parks,
topography, regional transit stations, local transit stops, and
various characteristics of the bicycle infrastructure [12].

Daddio [13] created a regression model for bikeshare
station demand that was dependent on the trip generation
rate, trip attraction rate, and the transportation network
characteristics within 400 meters of each station [13]. -e
author trained the regression model with data from the
Capital Bikeshare network in Washington, DC. Garćıa-
Palomares et al. [14] also proposed a GIS-based method to
calculate the spatial distribution of potential trip demand
and found that the method can be effectively combined with
location-allocation models [14].

2.3. Level of Traffic Stress. -e Geelong bike plan team first
developed a bicycle tension rate in 1978 to guide deployments
in Australian cities [15]. -e plan characterized roads based
on their difficulty of cycling and the stress of sharing them
with other vehicles. Decades later, Sorton and Walsh [16]
proposed five bicycle stress levels based on traffic volume,
traffic speed, and curb lane width [16]. Mekuria et al. [17] used
four levels of traffic stress (LTS) to characterize bikeable paths
[17]. -e lower stress levels of LTS 1 and LTS 2 were suitable
for children and tolerable by most adults, respectively.
Murphy and Owen [18] cautioned that restricting bicycles to
only low LTS networks can result in a universal reduction in
accessibility, modulated by land use [18]. Larsen and El-
Geneidy [19] surveyed 2917 cyclists in Montréal, Quebec,
Canada, to determine spatial characteristics that affect route
choice [19]. -ey found that cyclists make longer trips on
facilities that are separate from vehicle traffic.

Obtaining the street geometry and traffic data for all
roads to classify their LTS can be a significant challenge.
However, some analysts discovered that OpenStreetMap
(OSM) data can provide a viable alternative. For example,
Wasserman et al. [20] compared ground-truth data to the
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Figure 1: Service areas for the GRBS bike stations in Fargo, North Dakota.
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accuracy of LTS predictions based on OSM data and found
that the results were comparable but very sensitive to in-
correct classifications [20]. Similarly, Hochmair et al. [21]
examined the integrity of OSM tags and Google Maps data
for bicycle paths and found that the accuracy can surpass
those of datasets from local planning agencies [21].

2.4. Location-Allocation Optimization. Common applica-
tions of the location-allocation optimization problem are the
placement of healthcare facilities [22], fire stations [23],
police stations, and schools [24]. -e optimization models
can define discrete or continuous locations, but planners
often use discrete locations in practice [25]. -e emergence
of GIS presented enhanced options to combine spatial
analysis and optimization [26]. Conrow et al. [27] utilized
GIS to determine the trade-off between coverage and ac-
cessibility for Phoenix, Arizona [27]. -eir optimization
model selected placements that maximized user coverage for
a given level of investment. Guo et al. [28] used a branch and
bound optimization algorithm to address the bike-stowage
problem for a university campus [28]. -eir optimization
model solved an impedance minimization problem by
considering all pairwise combinations of candidate locations
and demand points. Banerjee et al. [29] used a location-
allocation model to determine the locations for three new
bike stations in Baltimore, Maryland, based on maximizing
potential demand and weighing facility locations with a
suitability score [29]. More recently, Pérez-Fernández and
Garćıa-Palomares [30] used a GIS-based location-allocation
model to reserve parking spaces for moped-style scooters
[30].

3. Methodology

-e analysis evaluated the placement of five more bike-
sharing stations in the Fargo small urban area. Figure 2
shows the workflow to prepare the data for the location
optimization model to cover all the service points identified.

-e workflow is applicable to any populated place, but
planners must decide on the candidate station locations and
covered activity points (CAPs) based on the population
density, land use, trip generation centers, and roadway
network characteristics that are unique to every place. -e
next subsections describe the data sources, service area
analysis, LTS formulation, identification of the CAPs, and
the location-allocation optimization problem.

3.1. Data and Sources. Table 1 summarizes all the datasets
obtained to set up and solve the bikeshare station location
optimization problem.-e description column identifies the
data source.

3.2. Service Area Analysis. A GIS network analysis tool
determined accessibility to a facility based on radial walking
distances within 700 meters. -is distance threshold re-
flected the accepted transit industry definition for service
“catchment” based on a 5–10-minute walk [32]. -e service

area analysis computed the walking distances along all paths
that can access a bike-sharing station. Figure 1 shows the
spatial contours of accessibility to each of the 11 existing bike
stations. -e three contours are the core, primary, and
secondary catchment areas based on walking distances of
300, 500, and 700 meters, respectively.

3.3. Level of Traffic Stress. A GIS tool divided the street and
bike lane networks in Fargo into small segments for LTS
classification. -e analysis used roadway geometry and
traffic data from METROCOG as inputs to the classification
model. Factors included, if present, bike lane width, speed
limit, parking width, a residential area indicator, mid-block
crossings, the geometry of right-turn lanes, bike lane type,
functional class, traffic volume, and the type of intersection
signalization. Consequently, a traffic-separated bike lane and
a mixed pathway with high traffic volume or high-speed
limit had the lowest (LTS 1) and highest (LTS 4) stress levels,
respectively. Figure 3 shows a map of the LTS classified
roadways of the Fargo study area.

In general, the LTS classificationmodel assigned LTS 1 to
physically separated bikeways, multiuse pathways, and
walkways in parks and trails. A decision tree model used the
same traffic volume, functional class, number of traffic lanes,
and speed limit thresholds of Bearn [33] to assign one of four
LTS levels to each road segment [33]. In particular, the speed
limit thresholds for LTS 1 through LTS 4 were 25, 30, 35, and
50mph, respectively. Bearn [33] scaled down the tiered
traffic volume thresholds when considering bikeways that
were alongside parking lanes. -e model also included
geometric criteria used by Mekuria et al. [17] for any
auxiliary right lane along the path [17]. -e model adopted
the LTS level of the highest stress rating among all segments
that cross non-signalized intersections.

Figure 3 shows the LTS ratings derived for all bikeable
pathways in Fargo. To simplify the methodology and to
reduce the scope, the model did not adjust thresholds for
signalized intersections to account for possible mis-
alignments between green time and slow riding speeds.
Figure 3 shows traffic-separated bikeways (LTS 1) and
shared-use pathways (LTS 1 or LTS 2) in different colors
to highlight their location and how the network spans the
city.

3.4. Candidate Locations. An overlap of four GIS layers
helped to identify the candidate locations for bikeshare
stations. One layer was the LTS classified network. A second
layer was the population density derived from the 2020 block
group census data obtained from the U.S. Census Bureau.
Selecting areas of high population density assured the po-
tential for demand. A third GIS layer was the land-use
classification. Selecting commercial, entertainment, and
shopping areas with potentially high trip generation and
attraction rates assured potential adoption. A fourth GIS
layer was the aggregation of the 700-meter service areas for
the existing bikeshare stations.-e analyst then identified all
junctions with at least three intersecting paths of LTS rating
at or below 2. Low-level LTS junctions assured flexible
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accessibility and maximum safety. -e analyst then elimi-
nated locations with low population density or poor access
to CAPs such as parks, restaurants, and commercial areas.
-is process resulted in the selection of 18 candidate lo-
cations to deploy bikeshare facilities. Figure 3 shows the
candidate locations.

3.5. Covered Activity Points. -e location-allocation optimi-
zation model utilized the METROCOG dataset of 200 covered
activity points (CAPs) for Fargo. METROCOGdetermined the
CAPs based on the presence of transit stops, parks, restaurants,
bars, commercial areas, industrial centers, universities in high-
density population areas, and surveys of needed coverage
points. Planners used the 2020 block group census data from
the U.S. Census Bureau to determine the population density of
an area smaller than the traffic analysis zones that planners
often use in travel demand analysis. Figure 3 shows the location
distribution of CAPs across the city. As observed, CAP clusters
form near shopping, entertainment, university, park, and
residential areas.

3.6. Location-Allocation Optimization. -e objective of the
location-allocation model was to identify the subset of fa-
cilities from among the candidate locations to serve the
CAPs with the least travel impedance. Given the multiplicity
of alternative routes to a CAP, the analysis simplified the
travel impedance as the geodesic distance.-e constraint for
the model was to select five locations from the 18 candidate
sites. -e travel cost between a facility location and a CAP
was the geodesic distance, with the maximum distance set to
1,000 meters.

-e optimization model allowed the same bike station
location to service multiple CAPs but restricted more than
one station from serving the same CAP. -e variables of the
optimization problem were as follows:

I: the set of N demand node locations indexed by i.
J: the set of M candidate station locations indexed by j.
p: the number of stations to deploy.
wi: relative weight of CAP i (0 to 2).
dij: the geodesic distance between CAP i and candidate
station j.

-e problem formulation is as follows.
Minimize

D � 􏽘
N

i�1
􏽘

M

j�1
widijYij, (1)

subject to

􏽘

M

j�1
Yij � 1 , ∀i ∈ I,

􏽘

M

j�1
Xj � p,

Yij ≤Xj, ∀i ∈ I,∀j ∈ J,

(2)

where

Yij �
1 location i is served from location j

0 otherwise
􏼨 , ∀i ∈ I, ∀j ∈ J,

Xj �
1 if server is placed at location j

0 otherwise
􏼨 , ∀j ∈ J.

(3)

-e objective function selected candidate sites that
minimized the overall weighted geodesic distance in the
network.-e relative weight for each CAP reflects combined
considerations that are important to the planners, for ex-
ample, social factors and environmental impacts. -e
nominal weight is 1. A weight lower or higher than 1 reflects
the relative importance level of that CAP. A weight of zero
means that the model will not consider service to that CAP.
A weight of 2 means that a CAP is 100% more important
than the nominal CAP. A high weight has the effect of a
pseudo-increase in the distance to a candidate facility, and
hence the optimization for minimum total distance will tend
to select a candidate facility that is closer. -e planners
wanted identical weight for all CAPS in this analysis. -e
first constraint assured that one and only one station served
a demand site. -e second constraint assured that the
number of stations selected was exactly p. -e third

constraint assured that if the optimizer placed a station at
location j to serve location i, then it must set station j lo-
cation as assigned. All decision variables were binary.

4. Results and Discussion

Figure 1 shows that Interstates 29 and 94 are the main traffic
conduits through Fargo. As anticipated, the LTS model
assigned those highways to level 4 as shown in Figure 3. -e
LTS model also assigned level 4 to the major arterials that
form a grid pattern throughout the city. As observed, the
LTS model classified local roads in residential areas as LTS 1.
Assignments of LTS 2 were mostly to the narrower avenues.
-e bikeways highlighted are roadways with bike path
designations, so the model classified them as LTS 1. Most of
the shared-use paths are along the river park to the east of
the city. Pedestrians, hikers, and cyclists use the shared-use
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paths, so the model set their LTS ratings to level 1. All
candidate bikeshare station locations were at the intersec-
tions of traffic-separated bikeways and shared-use pathways,
as shown in Figure 3.

-e workflow selected the five locations for the new bike-
sharing stations as shown in Figure 4.-ree of the new stations
fill gaps within the aggregate service area of the existing sta-
tions. -e other two extend the service areas towards the

Data Considered
• Land Use (Attractions)
• Bike Roadway Traffic Stress
• Surveys of need
• Population Density
• Accessibility
• Social factors & weights

Data Considered
• Transit Catchment Distance
• Bikeable Road Network
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Figure 2: Workflow for the location-allocation optimization model.

Table 1: Dataset used for the location optimization problem.

Dataset Description
Bike-sharing stations
(existing)

Shapefile from the Fargo-Moorhead Metropolitan Council of Governments (METROCOG) of North Dakota
encoding the location of bike-sharing stations

Population density 2020 block group census data from the U.S. Census Bureau

Road centerline Shapefiles for Fargo street segments fromMETROCOG including geographical coordinates, number of lanes,
speed limit, functional class, and shape length

Bikeways Shapefiles for Fargo bikeway segments from METROCOG including geographical coordinates, type of
bikeways, and shape length

Shared-use paths Shapefiles for Fargo shared-use path segments from METROCOG including geographical coordinates,
pavement type, pavement width, and shape length

Traffic signals Shapefiles for Fargo signalized intersections from METROCOG
Traffic volume METROCOG interactive map of the 2015 annual average daily traffic volume (AADT) for Fargo [31]
Right-turn lanes Manual measurements of right-turn lane geometries from Google Earth® imagery
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southwestern and southeastern regions of the small urban area.
-e southwestern location serviced CAPs near shopping and
entertainment regions. -e southeastern location covers resi-
dential, park, and golf course regions. One can visually observe
that the selected locations for new stations are distributed in a
manner that evenly covers all the CAPs. -e coverage was
highest in the eastern part of Fargo, along the winding Red
River that forms a border between the states of North Dakota
and Minnesota. All five of the selected locations are at the
intersection of bikeways and shared-use paths, thus making
them suitable even for beginners. -e 700-meter service areas
of the selected locations cover LTS 1 and LTS 2 segments, thus
making them easily accessible from many points throughout
the city.

5. Conclusion

Bike sharing is a popular form of micromobility that is
rapidly expanding across many cities of the world to fill
mobility gaps and enhance accessibility at affordable prices
while achieving sustainable deployments. While there has
been a lot of analysis about deployments in high-density
areas and cities, analysts have paid little attention to small
urban and rural areas. -is study addressed the micro-
mobility needs of Fargo, North Dakota, a small urban area in
the rural United States. -e analysis accounted for the
unique land-use settings, street geometry, and traffic situ-
ations of the area. Applying the level of traffic stress (LTS)
technique to all the available pathways in the area helped
identify accessible locations for 18 candidate stations at the
junction of low-stress pathways.

-e spatial analysis of service areas for the existing bike
stations produced isochrones of walking distances based on
accepted public transit catchment criteria. Subsequently,
overlapping layers in a geographic information system (GIS)
helped to identify and eliminate from consideration candidate
stations that fell within the isochrone clusters of the existing
bikeshare stations. -e analysis also determined covered ac-
tivity points (CAPs) throughout the city based on population
density and land-use characteristics such as shopping, enter-
tainment, university, park, and residential areas.

-e location-allocation optimization procedure selected
the five bike station locations that minimized the total geodesic
distances to all the CAPs. Consequently, service area analysis
showed that three of the selected locations filled gaps around
the existing deployment sites near the state university campus
and in the downtown areas. -e other two selected locations
extended accessibility towards the shopping districts in the
southwest and residential areas in the southeast.

Analysts can benefit from this study by following the
same workflow. -e data obtained for roadway, pathway,
intersection, land use, population, and traffic characteristics
would be unique to their study area. Analysts can use any
suitable GIS tool to visualize the results of their LTS clas-
sification and spatial optimization to refine the selection of
deployment sites. However, analysts should consider that
deployments at the selected sites could lead to an induced
demand for bike sharing and other micromobility modes
such as electric scooters, which can attract a broader

demographic of users. Future work will examine how in-
duced demand would affect the distribution of LTS segments
from the current distribution in Fargo. -at study will in-
clude a traffic impact analysis after collecting data on bicycle
volume and motorized traffic volume.

Data Availability

-e shapefile data used to support the findings of this study
were supplied by the Fargo-MoorheadMetropolitan Council
of Governments (METROCOG) of North Dakota under
license and so cannot be made freely available. Requests for
access to these data should be made to Dan Farnsworth at
701.532.5106 or farnsworth@fmmetrocog.org.
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