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With the aid of recent technological advancements, seamless integration of shared mobility services and public transit may offer
efficient and affordable connectivity to the transit stations in urban settings, thereby enhancing residents’ mobility. A previous
research mainly focused on car-sharing services as a self-standing mode of transportation. However, due to rapid urbanization
acceleration and regions’ extension, commuters often combine the fixed-route/fixed schedules public transportation and car-
sharing service in one journey. To this end, we study a one-way, station-based electric car-sharing service interaction with public
transportation. We propose an integrated route choice and EV assignment model to address the potential of car-sharing services
as a feeder to the public transit network. The integrated model consists of two components, operations of the car-sharing service
and the commuter’s route choice and the associated mode choice. The service provider decides on the resource levels, allocations,
and relocation strategy in the first component. In the second component, the travel options for the commuters are modeled. The
two-component model was simulated in an agent-based simulation based on a case study from the state of Qatar. We further
extend the integrated model to include the carpooling option, in which multiple passengers sharing the same route can share the
same vehicle. Extensive simulation analyses show that the integration can considerably enhance urban mobility and increase
public transportation accessibility through enhanced first and last miles linkages. Moreover, the influence of transportation supply
and spatial characteristics on the individual mode choice was estimated. Results indicate that public transit ridership can increase
up to 17%. Moreover, adding the carpooling option can significantly decrease the number of relocations operations at a minimal
impact on the commuters’ trip performance.

1. Introduction

With the rapid urbanization acceleration, city-regions ex-
tend continuously, and the average commute distance of
passengers has grown dramatically. Several emerging mo-
bility services have been introduced to encourage public
transit ridership, such as autonomous modular vehicles. This
innovative transit system relies on a unique transfer oper-
ation termed “in-motion transfer” where passengers transfer
between coupled modular buses in motion without alighting
and transferring between different bus lines. A reader can
refer to [1, 2] for information on how this service is designed
and operated. Despite the rapid advancement of public

transit services, travel mode choice is no longer restricted to
single modes such as private cars, buses, car-sharing, and the
metro, and it tends to be multimodal.

Multimodal systems aim to reduce the negative exter-
nalities of car travel and increase public transportation
accessibility by improving the provisions for first miles-last
miles (FMLM) to/from public transportation hubs [3].
Hence, fixed public transportation and flexible transit ser-
vices can complete each other in an urban area as commuters
may use both services to complete their journeys. We briefly
describe the multimodal service modes and their role in
increasing public transportation connectivity through en-
hanced FMLM services.
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The most flexible form of multimodal services is the on-
demand multimodal transit service (ODMT). The ODMT
involves moving commuters from their origins/destinations
to the main public transportation hubs. Basciftci and
Hentenryck [4]; Dalmeijer and Hentenryck [5]; Li and
Quadrifoglio [6]; Mahéo, Kilby, and Hentenryck [7]; Nar-
ayan et al. [8]; Posada, Andersson, and Hill [9]; Quadrifoglio
and Li [10]; and Wang, Liu, and Ma [11] proposed a
mathematical programming approach to optimally assign
the commuter’s travel requests to a fleet of on-demand
vehicles. Basciftci and Hentenryck [4] proposed a bi-level
optimization model in which the leader model determines
the design of the integrated system followed by a model to
determine the most cost-efficient and convenient route for
riders. Mahéo, Kilby, and Hentenryck [7] proposed a mixed-
integer programming (MIP) formulation to design and
optimize a hub and shuttle public transit system (HSPTS).
Results indicate that the hub and shuttle model can decrease
transit time by a factor of two, while not exceeding the
existing transit system costs. Dalmeijer and Hentenryck [5]
generalized the model proposed by Mahéo, Kilby, and
Hentenryck [7] by adding three more practical elements.
Different frequencies throughout the network were allowed.
Second, additional public transportation modes (e.g., rail
and not only bus network) were considered. Third, a lim-
itation on the number of commuter’s transfers was added.
Yan et al. [12] showed that ODMT might have significant
drawbacks insofar as it increases traffic congestion and
emission levels.

The on-demand shared automated vehicle (SAV) system
is a variant of the ODMT service. It aims to provide FMLM
services to older people and people with disabilities, as in the
studies by Abe [13]; Dai et al. [14]; Liang, Almeida Correia,
and van Arem [15]; and Pinto et al. [16]. Senlei [17] proposed
an agent-based model to simulate the on-demand operations
of shared automated vehicles SAV in parallel transit service.
The authors proposed a time-varying transit service, which
can switch service schemes between a door-to-door service
and a station-to-station service according to what is best for
the service providers and the travelers. Simulation results
suggest that SAV systems together with dynamic ridesharing
can significantly reduce the average waiting time, the vehicle
kilometers traveled, and empty SAV trips, which are the
major issues in the SAV service. To reduce the empty SAV
trips while increasing public transit accessibility, the authors
of [18] proposed a MIP to optimize the SAV fleet size while
enabling vehicle relocations to tackle the vehicle imbalance.
The authors indicated that railway transit networks and SAV
services could be constructed and operated at a lower cost
than each service alone. Furthermore, railway accessibility
can be governed by a larger fleet size rather than a multilink
extension. The authors of reference [19] estimated the public
transit usage increase when considering SAV as FMLM so-
lution by formulating an optimum strategy of SAV coupled
with PT. Results indicated that the integrated model increased
public transit usage by 3% and reduced personal vehicle
kilometers traveled by 6%, potentially solving the FMLM
connectivity and reducing traffic congestion. However, this
increase is governed by SAV’s waiting time decrease.
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However, SAV has many implementation limitations
due to significant concerns regarding users’ data privacy
[20]. Furthermore, there is a potential increase in traffic
congestion due to increased demand as the costs of this
service could be lower than the costs of using taxis [21].

Another type of multimodal transit service is the use of
microtransit services as a feeder to the public transportation
network. Microtransit services involve the movement of
commuters between predetermined locations and transit
hubs. The services operate either on a fixed schedule and
fixed-route manner [22, 23] or by following flexible
scheduling and flexible routes [24, 25]. The authors showed
that the more flexible system offers cost advantages over
regional systems, especially when transit services are fre-
quent, or transit hubs are close together, with little impact on
passenger convenience. Liu et al. [26] proposed a hybrid
operation in which the bus scheduling frequencies change
depending on the demand level. The hybrid model serves as
a fixed-route transit service in the morning and a demand-
responsive in the evening when the demand is low. Results
suggest that transit authorities can minimize passengers’
average waiting time and maximize the operator’s profits
through optimal scheduling of the feeder bus operations. Li
and Quadrifoglio [6] found that substantial benefits on
urban mobility can be gained from the hybrid operations of
microtransit services. However, these benefits depend
strongly on the characteristics of the environment: such as
the passenger density, the number of stations in the area, and
the size of the flex window.

Another form of sharing service is car sharing. Car
sharing is a form of car rental that allows users to rent a
vehicle for a short time, usually by the hour [27]. It can
involve one-way or two-way services. The two-way services
limit the user to picking up and returning the vehicle from/
to the same station. In contrast, one-way services give more
flexibility as users can drop off the vehicle at any shared
station. For conceptual reviews of the role of car-sharing
services to overcome FMLM issues for the public trans-
portation service, a reader can refer to the work by Huwer
[28]; Kodransky and Lewenstein [29]; McCoy et al. [30];
Sachan and Mathew [31]; Shaheen and Chan [32]; and
Tabassum et al. [33]. The most common operational supply
problem researchers tackle in one-way car sharing is the
vehicle relocations as in the works by Boyaci, Zografos, and
Geroliminis [34] and Huang et al. [35]. In all the above
works, authors assumed an inelastic users’ demand. How-
ever, to the best of the authors’ knowledge, none of the
existing work in literature considers both the supply and
demand problems simultaneously in a multimodal context.
Furthermore, none of these studies modeled and quantified
the potential of car sharing on public transportation ac-
cessibility increase and urban mobility in general.

From this perspective, this study aims to investigate
shared clean mobility and public transport services inter-
actions and how the shared mobility operations affect the
commuters’ choice. To this end, a route and mode choice
module is developed to allow users to combine the shared
electric vehicle service (donated by EV service in the fol-
lowing) and fixed public transport service (fixed PT) in a
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single trip. The integrated model studies the dynamic supply
(the available services) and demand (commuters requests)
interactions.

Combining fixed PT and EV service comprises two
components: Route and mode choice modeling and one-way
fixed EV service operations. The major components of fixed
PT (we consider the rail commuting in this study, but the
model can easily be extended to include the tram, buses, etc.)
involve the rail network structure and the service frequency.
On the other hand, the EV service comprises a fleet of EV's
managed by a central dispatcher to be rented by users per
hourly rate to perform the FMLM trips to fixed PT lines. In
the first component, the shared EV service provider decides
on the resource levels, allocations, and the relocation
strategy. In the second component, the travel options of
users are modeled in the route choice model.

This paper fills the gap in the existing literature by
quantifying the impact of EV service as an additional mode
choice to the commuters to accommodate the FMLM to the
fixed PT system. The main contributions of this paper can be
summarized as follows:

(1) We incorporate one-way EV service in the multi-
modal networks under dynamic supply-demand
interactions.

(2) We propose a multimodal route choice and as-
signment model that allows commuters to combine
fixed public transportation and shared EV service to
perform their journey.

(3) We built an agent-based simulation framework to
model the commuter’s choice and service operations
modules based on real-world instances in the state of
Qatar.

(4) We extend the EV service to include the carpooling
option, in which commuters with similar initial
locations, departure times timings, and similar
transit destinations can share the same vehicle.

(5) We demonstrate the influence of transportation
supply and spatial characteristics on both the indi-
vidual mode choice and system performance.

The remainder of this paper is structured as follows:
Section 2 formally defines the problem and model’s com-
ponents. Section 3 outlines the overall methodology de-
veloped. Section 4 details the model settings of the case study
along with the simulated scenarios and settings. Section 5
presents detailed simulation result analysis. Summary of the
main findings, recommendations for practitioners, and fu-
ture research directions are presented in Section 6.

2. Problem Description

In this study, we aim to analyze the dynamic interaction
between the one-way car-sharing service operation and the
response of travelers under the multimodal framework. We
focus on commuters wanting to commute from residential
areas to destinations using the public transportation system,
which is rail in this case. Among the considered options, they
can use their private vehicles to accommodate the first and

last mile to the rail network, as indicated in Figure 1(a).
Alternatively, commuters can use the EV service to ac-
commodate the FMLM to the transit stations. EV service
allows commuters to use the EV service from a nearby
station to their origin to drive to the metro station and
complete their journey via rail, as indicated in Figure 1(b).

The proposed integrated network has the following
components:

Network: it consists of the rail transit network and its
stations along with the road network.

Demand: it comprises of commuters’ set of origin and
destination.

Supply: it comprises all available modes of trans-
portation a commuter can use to travel from the origin
to destination.

The available modes are as follows:

(i) Fixed PT: it comprises a metro service that follows a
fixed route and fixed schedule.

(ii) EV service: it comprises a fleet of EVs distributed
among EV stations at the start of the planning
period. Commuters may rent an EV for a short
period and drive it to the metro station stops using
the existing road network. A central dispatcher
controls the EV fleet to assign the EVs to the in-
coming travel request by managing a group of
relocators to move EV's between stations to achieve
system balance.

(iii) Walk: it involves commuters’ movement from the
origin to a fixed PT stop/EV station or walking from
a fixed PT stop/EV station to their destination.

(iv) Car: this involves commuters’ movement by their
private cars from their origin to the fixed PT stop or
from their origin to EV station. Or by using a ride-
hailing service from a fixed PT stop to their desti-
nation or from EV station to their destination if the
fixed PT or EV station is not within acceptable
walking distance and if the commuter has already
used their private car at the first mile leg.

3. Methodology

This section details the overall methodology developed. First,
for each origin-destination (donated as O — D in the fol-
lowing) pair, a path that connects a commuter’s origin and
destination is generated in the Route and mode choice
algorithm. Then, based on the Route and mode choice
algorithm’s output, the EV service provider decides to ex-
ecute the relocation plan in EV relocation and assignment
if necessary. In the following sections, we will discuss in
detail how each module works.

3.1. Route and Mode Choice. For each O — D pair, the Route
and mode choice module generates all possible paths that
connect a commuter’s origin and destination (before the
quickest path is picked). The result of the route choice al-
gorithm is a sequence of fixed PT stops, services, and the



MSn
@ Origin Destination
A
. Walk Car

Shared EV station MS | Metro Station

EV service Rail

\

()

Journal of Advanced Transportation

@ Origin

I/
g Walk

s
s
-

@ Destination

Shared EV station MS | Metro Station

EV service Rail

N\

()

FiGure 1: (a) Rail commuting vs. (b) integrated (EV service and Fixed PT) transit systems.

modes used to travel for each leg on the route. Then, the
generated routes are evaluated based on the total estimated
trip duration. We assume that a commuter is willing to walk
to a maximum distance to any fixed PT stop or shared EV
station. Based on this maximum acceptable walking dis-
tance, the following sets, stops, and notations are defined as
follows:

(1) R: Set of commuter trips

(2) S(EVS): Set of EV stations

(3) S(MS): Set of metro stations

(4) S(EV): Set of homogeneous EV's

(5) S(o,,d,): Set of all origin and destination pairs

(6) evS,,: Closest EV station to the origin of the com-
muter, v € R,evS, € EVS

(7) evS, 4: Closest EV station to the destination of the
commuter, r € R,evS; € EVS

(8) MS,,: Closest metro station to the commuter’s or-
igin, r € R, MS, € MS

(9) MS, ;: Closest metro station to the commuter’s
destination, r € R, MS,; € MS

For each O — D pair in S(o,,d,), the algorithm deter-
mines the first and last mile paths and the modes used. For
the first mile, there are three possible routes:

(i) If the distance from the commuter’s origin to MS,,
is within the acceptable walking distance, then the
path connecting the origin to MS,, is assigned to a

walk mode and the path between MS,, and MS, ; is
assigned to a fixed PT mode.

(ii) Ifthefirstconditionisnotmet,then thelegconnecting
the origin to the nearest EV station evS,,, is assigned to
a walk mode if the distance from the commuter’s
origin to evS,, is within the acceptable walking dis-
tance. The path connecting evS,, to MS, is assigned
to an EV service mode, and the path connecting MS,,,
with MS, ; is assigned to a fixed PT mode.

(iii) If both conditions are not met, then the path
connecting the origin to MS,, is assigned to a car
mode, and the path connecting MS,, with MS, ; is
assigned to a fixed PT mode.

For the last mile, we refer to all the possible paths
connecting MS, ; to the destination d,, there are three
possible routes to the commuter’s destination:

(i) The path connecting MS, ; to d, is assigned to a
walk mode if the distance is within the acceptable
walking distance.

(ii) If first condition is not met, and if the distance from
the nearest EV station to the destination, evS, ; to
d,, is within the acceptable walking distance, then
the path connecting MS, ; to evS, ; is assigned to an
EV service mode. This path is followed by the path
connecting evS, ; to d,, which will be assigned to a
walk mode.

(iii) Otherwise, the path connecting MS, ; to d, is
assigned to a car mode.
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There are three possible trips types generated from the
route and mode choice module:

(1) A full EV-public transportation trip which is as
follows:

Walk + EV service + Fixed PT+EV commute + -
Walk: a commuter walks to the nearest EV station,
waits for an EV to be available, drives using the EV
to the fixed PT stop, waits for a fixed PT service, rail
commutes to another fixed PT stop, requests an EV
service, waits for EV service, makes EV service trip
to EV station, and finally walks to his destination.

(2) A partial EV-public transportation trip: The first mile
or the last mile is not completed using an EV service.
This is the case when the commuter walks/drives
from the origin to the nearest metro station or when
the commuter walks/drives to their final destination
from the drop-off nearest metro station. Partial EV-
Public transit trip can involve one of the following
routes:

Walk + Fixed PT + EV Service + Walk
Walk + EV Service + Fixed PT + Walk

(3) Rail commuting(traditional commuting): rail com-
muting here refers to the commuter’s inability to
utilize the EV service at any leg of the path con-
necting the origin to the destination. The possible
routes are as follows:

Walk/Car + Fixed PT + Walk/Car

The generated routes are then evaluated based on the
total estimated trip duration, I;, which is calculated as
follows:

eO+ZZ?,~j+ZZtU+ Z wti+T+ZZfij, (1)

i€eK jeK i€eK jeK iENUM i€eK jeK

where N: set of all Fixe d PT stops. M: set of all EV service
stations. K: S(o,,d,) UN, M, e,: earliest departure time from
the origin of the trips reservation, r € R, ; j: trav el time
from location i to j on foot, i, j € K, i# j, wt;: waiting time
at. i, 7: average time to park Car/EV and start rail com-
muting. t;;: travel time from location i to j by car/EV service,
i,j € K, i#j, and f; ;: shortest travel time between metro
stations i to j by train, i,j € N, i#j

The total trip duration,/; is equal to the travel time for
walk, car, EV service, and fixed PT modes, is calculated using
actual leg length on the network and the specified speed for
each mode. The waiting time of fixed PT is computed from
the announced fixed PT schedule and based on the com-
muter arrival time to the fixed PT stop. Waiting time for an
EV service is the time needed for the nearest available staff to
move to the nearest available EV to relocate it to the in-
coming request.

When one or more legs on any path connecting O — D is
assigned to an EV service mode, a request-based relocation
module is evaluated. Similarly, whenever an EV is dropped
at any station (shared EV or metro stations), the proactive
relocation module is evaluated. The following section details

the EV relocation and assignment module. An example of a
route and mode choice logic’s output is shown in Figure 2.

3.2. EV Relocation and Assignment. Once a trip path con-
necting commuter’s origin and destination with all possible
stops is generated in the Route and mode choice module, the
next step is to evaluate the EV relocation and assignment
modules. The relocation modules are evaluated by a central
dispatcher unit embedded in the simulation model. This unit
manages a fleet of EVs and relocators to ensure that an EV is
assigned efficiently to the commuter legs when necessary.

Before explaining how the EV relocation and assignment
logic works, we need to identify the possible states of EV and
the relocators. An EV is considered available if any com-
muter does not reserve it and it has enough battery charge.
To check the EV’s current battery level (BL), it should have
enough charge to be driven from its current location to the
commuter’s destination station by considering a realistic
consumption rate. The battery level constraint is calculated
as follows:

BL, - CoR;; x Dist;; > 30%BC, (2)
where BL,;: EV current charge level (kWh). CoR;;: EV
consumption rate from i to j (kWh/100 km), where i is the
current EV location, j commuter’s destination station.
Dist;;: Travel distance from location i to location j (km). BC:
EV battery capacity (kWh).

Otherwise, the EV will be in an unavailable status.
Similarly, relocators are in an available state if they are not
assigned to a relocation task.

Two following relocation modules are proposed: re-
quest-based relocation and proactive relocation. Request-
based relocation is evaluated at commuter’s trip
announcement at the origin. The proactive relocation
module is evaluated when a commuter drops off an EV at
any station (shared EV station or a metro station). This
section will detail both relocation modules based on the
generated route from the route choice module.

3.2.1. Request-Based Relocation Algorithm. To clearly ex-
plain how relocation decisions are made, let us take an
example of the route choice algorithm output Figure 2 shows
an example of commuters journey from origin to a desti-
nation that contains a sequence of stops and the modes
traveled on each arc.

When a commuter announces a trip reservation at time
ty> the commuter is estimated to arrive to the nearest shared
EV station at time ¢, + § (based on the mode’s speed and the
actual path length extracted from Google Maps). The central
dispatcher checks the availability of EV at evS,. If there is an
available EV at that station, no relocation request is issued,
and the dispatcher reserves that EV and changes its status to
be unavailable. However, if there is no EV available and no
incoming EV to that station within a (¢, + §)- £, interval, a
request for an EV is initiated. The dispatcher assigns an
available relocator to relocate an available EV to the shared
station. It is noteworthy to mention that the relocation
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FIGURE 3: Example of an route and mode choice module’s output and the associated relocation decisions.

operation starts at time ¢, before the commuter’s arrival to
evs,.
Moreover, the request-based algorithm ensures that the
total relocation distance is minimized. The relocation dis-
tance consists of two-leg components: movement, which is
the distance from an available staff to an available EV, and
relocation, which is the distance from the available EV to the
commuter (who is at evS,). The next section describes the

proactive relocation module.

3.2.2. Proactive Relocation Module. As indicated earlier, the
proactive relocation module is evaluated whenever a com-
muter drops an EV at any station. Before illustrating how the
proactive relocation module operates, we need first to define
supplier stations, S (EVS),, and demander stations, S(EV'S),,
as follows:

(1) S(EVS);: set of stations that have an excess of EV's at
time interval [¢, , T].

(2) S(EVS),: set of stations that have a shortage in the
number of EV's at time interval [¢, , T]. Each EV in
S(EVS),; has a priority score based on the total
number of EVs needed at time interval [t, , T].

where the time interval length ranges from one to three
hours based on the historical demand load.

To illustrate how the proactive relocation module works,
we will continue on the route example from the earlier
section. When a commuter drops off an EV at MS, at time
to + 28 (Figure 3), the proactive relocation module is eval-
uated. This module starts by evaluating the current state of
the EV station at that time, whether it is a supplier or a
demander station. If it is a demander station or a supplier
station with no EVs, then the EV will remain on that station.
However, if the station is a supplier station and has a
minimum number of EVs, the dropped EV will be relocated
to a demander station with the highest weighted score. The
score depends on two parameters: the priority of the de-
mander station during that time and the closeness of the
demander station to the supplier station. The proactive re-
location logic is summarized in Figure 4. Figure 3 sum-
marizes the interaction between the route choice output and
the EV assignment and relocation modules.

3.3. Integrated Model Implementation. Shared EV service
operations for the FMLM connection with fixed PT were
simulated using AnyLogic 8.7.4 University Researcher
software and coded using the Java programming language.
AnyLogic is an open-access simulation software that inte-
grates GIS technologies with the built-in Road Traffic and
Rail libraries. Road Traffic Library can simulate detailed
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traffic movements because the built-in predefined algo-
rithms account for typical driving regulations like speed
control or collision avoidance.

Travel options of the commuters are modeled in the
Route and mode choice module based on the lowest trip
duration. Based on the generated routes and mode choices,
the central dispatcher manages the relocations operations in
EV relocation and assignment module to assign the users
demand over the choice alternatives. Then, the commuters
trips with different modes are loaded to the real road and
fixed PT networks inhibited in simulation framework. The
overall modeling framework is depicted in Figure 5.

4. Case Study

4.1. Network Settings. We study the shared EV service op-
erations as a FMLM connection to fixed PT network in
Doha, the capital of Qatar (Figure 6). The main aim is to gain

insights into the implications of the integrated systems on
commuters’ mode choices, trips quality, and the relocations
operations in Doha.

Fixed PT network consists of three metro lines (red, gold,
and green) having 32 metro stations and two transfer hubs.
Transfers between lines are only possible through the transit
hubs located in downtown Doha. It is noteworthy that all the
metro stations are located to serve Doha and all suburbs
within an easy and convenient reach. For this study, we
assume that all metro stations have park and ride facilities,
i.e., parking lots for the EVs, but they are not equipped with
electrical charging infrastructure. The speed of the trains, #; ;,
is assumed to be 80 km/hr for urban trains. Moreover, we
assume that there are 30 shared EV stations distributed
within major locations of the network.

At the start of each planning day, the relocation staff and
EV fleet are distributed among the stations according to one
of the two possible configurations: centralized (C) or
decentralized (D). A centralized configuration refers to a
setting where all the resources at the start of the planning
period are placed at the city’s center transit hub. A
decentralized configuration, however, refers to the settings
where the resources are distributed among the network
demander and supplier stations. The network consists of
61,045 nodes and 170,415 links. The commuters’ demand
profiles are generated based on historical trip transactions
obtained from the Ministry of Transportation and Com-
munication (MOTC) in Qatar. The demand comprises ac-
tivity-based travel demand data, with each agent performing
a series of activities for a 24-hour simulation day. It consists
of 10,194 agents making 33,742 trips.

The data provided for each commuter include the origin
location, o,, destination location, d,, and earliest departure
time at origin, €,. Driving times on roads, t;; and the esti-
mated walking times, #;;, between stations in the system were
calculated using actual road distances from Google Maps.
During the peak times, the link vehicle’s speed was adjusted.

4.2. Model Settings

4.2.1. Model Attributes. Commuters are assumed to an-
nounce their trip at the origin location. Moreover, it is
assumed that commuters are already aware of the fixed PT
schedule. Also, we assume that the average time a commuter
takes to park a car/EV and start rail commuting, 7, to be
about 5 minutes. These parameter values are similar to those
used in [36] work. Further, we assume that the commuter is
willing to accept a trip with a maximum of three stops.
Moreover, we assume that the maximum distance a com-
muter is willing to walk to the EV station/metro station, aw,
is about 1.5 kilometers at a walking speed of 5km/hr.

4.2.2. Dynamic Relocation and EV Dispatching. During the
day, some stations may have an excess of EVs, while other
stations may have a shortage of EVs. Hence, dynamic re-
location and EV dispatching are necessary to achieve a
system balance. The relocation operation is managed by a
central dispatcher unit that manages, in real-time settings, a
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FIGURE 6: Road and railway network of Doha.

group of personnel to move vehicles between stations as
explained in the relocation operations section. The simulated
EV fleet has a battery capacity, BC of 27.3 kWh covering a
range of 150 km, with average electrical consumption, CoR,
of 18.2 kWh/100 km. Empty to full charging time is within 4-
5 hours by using fast charging speeds of 7kW. However, as
mentioned earlier, the EV is considered unavailable when
the battery level is 30%.

4.2.3. Single or Shared EV Ridership. We considered two EV
riding preferences; single rider or multiple riders sharing the
same EV. The concept of carpooling in literature is defined as
a group of commuters with similar departure locations,
timings, and heading to the same (shared station or metro
station) willing to share the same vehicle. Commuters can
share the same EV from a shared EV station to a metro
station or from the metro station to a shared EV station.
Figure 7 presents the two EV riding preferences.

4.3. Simulated Scenarios. We have simulated three scenarios
considered as summarized in Table 1. In the base case(first)
scenario, the modes available for commuters are walk, car,
and fixed PT service. In the second scenario, however,
commuters may also use the shared EV service in addition to
the modes available in the first scenario to complete their
trip from the origin to the destination.

In the third scenario, commuters use the same modes
used in the second scenario; however, they have the car-
pooling option when using the EV service as described in the
previous section. The shared vehicle is assumed to accom-
modate a maximum of four passengers. Also, the maximum
waiting time varies from 5, 10, or 15 minutes for passengers
to complete the vehicle’s capacity or for the vehicle departs
with one passenger if the waiting time passes without a
second passenger showing up (within the maximum waiting
time) to share the ride. Moreover, we assumed that 50% of
commuters are willing to accept the carpooling option.

For planning purposes, it is vital to investigate the
impact of the staft size, fleet size, and initial resources (staft
and vehicles) distribution on the overall system perfor-
mance. Sensitivity analysis with respect to the staff and
fleet sizes for the second scenario was performed. The staff
sizes are equivalent to 2, 4, and 6 percent (%) of the
simulated population. However, the fleet sizes are equiv-
alent to 4, 6, and 8 percent (%) of the simulated population.
Fleet sizes were based on lower and upper bound identified
in [37]. Finally, the resources are distributed at one of the
following settings: centralized (C) or decentralized (D). We
observe the simulation parameters that yield the best
performance for the second scenario and feed it to the
third scenario.

The integrated route choice and EV assignment module
is implemented in AnyLogic 8.7.4 University Researcher
software. The simulation runs were made using an Intel(R)
Core(TM) i7-8550 U CPU @1.80 GHz 1.99 GHz. The time
until convergence for the first iteration was approximately
15 hours for running the first replicate for the first scenario.
Each simulation model setting was replicated 10 times to
minimize the stochasticity in the results. Then, the key
performance indicators were averaged and reported.

5. Simulation Results

We organize the simulation results as follows: first, we
discuss the impact of the integrated shared EV service and
fixed PT on the commuters’ trip and the EV service operator
activities in Section 5.1. Next, based on the parameters that
result in the highest overall performance from Section 5.1,
we discuss how the carpooling option affects the commuter’s
trip and the operators’ activities in Section 5.2.
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FIGURe 7: Riding preferences. (a) single rider and (b) multiple riders.

TaBLE 1: Simulated scenarios. S:Single rider and M:Multiple
riders.

Scenario S/M riders Walk Car EV service Fixed PT
First scenario Y Y N Y
Second scenario S Y Y Y Y
Third scenario M Y Y Y Y

5.1. First and Second Scenarios: Single Rider. This section
discusses the performance of the first and the second scenarios.
We first analyze the percentage of trips performed by each
travel mode in modal usage and how the waiting times, resulted
from the EV service provider activities, have a significant
impact on the mode choice. Then, waiting time analysis is
presented in the service level evaluation. Finally, we discuss the
implication of the EV service and fixed PT integration on the
relocation staft activities in EV service staff activities.

5.1.1. Modal Usage. When assessing the EV service and
Fixed PT ridership compared to the car ridership, we notice
an increase in the integrated service ridership and a decrease
in car ridership (Table 2). Figure 8 details the the EV service
and fixed PT ridership Figure 9and the car ridership versus
the various resource levels and their initial distribution,
respectively.

To explain this trend, we look at the average waiting
times plot at various resource levels and initial distributions
as shown in Figure 10. From Figure 10, it becomes clear that
average waiting times decrease sharply as the staff size in-
crease from 2% to 4%, irrespective of the fleet size and the
initial resource distribution. As the waiting times decrease in
Figure 10, the EV service and fixed PT ridership increase in
Figure 8 while the car ridership decrease as in Figure 9. A

similar pattern was observed when the resources (EV fleet
and the staff) were distributed according to the (D) settings.
The highest waiting times (Figure 10) and the highest car
ridership (Figure 9) were observed when the resources were
distributed according to (C) settings, irrespective of the
resources levels.

Therefore, from Figures 8-10, it becomes evident that EV
service and Fixed PT ridership increase is governed by
waiting times reductions.

5.1.2. Service Level Evaluation. Since the commuter’s mode
choice depends on the service level provided (waiting times
reductions); in this section, we perform a sensitivity analysis
with respect to the impact of resource level and initial re-
source distribution on the waiting times. When assessing the
impact of the various resource levels, we consider the re-
sources to be distributed according to (D) setting. Similarly,
when assessing the impact of the initial resource distribution,
we fix the fleet size and staff levels to 4% of the simulated
population.

To assess the impact of the resource level, we analyze the
percentages of commuters who wait for less than 10 minutes,
between 10 and 20 minutes, and more than 20 minutes under
various resource configurations in Table 3. From Table 3, the
fraction of trips with shorter waiting times (<10) minutes
increase as the staff size and fleet size increase. However,
increasing the staff size beyond 4% and fleet size beyond 6%
does not decrease the fraction of trips with longer waiting
times (<20) minutes. Therefore, service quality improvement
does not always come from having more resources but rather
from a more efficient system configuration.

To evaluate the impact of initial resource distribution on
the waiting times, passengers’ waiting time throughout the
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TABLE 2: Modal share per mode percentages.
Scenario EV fleet size Personnel level Distribution Walk Car EV service Fixed PT EV service and fixed PT
Base case NA NA NA 43 49 NA 8 NA
5 C 43 34 14 9 23
D 48 18 19 15 34
4 4 C 47 22 18 13 31
D 50 13 21 16 37
6 C 47 21 18 14 32
D 50 13 21 16 37
2 C 44 30 15 10 25
D 49 15 20 16 36
. C 47 21 18 13 31
EV service and fixed PT 6 4 D 50 L 21 16 37
6 C 49 15 20 15 35
D 50 12 21 16 37
2 C 45 27 16 12 28
D 50 14 20 16 36
8 4 C 47 21 18 14 32
D 50 13 21 16 37
6 C 49 16 20 15 35
D 50 12 21 17 38
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Figure 8: EV service and fixed PT ridership (%) versus various
resource levels and initial distribution.
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FIGURE 9: Car ridership (%) versus various resource levels and
initial distribution.

Initial resource distibution and staff size as a
share of total demand (%)

fleet size=4%
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FIGURE 10: Average waiting times at corresponding resource levels
and initial distribution.

day by fixing the resource levels, i.e., utilizing 4% EVs and
4% staff size is analyzed. Figure 11 shows the impact of initial
resource distribution on commuters’ waiting times
throughout the three predefined peak periods morning- 06:
00-08:30 (a), mid-day-1200-1400 (b), and evening-17:
00-18:30 (c). More than 95% of commuters wait for less
than 10 minutes in the morning peak time. However, as the
day goes on, as shown in Figure 11(c), this percentage drops
to 21% and 83% for C and D, respectively.

Therefore, initially distributing the resources among the
demander/supplier stations (D) leads to an increased per-
centage of commuters waiting for less than 10 minutes in the
corresponding periods. Although distributing the resources
according to the (D) settings would lead to the least waiting
times, the impact of the initial resource distribution becomes
less critical with a higher resource level.
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TaBLE 3: Waiting time analysis: % of commuters waiting for <10 (min), 10-20 (min) and >20 (min).
Waiting times (min
Fleet size (%) Staff (%) Distribution & (min)
<10 10-20 >20
2 C 22 11 67
D 75 6 19
C 47 21 31
4 4 D 90 5 5
6 C 50 23 28
D 90 6 4
5 C 27 15 57
D 87 4 10
C 50 20 30
6 4 D 93 4 2
6 C 66 24 11
D 92 6 2
5 C 30 24 46
D 89 3 8
C 52 20 28
8 4 D 93 4 3
6 C 62 24 13
D 95 4 1
97%
97%
67%
0% 2% 1Y%
<10 10--20 >20 <10 10--20 >20
- C — C
D D
(a) (b)
83%
57%
21%
2%
7% 9%
<10 10--20 >20
— C
D

(0

FIGURE 11: Percentage of commuter’s waiting for an EV service during the (a) morning peak time, (b) mid-day, and (c) evening peak time at

a fleet size of 4% and staff size of 4%.

5.1.3. Service Provider Operations. This section discusses EV
service provider’s activities, namely, the percentage of
moving, relocating, and idle times as summarized in Table 4.

Table 4 indicates that relocators’ activities are directly
proportional to the initial system settings and the resource
levels. From Table 4, we can conclude the following: first, it
becomes evident that there is no need to utilize more than

6% of EVs or hire more than a staff size more than 4% of the
simulated population. Second, the relocation operations
decreased significantly when the resources were distributed
to the demander/supplier stations, (D) settings.

Therefore, efficient initial resource distribution leads to
lower resource levels need. Also, fewer moving and relo-
cating times are achieved, and hence, less congestion.
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TABLE 4: Relocator activity at various system configurations.

Relocator activity

Fleet size (%) Staff (%) Distribution . .
Moving Relocating Idle
2 C 68 61 Overtime needed
D 29 26 45
4 4 C 24 30 46
D 10 10 80
6 C 14 20 67
D 5 6 89
2 C 68 59 Overtime needed
D 26 22 52
6 4 C 28 28 44
D 11 11 78
6 C 16 18 66
D 7 7 86
2 C 71 56 Overtime needed
D 26 22 52
8 4 C 31 28 41
D 11 10 80
6 C 17 19 65
D 5 5 90

5.2. Third Scenario: Multiple Riders. This section discusses
the third simulated scenario, where commuters can choose
to share the ride with other commuters heading to the same
station. We assumed that 50% of commuters are willing to
share the same vehicle from a shared EV station to the
nearest metro station or from a metro station to the nearest
EV station as described in 4.3. To present the results, we
show the system performance under the best performance
settings from the previous sections. Namely, we will report
in Table 5 the carpooling percentage matching rate, the
average time to depart, and the average fill rate under the (D)
settings, and by utilizing a staff and EV fleet size equivalent
to 4% of the simulated population.

From Table 5, the percentage matching rate increases
significantly as the maximum waiting time to reach total
vehicle capacity, i.e., to fill the car (maximum four pas-
sengers per ride), is increased from 5 minutes to 10
minutes. The matching rate can increase up to 82% if the
commuters are willing to wait for more than 5 minutes but
less than 10 minutes. However, this percentage stabilizes
as we increase the waiting time to 15 minutes. Hence,
raising the waiting time to the 15 minutes parameter did
not have a systematic effect on the percentage of the
matched riders as the average time the vehicle takes to
reach its capacity (average batch time) ranges between 7
and 10 minutes.

To compare the system’s performance when the car-
pooling option is added, we compare the overall trip du-
ration increase and the total reduction in relocation decrease
compared with the second scenario in Table 6. The results
indicate that for the same system configurations (D settings
and resources at 4% of the simulated population), the trip
duration increase is more when commuters are willing to
wait for 5 minutes compared to the trip duration increase
when commuters are willing to wait for 10 minutes. This
unpredicted observation is justified as commuters may wait
for additional 5 minutes while no other passenger shows up.

TasLE 5: Carpooling matching parameters at various waiting times.

Waiting time Matched  Avg. Batch time  Avg. Batch
(min) (%) (min) size
5 74 3.60 2.79
10 82 6.14 2.99
15 83 8.40 3.20

TaBLE 6: Trip performance and service provider’s activities at
various waiting times.

Waiting time A Trip duration A Number of relocations

(min) (%) (%)
5 44 -33
10 39 —43
15 56 -26

Regarding the overall decrease in the relocation oper-
ations, the relocation operations can decrease up to 44%
when the waiting time window is between 5 and 10 minutes.
This reduction in the relocations can be translated to a
reduction in the congestion levels and also a reduction in the
number of resources needed (both the EVs and the staff).

6. Conclusion

This study sheds light on the potential benefits of the in-
tegrated EV service and fixed PT on urban mobility. We
proposed an integrated route choice and assignment model
that allows commuters to combine EV service with the fixed
PT service in one journey. The proposed model is imple-
mented in agent-based simulation software based on the
network in the city of Doha, the capital of Qatar.
Extensive simulation analyses were performed to test the
influence of the transport supply on the individual’s mode
choice and the service providers’ operations. Sensitivity
results show no significant performance gain by increasing
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the fleet size by more than 4% and the staft size beyond 4%.
Furthermore, it shows that the initial resource distribution
among the stations is vital in increasing public transit share,
but its impact is less significant at a higher resource level.

Results suggested that EV service covers less than 25% of
the commuter trip length, indicating that it was mainly used
to access the fixed PT. However, EV service can increase
fixed PT accessibility up to 9% to 17%, depending on the
resource size and their initial distribution.

Moreover, we extended the simulation model to include
the carpooling option. We evaluated the impact of this
option addition on both the service provided and the re-
locations operations. Results indicated that there is an in-
significant impact on the commuters’ trip duration when
choosing to ride with other passengers. However, a sub-
stantial reduction in the number of relocations performed.
Relocation operations can decrease up to 44% when about
50% of commuters choose the carpooling option.

We demonstrate that fixed PT and EV service mode
usage increase is governed by waiting time reductions.
Results indicated a direct correlation between waiting times
and the supply characteristics of initial resource distribution,
resource levels, and relocations strategies. From this per-
spective, the limitations of the assignment model used in this
study can be addressed in future research by employing a
proactive EV relocation based on an hourly prediction of
commuters’ demand. Moreover, this work can be extended
to propose a mathematical programming model to optimize
the tactical and operational decisions of the car sharing
operators to maximize the commuters’ utility. It is important
to note that mobility transformation can also be done by
adopting policies and procedures. Hence, governments
should encourage public and private partnerships. Private
car sharing operators’ partnership with public trans-
portation would bridge the gaps in the transportation
networks by developing clean, reliable, and connected
transportation networks.
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