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Travel demand is commonly predefined as a constant during the planning period in transit service design, but it varies daily with
many factors, for example, weather, vacation, and social activity. Under the uncertain demand, the transit system operates in two
states, that is, unsaturation and saturation, distinguished by whether or not the capacity of transit vehicle satisfies the possible
demand. .us, we propose a continuum approximation (CA) model for transit service design, including headway and station
location, to account for the effects of the stochastic demand via a penalty cost, a service-reliability constraint, and equilibrium..e
penalty cost is utilized to describe the saturation state. .e service-reliability constraint is applied to ensure the robustness of the
transit system. .e equilibrium is introduced to allocate the household location where trip demand is generated in a corridor.
Furthermore, we build a bilevel framework to find the solutions to the proposedmodel. In the numerical experiment, the proposed
model is applied in the impact analyses of the service-reliability constraint, as well as the sensitivity analyses of the household
numbers and value of time. .e impact analyses indicate that the transit service design integrated with the effect of housing
location choice is necessary under the stochastic demand. .e sensitivity analyses show that the number of households and the
value of time play a significant role in the performance of transit systems accounting for service reliability. .e proposed model
and findings serve to improve the design of the transit system under stochastic demand.

1. Introduction

With the economy and technology development, people
heavily rely on passenger car transport, especially in the
developed countries, for example, 84.6% in the US [1] and
83.6% in England in 2015 [2]. Correspondingly, the problem
of congestion and pollution becomes more severe. To reduce
the proportion of passenger cars in the daily commute, the
government invests more and more in public transit service,
which appears to be more economical and greenway as
opposed to passenger cars.

Location choice and headway setting are two essential
activities in transit service design. .e service with the dense
station location can reduce the access time of passengers to

the station. Meanwhile, a low headway decreases the waiting
time of passengers in the station. However, the above two
measures will increase the cost of the transit agency, such as
the building cost of the station and the operation cost of
transit vehicles. .us, there is a tradeoff between the pas-
senger and transit agency with different objectives in transit
service design, such as the system cost minimization and
profit maximization.

Under the transit service design with stochastic demand,
an additional type of waiting time should be considered [3].
Actually, there is a capacity constraint on transit vehicles;
thus, not all of the passengers can board the first vehicle as
they desire. In this case, some passengers have to wait until
the next vehicle arrives, which induces an additional cost
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that must be accounted for. Different from the conventional
waiting time, which is smaller than departure headway, the
additional waiting time is longer for passengers. A transit
service with small departure headway can efficiently reduce
the probability of passengers who are unable to board, but it
will increase the cost of the transit agency. .erefore, the
tradeoff between oversaturated service and the cost to im-
prove transit service also should be accounted for when
designing transit service with stochastic demand. Further-
more, the phenomena with additional waiting time are
hardly acceptable for passengers; thus, restricting the
probability of the phenomena is necessary for providing a
high-reliability level of transit service.

Another important observation is that the discrete
models are adopted in most of the literature to optimize the
transit stations from a series of candidate locations..us, the
solution quality from the discrete model heavily depends on
the set of candidate locations. Besides, the transit corridor
design with the discrete model is a Nondeterministic
Polynomial-time hardness (shortened as NP-hardness)
problem, and its solution relies on the heuristic algorithm,
such as Genetic Algorithm, Swarm Intelligence, and Arti-
ficial Neural Network. .e processing time of these algo-
rithms is exponentially related to the size of the candidate
sets and the number of decision variables. .erefore, a
continuum approximation (CA) method is introduced and
widely utilized in transit location choice [4–8].

.emain purpose of this study is to develop a framework
to simultaneously determine the optimal station location
and departure headway of the transit system with stochastic
demand. Consequently, we develop a CA-based optimiza-
tion model to incorporate the abovementioned waiting time
when the transit service is oversaturated. .e main con-
tribution of this paper is as follows: (1) simultaneous de-
termination of the station location and headway setting of
transit vehicle departure, (2) constraint of the service reli-
ability, which is introduced to ensure the service robustness
and represents the probability that the transit service meets
the stochastic demand [9], and (3) endogenous travel de-
mand derived from the household distributed along the
corridor according to the relationship of house location
choice and property development.

.e outline of the paper is as follows. .e next section
summarizes the related literature on transit service design.
Section 3 introduces the service-reliability-constrained CA
model to determine the transit service under the stochastic
demand and its solution procedure. Section 4 demonstrates
the usefulness of the proposed model by analyzing the
impact of the penalty cost and service-reliability constraint
and conducting the sensitivity analysis of the number of
households and value of time. Finally, the conclusion and
future research are presented.

2. Literature Review

Transit service design includes the network and the corridor
design. .e transit network design aims to find the optimal
route alignment, station location, and frequency (i.e.,
headway of vehicles) to serve the travel demands [10].

Comparatively, in the transit corridor design, the route
alignment is typically predetermined, and thus, the station
location and the frequency need to be determined. .ere are
plenty of studies related to the transit corridor design with
different travel modes, for example, regular bus, bus rapid
transit, rail, and mixed [4, 5, 11, 12], compositions of travel
demand, for example, many-to-one, one-to-many, and
many-to-many [13–15], and objectives, for example, cov-
erage maximization, passenger cost minimization, and
system cost minimization [15–18]. Typically, the discrete
models are adopted in most of the above literature in transit
service design.

To overcome the shortcoming of the NP-hardness
problem brought from discrete models, Daganzo and Newell
[19] developed a continuum approximation (CA) model to
find a near-optimal solution. .en, the CA model is utilized
to obtain the station location [6, 20] and routing [4, 5, 7] in
the transit design with different operating schemes, for
example, all-stop and skip-stop [21, 22], demand distribu-
tions, for example, uniform and heterogeneous [7, 8, 22, 23],
and network structures, for example, grid network, ring-
and-radial system, and hybrid network [4, 5, 24, 25].
However, the above researches predefined that the travel
demand was fixed during the operation period, which was
actually uncertain under the effects of various factors, such
as socioeconomic characteristics, population development,
land use property, and emergency traffic incident [26].
Particularly, under COVID-19, the transit demand is sub-
stantially reduced [27]. .erefore, the transit service design
is expected to become more useful and robust with con-
sideration of the stochastic nature of the travel demand.

Generally, there are two approaches to deal with the
stochastic demand in the transit service design: the sto-
chastic optimization to obtain theminimum expected cost of
the transit system or the patron [3, 26, 28–30] and the
robustness optimization to minimize the cost related to the
worst-case scenario, for example, empty load and over-
loading [10, 31–33]. In contrast, a majority of the studies
focus on stochastic optimization. For example, Hadas and
Shnaiderman [28] minimized the expected cost to obtain the
frequency and size of transit vehicles. Huang et al. [26]
determined the frequency by minimizing the expected
transit network cost, consisting of the passengers and the
operation costs, under the effect of the variance in passenger
travel time. Hassannayebi et al. [30] proposed a rail time-
tabling optimization model by minimizing the average
passenger waiting time. Hassannayebi et al. [29] also pro-
posed a multiobjective stochastic optimization model con-
sidering the expected overloading. Høyem and Odeck [3]
optimized the transit frequency under the stochastic demand
while incorporating a penalty cost for passengers who
cannot board the first vehicles after arriving.

In summary, there are some limitations in the past lit-
erature on transit service design with stochastic demand.
First, most researches emphasize the determination of the
frequency and timetable for the transit operation, but not the
station location. Second, researches on stochastic optimi-
zation typically ignore the service robustness. .ird, the
studies predefine the distribution of travel demand but
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ignore the relationship between transit service design and
house location choice. Finally, the solution procedure in
transit corridor design is complex due to the NP-hardness
problem caused by the discrete model.

3. Models

.e problem setting, including modeling assumptions, will
be presented (Section 3.1), followed by the transit service
design model (Section 3.2); and the solution procedure is
introduced in Section 3.3. A table of notation is provided in
the Appendix for ease of reading (Table 1).

3.1. Problem Setting. Consider a linear corridor where all
employment, shopping, and other activities occur in a
central business district (CBD) (located at ordinate 0 km).
.e population of households is continuously distributed
along the corridor between the center and boundary of the

corridor (at X km). Travel demand is derived from
households that consist of multiple workers who commute
from/to their residences to/from the predetermined loca-
tions of employment in the centers. To serve the daily
commute trips, the transit vehicles run between the center
and boundary, stop at each station along the commuting
direction to pick up and deliver patrons, and return with no
stopping. In the long run, considering the household lo-
cation choices, the transit agency seeks to optimize the
transit system design to meet the derived travel demand.

Without loss of generality, the following assumptions are
made to facilitate the model development:

A1. .e land within the corridor boundary is feature-
less, plain, identical, and ready for residential use. .e
value of the land at/beyond the boundary equals the
agricultural rent or opportunity cost of the land [34].
A2. .e total population of households in the corridor
is exogenously given and fixed. All households are

Table 1: Key notations mentioned in the manuscript.

Variables Units Descriptions
B(x) Trips/h Accumulative demand from the corridor boundary to location x

CV Trips/vehicle .e capacity of transit vehicles
d(x) km Access distance
f(θ) — Probability density function of trips θ
h H Headway of vehicles departure
Np Households .e number of households in corridor
Pc — A probability level of service reliability
p(x) $/m2/year Rent price per year at location x

p0 $/m2/year Rent price per year at the center
ra $/m2 Land value at the boundary of the corridor
td h/station Delay per station
vc km/h Cruising speed of transit vehicle
vw km/h Walking speed
X km .e boundary of the corridor/transit line
Z h/peak period Generalized system cost with a certain value of trips θ
θ Trips/household/peak period Total number of trips per household during peak period
θ Trips/household/peak period Set of all possible θ
θ Trips/household/peak period Mean value of θ
θσ Trips/household/peak period Standard various of θ
θc(h) Trips/household/peak period .reshold value of trips between the saturated and unsaturated conditions
λ(x) Trips/km Trip demand at location x

ρ(x) Stations/km Station density
Γ h/peak period Patrons’ commuting cost with the penalty cost
Γ h/peak period Patrons’ commuting cost without the penalty cost
ΓA h/peak period Penalty cost at saturation state
τ h Duration of the peak period
μ $/h Value of time
υ Vehicles Additional number of waiting vehicles
ψ(x) $/household/year Commute cost per household per year
φ(x) h/trip Commuting cost per commuter
φA(x) h/trip Access time to the closest transit station
φW(x) h/trip Waiting time at the transit station
φI(x) h/trip In-vehicle travel time from the station to the destination
Λ $/peak period Transit agency’s cost
ΛL km Length of the transit line
ΛS Stations .e number of transit stations
ΛK km Transit vehicle kilometers traveled
ΛM h Transit vehicle hours traveled
πL, πS, πK, πM — Unit costs of ΛL, ΛS, ΛK, and ΛM, respectively
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assumed to be homogeneous with respect to socio-
economic characteristics (e.g., the value of time). With
the aim of maximizing the utilities, households make
decisions on the choices of the residential locations and
housing consumption (in terms of gross floor area per
household) within their budget constraints [34–37].
.e utility function follows the form of a
Cobb–Douglas function [34], which is additive, sepa-
rable, and logarithmic. Regarding their commute be-
haviors, the average number of trips (denoted by θ,
trips/household/peak period) per household per period
(such as morning/evening peak period) is assumed to
be stochastic and obeys a distribution with mean θ and
variance (θ2σ). (It is a simplified assumption that the
travel trips per household θ are the same in any location
x along the corridor. .e proposed model is easily
expended to satisfy the heterogeneous trips θ(x) and
their distributions via minor revision.)
A3. .e property developers determine the intensity of
capital investment in a perfectly competitive housing
market to maximize their net profits (assumed as zero)
from the supply of housing service [34, 38, 39]. .e
housing supply of property developers is assumed to
follow a Cobb–Douglas function and the first-degree
homogeneous function of the land and capital inputs
[36, 39–41].

.e next subsection presents the model formulation of
the optimal design problem.

3.2. OptimizationModel. We seek to minimize the expected
generalized system cost E(Z), with respect to station density
ρ(x) (stations/km, as a function of location x) and headway
h (h). Z is the set of Z (h/peak period) which is the gen-
eralized system cost with a certain value of periodic com-
muting trips θ. .e generalized system cost Z is the sum of
patrons’ commuting cost (Γ, h/peak period) and transit
agency’s cost (Λ, $/peak period). .us, the optimization
problem is formulated as follows:

min
ρ(x),h

E(Z(ρ(x), h|θ)) �
1

Np

1
μ

E(Λ(ρ(x), h|θ))

+ E(Γ(ρ(x), h|θ)),

(1a)

subject to

Service reliability constraint: P B(x|θ)h≤CV( ≥P
c
, (1b)

Non − negative constraint: ρ(x)≥ 0, h≥ 0, ∀x ∈ [0, X],

(1c)

where E(·) is a function to obtain the expectation value
regarding the random variable θ and the bold symbol is the
set of the corresponding normal symbol; for example, θ is a
set of possible trips θ; μ is the value of time ($/h); Np is the
number of households; Pc is the desired level of service
reliability; B(x) is the accumulative demand from the

corridor boundary to location x (trips/h); CV is the capacity
of the transit vehicle (spaces/vehicle). .e detailed formu-
lations of Λ and Γ are described in Sections 3.2.1 and 3.2.2.
B(x) is derived from the travel trips per household θ and
housing density n(x), which is introduced in Section 3.2.3.

3.2.1. Patrons’ Commute Cost. Generally, when a commuter
travels by transit from the residential location x, the travel
time, denoted by φ(x) (h/trip), is the sum of three com-
ponents, that is, access time to the closest transit station,
φA(x) (h/trip), waiting time at the transit station, φW(x) (h/
trip), and in-vehicle travel time from station to destination,
φI(x) (h/trip), as given by

φ(x) � φA
(x) + φW

(x) + φI
(x). (2)

To formulate the parsimonious models, continuum
approximation is applied to derive the above three com-
ponents. First, it is assumed that the access time φA(x) is
represented by the access time to the station, that is, d(x)/vw,
which is the access distance d(x) (km) divided by the
walking speed vw (km/h). .e access distance is approxi-
mately defined as a quarter of the distance between two
consecutive stations [4, 7], that is, 1/4ρ(x).

Second, when the commuter is assumed to board the
desired first vehicle, the waiting time at the stations, φW(x),
is approximately half of the service headway encountered by
patrons [42, 43].

.ird, in-vehicle travel time, φI consists of two com-
ponents: (i) the cruising time, that is, x/vc, where vc (km/h) is
the cruising speed of transit vehicle; (ii) the delay at the
station due to acceleration, deceleration, and dwelling of the
transit vehicle for boarding passengers, which can be esti-
mated by 

x

0 tdρ(u)du, where td (h/station) is the delay per
station and assumed to be constant [44–47]. (Alternatively,
some studies assumed that td was a linear function of the
number of boarding patrons at stations. Modest changes can
be made to our models if alternative assumptions were used
instead.)

.us, the total commute cost without penalty cost Γ
($/peak hour) is obtained by integrating the product of their
commuting cost per trip μφ(x) (where μ is the value of time
for the transit patrons ($/h)) and the trip demand λ(x)

(trips/peak period). .e trip demand is the product of the
housing density n(x) (households/km) and the trips per
household per period θ (trips/household/peak period); that
is, λ(x) � θn(x). .en, Γ is given by

Γ � μθ
X

0
n(x)φ(x)dx. (3)

However, the transit service with certain headway could
not satisfy all of the situations in the transit system with the
stochastic demand. In this case, some passengers cannot
board the first vehicle after they arrive at the station and have
to wait for two or more vehicles. Research indicates that the
extra waiting cost of those passengers leads to different
optimal service levels and is highly relevant for decision-
makers [3]. .erefore, the total additional waiting time ΓA
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(h/peak period) is considered as the penalty cost to avoid the
occurrence of saturation circumstances [3] as follows:

ΓA � μυhNp max 0, θ − θc(h)( , (4)

where υ is the additional number of waiting vehicles and
assumed to be one in this paper [3]. .at means the pas-
sengers who do not get on the first vehicle could board the
second vehicle. θc is the threshold value of trips between the
saturated and unsaturated conditions of transit vehicle ca-
pacity (trips/household/peak period); that is, θc � τCV/hNp.

.us, the new patrons’ commute cost Γ in the stochastic
optimization model is the sum of the general commuting
cost Γ and the penalty cost ΓA, as follows:

Γ � Γ + ΓA. (5)

3.2.2. Agency’s Cost. .e transit agency’s cost depends upon
four metrics [25]: the length of the transit line ΛL (km), the
number of transit stations ΛS (stations), the transit vehicle
kilometers traveled ΛK (km/hour), and the transit vehicle
hours traveled ΛM (h/hour). So, the agency’s cost is given by

Λ � τ πLΛL
+ πSΛS

+ πKΛK
+ πMΛM

 , (6)

where τ is the duration of the peak period and πL ($/km/h),
πS ($/station/h), πK ($/km), and πM ($/h) are the unit costs
related to ΛL, ΛS, ΛK, and ΛM, respectively. .e four cost
metrics are formulated as follows:

ΛL
� 2X, (7a)

ΛS
� 

X

0
ρ(x)dx, (7b)

ΛK
�
ΛL

h
 , (7c)

ΛM
�
ΛK

vc

+
tdΛ

S

h
 , (7d)

where “2” in equation (7a) indicates two operation direc-
tions. Equation (7b) implies that the lines of two operation
directions share the stations (e.g., in rail and BRT systems,
for the bus system, ΛS accounts for the number of station
pairs that are typically deployed symmetrically). In equation
(7c), ΛL/h is the vehicle kilometers traveled per operation
hour. On the right-hand side of equation (7d), the first term
is the vehicle hours traveled at the cruising speed, and the
second term is vehicle hours delayed by stopping.

3.2.3. House Location Equilibrium. House location includes
two types of decisions: house location choice of households
and house supply of property developer. According to
Assumption A2, all households choose the house location
depending on their utility which consists of the income, cost
of commuting, consumption of the house, and other non-
housing goods. Meanwhile, the property developer will

supply the house according to the demand andmaximize the
profit when deciding on the investment (Assumption A3).
Finally, the housing market will reach an equilibrium state,
where no household will benefit from unilaterally changing
its residential location [14]. Furthermore, the household’s
utility function and property’s input function are both as-
sumed to obey Cobb–Douglas forms [34, 39, 41]; thus,
annual land rental price r(x, p0) ($/km/year) and household
density n(x, p0) (households/km) can be deduced and
expressed as follows:

r x,p0(  � b
(−β/1−β) β−1

−1  p0
Y −ψ(x)

Y − ψ(0)
 

(1/(1−α))

cβ⎛⎝ ⎞⎠

(1/1−β)

,

(8a)

n x,p0(  �
c p0(Y −ψ(x)/Y − ψ(0))

(1/(1−α))
cβb

−1
 

(β/1−β)

q(x)
,

(8b)

where b is the unit cost of capital (i.e., the annual interest rate
plus the annual cost of depreciation of a unit of capital); α is a
positive constant parameter reflecting the “attraction” of
each factor in the house location choice; c, β are prespecified
constants in house supply; Y ($/year-household) is the
household’s annual income; that is, Y � 2 × 8wμ, where 2
indicates two workers per household, 8 indicates eight
working hours per day, andw is the annual workdays, that is,
250; ψ(x) is the annual travel cost per household in the
corridors; p0 is the rental price at the center, denoted by
p0 ≡ p(0) ; q(x) (m2/household) is the quantity of housing
service consumption (i.e., gross floor area). ψ(x) and q(x)

can be expressed as

ψ(x) � w μθφ(x) +
Λ

Np

 , (9)

q x, p0(  �
(1 − α)(Y − ψ(0))

1/1− α

p0
(Y − ψ(x))

− α/1−α
. (10)

For the detailed derivations of the formulas, readers can
refer to studies [8, 14, 41, 48]. .e methods for housing
supply and house location choice are widely utilized in
literature about housing location choice and property de-
velopment [41, 48–51].

Moreover, n(x|p0,ψ(x)) and r(x|p0,ψ(x)) must satisfy
the following two constraints:


X

0
n x|p0,ψ(x)( dx � Np, (11a)

r X|p0,ψ(x)(  � ra. (11b)

Constraint (11a) ensures that the total number of
households is fixed. Constraint (11b) indicates that the land
value at city boundaries must equal the agricultural rent ra.

To account for the stochastic demand, the household
density n(·) is a random variable related to travel time
ψ(x|θ). Correspondingly, the length of the transit corridorX
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also varies with di�erent time ψ(x|θ). �us, two equilibrium
solutions can be expressed as the expectation value, for-
mulated as follows:

E ∫
X

0
n x, |p0,ψ(x|θ)( )dx( ) � Np∀θ ∈ θ, (12a)

E r X|p0,ψ(x|θ)( )( ) � ra∀θ ∈ θ. (12b)

However, the household distribution is �xed for a long
time once households choose their location; thus, the ex-
pected values of house density n(·) (households/km), rent
price p0, and corridor boundaryX (km) are used to calculate
the cost of the transit system, that is, the sum of agency’s cost
and patrons’ commute cost. Meanwhile, the expected travel
time ψ(x) can be calculated by ∫+∞0 ψ(x|θ)f(θ)dθ, (where
f(θ) is the probability density function of trips θ).�erefore,
equation (9) could be rewritten as

∫
X

0
n x|p0,ψ(x)( ) � Np, (13a)

r X|p0,ψ(x)( ) � ra. (13b)

Equations (13a) and (13b) have two independent vari-
ables p0, which can be easily obtained via solving the
equations when given (calculated using equation (9)).
According to the probability theory, the expected household
distribution can be derived subsequently using equation
(10b).

Annual travel cost ψ(x) is the key parameter connecting
the models of the housing market and transit system (9). In
terms of housing location choice, it is the primary parameter
to decide when designing the transit service; it is the pa-
rameter that is used to evaluate the level of service. More-
over, daily transit demand θ is assumed to obey the same
distribution among di�erent days, which also holds among
di�erent years. Because the estimated period for the house
location choice is at least one year (shown as annual travel
cost), the estimated period for designing transit service and
house location choice should be one or more years as well.
Meanwhile, stochastic demand θ is a part of ψ(x), which
means that ψ(x) plays a vital role in the estimated period in
the models of the housing market and transit system. A
similar approach has been adopted in some related literature
such as [14, 41, 48].

3.3. Solution Procedure. Figure 1 shows a bilevel solution
framework to seek the optimal transit design. To �nd the
solution for the upper-level model (equations (1a)–(1c)), the
solution for the lower-level model, that is, the house
household density n(x) and the size of the corridor X, is
assumed as predetermined. Correspondingly, the solution
for the lower-level model can be found by equations
(13a)–(13b) with given parameters of the transit system
(station density ρ(x) and headway h).

�e transit design model is solved using a two-stage
iterative method similar to studies [7, 21, 22]. In stage 1, h is
�xed, and the station density ρ(x) is optimized for each

point x ∈ [0, X]. In stage 2, the variables h is optimized given
ρ(x). Closed-form solutions are derived in each stage for
ρ(x) and Hi{ }, respectively.

In stage 1, we could decompose the function variable
ρ(x) by location x because station densities ρ(x) are in-
dependent between locations x. �en, we obtain the local
extreme value at each location x (1a) by solving the �rst
derivative condition of the objective function because the
objective function is convex to the station density, which
could be veri�ed by using the second derivative test.

ρ∗(x) �
1
2

�������������������������
μλ(x)h

vw μtdhB(x) + τπSh + tdτπ
M( )

√√

, (14)

where λ(x) and B(x) are the expected value of λ(x) and
B(x), respectively.

In stage 2, the headway is obtained by comparing two
results by (1a) without constraint (1b) and the critical value of
constraint (1b) with the expected household distribution n(·):

h∗ � argmin
h∈ hc, ĥ{ }

E Z ρ∗, h( )( ), (15a)

where argmin
z∈ hc,̂h{ }E(·) returns the optimal headway be-

tween hc and ĥ; hc is the critical headway determined by
service-reliability constraint (1b); ĥ is the optimal solution of
objective function (1a) without service-reliability constraint
(1b), which could be obtained by �nding the location where
the slope is zero, given by

μθNP

2
−
τπKΛL

ĥ
2 −

τπM

ĥ
2 tdΛ

S +
ΛL

vc
( )

+μυN∫
+∞

θc(̂h)
θ−θc(ĥ)( )f(θ)dθ+

μυτ

ĥ
2 ∫

+∞

θc(̂h)
f(θ)dθ� 0.

(15b)

After deriving ψ(x) from the transit model solution,
model (10) will be solved using o�-the-shelf numerical
solvers, for example, the “fsolve” function of MATLAB.

Upper-level: Transit design

Lower-level: Housing equilibrium

(1) Stop density
ρ (x)

(1) Travel cost
ψ (x)

(2) Headway
h

(2) Trip generation
n (x), X

Figure 1: Flowchart of the bilevel solution method.
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.emain steps of the solution algorithm are summarized
as follows:

Step 0. Initialization. Assign initial values to X
(0) and

n(0)(x) � Np/X
(0) . Set the outer iteration index n � 1.

Step 1. Solve the upper-level transit design problem.

Step 1.0. Assign the initial headway h(0). Set the inner
iteration index n � 1. Discretize the continuous range
of x ∈ [0, X

(n)
] to obtain a finite set of xn ∈ [0, X

(n)
]

values.
Step 1.1. Compute station density ρ(xi)

(m) by equa-
tion (14) for each xi ∈ [0, X

(n)
], using the household

distribution n(n− 1)(xi) and headway h(n− 1).
Step 1.2. Update h(n) by equation (15a) with n(n− 1)(xi)

and ρ(xi)
(n).

Step 1.3. Check the convergence. If the relative gap of
|h(m) − h(m− 1)|/h(m− 1) and |ρ(xi)

(m) − ρ(xi)
(m− 1)|/

ρ(xi)
(m− 1) in any location x� is smaller than a pre-

specified tolerance, for example, ε� 0.001, update the
transit design, ρ(n)(xi) � ρ(m)(xi), and h(n) � h(m), and
go to the next step; otherwise, set and go to Step 1.1.

Step 2. Solve the lower-level housing equilibrium
problem.

Step 2.1. Calculate household’s annual travel cost
ψ(n)(xi) by equation (9) with the current transit
design, ρ(n)(xi) and h(n).
Step 2.2. Substitute ψ(n)(xi) into the nonlinear
equations (11a) and (11b) and solve the housing
market equilibrium to yield the results of p

(n)
0 and

X
(n) with all possible trips.

Step 2.3. Output the housing density n(n)(xi) by (8b).

Step 3. Check the convergence. If the relative gap
|E(Z(n)) − E(Z(n− 1))|/E(Z(n− 1)) is smaller than a pre-
specified tolerance, for example, ε� 0.001, stop and report
the lowest-cost solution; otherwise, set and go to Step 1.

4. Numerical Experiment

We firstly present the parameter values and assumptions, fol-
lowed by the numerical experiment with two steps: (1)
uncovering the impact of the service reliability by analyzing the
computational results from the proposed model and (2) ana-
lyzing the performance of the transit service from the proposed
model with different numbers of household and value of time.

4.1. Parameter Values and Assumptions. .e experiment
assumes that the trip demand obeys a truncated normal
distribution, that is, θ ∼ N(θ, θ2σ , 0, +∞). Table 2 summa-
rizes the parameter values of the regular bus system and
house equilibrium used in the numerical experiment. .e
parameters of the transit system are retrieved from refer-
ences [14, 25, 43], and the value in house model is adopted/
adapted from the previous studies [39, 52, 53].

Generally, the analysis includes the optimal preference
(i.e., the boundary of corridor, household density, station

density, and headway) and the corresponding cost related to
the transit system (i.e., the costs of patrons, agency, and total
system) [42, 43]. With the nature of the stochastic demand,
standard deviation (SD) is used to estimate the undulation of
the system cost. Due to the complex formulation of the
objective function, the standard deviation of the transit
system cost could not be calculated directly. .us, the re-
search estimates the standard deviation from the results of
100 thousand experiments with a specific trip (θ) randomly
derived from a truncated normal distribution N(θ, θ2σ , , 0,

+∞) each time.

4.2. Impact Analysis of Service Reliability. .e section pres-
ents the reliability analysis of transit service in the regular bus
with different desired levels of service reliability
(Pc � 0, 0.5, 0.95{ }, where Pc � 0 means that the service-re-
liability constraint always holds). Table 3 summarizes the
parameters of transit service design and housing market, as
well as corresponding costs such as patrons, agency, and
system costs. Figure 2 depicts the distributions of the station
location. Figure 3 illustrates the distributionof expected empty
seats, which is calculated by (Cv − Nθ/τ)f(θ)with a special θ.

Table 3 shows that the service-reliability constraint (i.e.,
Pc > 0) leads to different transit service designs and
household distributions. Compared to the result without
service-reliability constraint (i.e., Pc � 0), the headway of
vehicle departures decreases (26.2% when Pc � 0.95). Cor-
respondingly, it leads to a higher expected agency’s cost
(24.7%) and a lower expected patron’s commute cost (6.4%).
With a lower commute cost, households can pay more in the
housing market, thus resulting in a denser household dis-
tribution (2.3%), higher average house rental price (0.1%),
and a smaller average floor area consumed per household
(0.6%). Moreover, a high desired reliability level of transit
service decreases the total additional waiting time ΓA be-
cause the headway is small and the capacity of transit service
is high, which decrease the probability of oversaturated
service.

Due to the slight differences in parameters of transit
system costs and housing market among different Pcs, we
conduct the analysis of variance with t-tests (Table 4). .e
results show that p-values are less than 0.001, which verifies
the statistical significance among different Pcs.

Interestingly, the study identifies less obvious difference
in expected system costs with three desired levels after
considering service-reliability constraint. It is due to the facts
that (1) higher-frequency transit service decreases patron’s
commuting cost, (2) shorter transit corridor decreases both
commute cost and agency’s cost, and (3) agency scatters the
station locations (3.4% in Figure 2) to reduce the agency’s
cost related to transit stations. Moreover, the standard de-
viation of system cost decreases. .e result indicates that the
service-reliability constraint not only improves the reliability
of transit service but also decreases the variation of system
cost with a small increase of expected system cost.

.e above results also hold true in the transit systemwith
a higher desired level of service reliability compared to the
one with a lower level.
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In Figure 3, the negative value on the vertical axis means
the expected number of passengers without boarding ve-
hicles. Figure 3 shows that the seats of transit vehicle are
e�ectively utilized in the transit service without service-
reliability constraint, while numerous passengers cannot
board the vehicle in most of the situations. Instead, there are
more empty seats and fewer passengers without boarding

vehicles under a high desired level (e.g., Pc � 0.95). �e
result indicates that a higher desired level brings about a
serious waste of transit seat usage, but a low one generates
more passengers without boarding vehicles and seriously
oversaturated transit service. �erefore, it is important for
the agency to choose an appropriate desired level to balance
transit seat usage and service reliability.

Table 2: Parameter values in the numerical experiment.

Parameters of transit system Value Parameters in house model Values
vw (km/h) 2 D (km) 5
vc (km/h) 25 Np (households) 103
td (min/station) 0.5 μ ($/h) 20
CV (spaces/vehicle) 80 θ (trips/households) 2
πL ($/km/hour) 6 + 0.2 μ θσ (trips/households) 0.25
πS ($/station/hour) 0.42 + 0.014 μ c 0.08
πK ($/vehicle/km) 0.59 α 0.75
πM ($/vehicle) 2.66 + 3μ β 0.7
τ (h) 2 b (year) 6%
w (days/year) 250 ra ($/km2/year) 3,000

Table 3: Result of the proposed model under di�erent desired levels of service reliability.

Pc 0 0.5 0.95
X (km) 22.98 22.79 22.45
Headway h (min) 5.39 4.80 3.98
Average station space (km) 0.714 0.723 0.738
Expected patrons’ cost Γ̂ (h/household/peak period) 0.771 0.745 0.722
Expected agency’s cost Λ (h/household/peak period) 0.227 0.247 0.283
Expected system cost Z (h/household/peak period) 0.998 0.992 1.004
Expected additional waiting time ΓA (h/household/peak period) 0.022 0.008 0.0003
SD of system cost (h/household/peak period) 0.112 0.103 0.091
Average house rental price ($/m2/year) 141.75 141.81 141.93
Average §oor area consumed (m2/household) 130.88 130.63 130.09
Average household density (households/km) 43.52 43.87 44.55
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4.3. Sensitivity Analysis. We further analyze the impact of
service reliability under di�erent numbers of households
and values of the time.

4.3.1. Value of Time. �e value of time (μ) related to the
average income is the opportunity cost of the time that
passengers spend on their trips. �e variation of the time
value in cities and countries leads to di�erence in costs of
building the transit system and operating transit service,
thus resulting in di�erent transit designs. Hence, sensitivity
analysis of time value is conducted in this section. Figure 4
shows the optimal headway of the transit service under
di�erent values of time.

According to Figure 4, the transit service is a�ected by
the value of time when the desired level of service reliability
is smaller than a special value, that is, the actual level without
service-reliability constraint. When the desired level is
higher than the special value, critical values of headway are
adopted in the service-reliability constraint, which is un-
related to the value of time. �erefore, the headways remain
the same among di�erent values of time.�e result indicates
that the agency can directly determine the headway from the
service-reliability constraint in this status. When the desired
level is lower than the special value, the transit service has
lower service reliability in the developing countries/cities
(e.g., μ � 5) in contrast to the status in the developed
countries/cities (e.g., μ � 20). �e possible reason is that the
passengers could endure higher waiting time compared with
high agency’s costs in the developing countries. �e �nding
suggests that considering the service-reliability constraint is
much more necessary in the developed countries.

4.3.2. �e Number of Households. A sensitivity analysis is
conducted to investigate the e�ect of service reliability under
di�erent travel demands. To quantify the relationship be-
tween the agency’s cost and desired level of service reliability,
the concept of investment-to-pro�t ratio (IPR) is introduced
(h/household/10%). IPR is the increased agency’s cost di-
vided by the improved desired level. Figure 5 presents the
IPR distribution in desired levels of service reliability under
di�erent numbers of households. Figure 6 shows the rela-
tionship between the optimal headway and desired level.

Figures 5 and 6 show that IPRs for the agency are zero
and the headways are unchanged inmany cases; for example,
Pc ≤ 0.6 when Np � 500. �e result means that the transit
service without the service-reliability constraint also satis�es
a desired level of service reliability (“actual level”). Mean-
while, the actual level is negatively correlated to the travel

Table 4: P-value of t-tests.

Method Pc � 0 versus 0.5 Pc � 0.5 versus 0.95 Pc � 0 versus 0.95
Patrons’ cost Γ̂ ≤ 0.001 ≤ 0.001 ≤ 0.001
Agency’s cost Λ ≤ 0.001 ≤ 0.001 ≤ 0.001
System cost Z ≤ 0.001 ≤ 0.001 ≤ 0.001
House rental price ≤ 0.001 ≤ 0.001 ≤ 0.001
Floor area consumed ≤ 0.001 ≤ 0.001 ≤ 0.001
Household density ≤ 0.001 ≤ 0.001 ≤ 0.001
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demand. �e phenomenon suggests that the agency should
pay more attention to the selection of the desired level when
the travel demand is high. Moreover, when the desired
signi�cance level is higher than the actual level, the total
increased cost for the agency (to improve the service reli-
ability) is linearly related to travel demand. It can be easily
concluded from the same IPRs, which are averaged by the
number of households, among di�erent travel demands.
�ose �ndings suggest that the desired level of service re-
liability should be selected for the agency with the tradeo�
between cost and service reliability according to the travel
demand.

5. Conclusions

�e paper proposes a continuum approximation model for
transit service design under the stochastic demand. �e
model provides an optimal headway for departure vehicles
and the location of stations based on the sum of the patrons’
commute cost and the agency’s cost. A penalty cost is in-
troduced to account for the overcapacity scenario. More-
over, the model re§ects the robustness of transit design
through the constraint of service reliability. �rough ap-
plying the proposed CA model, we conduct the impact
analyses of the service reliability and a series of sensitivity
analyses (e.g., the number of households and the value of
time) in the numerical experiment. �ere are several in-
teresting �ndings revealed from the numerical experiment:

(1) �e service-reliability constraint leads to di�erent
parameters of transit designs (e.g., the headway of
departure vehicles and location of stops) and

housing markets (e.g., the density, §oor area of the
house, and rental price).

(2) �e service-reliability constraint could not only
improve the reliability of transit service but also
decrease the variation of system cost with a small
increase of expected system cost.

(3) A higher desired level of service reliability results in a
serious waste of transit seat usage, while a low level of
service generates a seriously oversaturated service.

(4) Transit service without the reliability constraint
achieves the desired level of service, which is neg-
atively related to the travel demand and positively
related to the value of time.

(5) After the desired level of service reliability reaches
the actual level without the service-reliability con-
straint, the increased cost for the agency is linearly
related to travel demand to improve the service
reliability.

(6) �e transit service is a�ected by the value of time
before the desired level of service reliability reaches
the actual level without the service-reliability
constraint.

(7) Agreeing with the real-world observations, the station
is denser near the center than the boundary because
the household and travel demand are denser near the
center considering the behavior of house location
choice. �e phenomenon is somewhat di�erent from
previous studies that assume a uniform housing
supply or transit travel demand [14, 17, 54].

(8) Consisting with the researches [3, 55], the optimal
headway becomes smaller and thus decreases the
total additional waiting time of passengers who can
be able to board the �rst vehicle by means of in-
cluding the over§ow delay in the objective function.

(9) Due to the small headway, a high level of transit
service decreases the total additional waiting time.
�e phenomenon is consistent with the result of
study [56].

Based on the above �ndings, several suggestions are
proposed as a reference for practical applications:

(1) It is necessary that the transit service design should
be integrated with the e�ect of housing location
choice and service-reliability constraint under the
stochastic demand.

(2) �e agency should consider seat usage and invest-
ment to balance the service reliability when choosing
the desired level of service reliability.

(3) Considering the service-reliability constraint is more
important in developed countries/cities than in de-
veloping countries/cities; it is also more important in
the transit service with high demand.

(4) �e agency could directly determine the headway
from the aspect of service-reliability constraint when
the desired level of service reliability is higher than the
actual level without the service-reliability constraint.
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Although we model the transit service design model under
the stochastic demand, there are two main limitations that need
to be addressed in future research..e first limitation is that the
stochastic demand is a one-dimensional variable; that is, the
travel trips at all locations are assumed to be the same, which
may not be realistic. .e biggest hindrance is to confirm the
possible region of a multidimensional, even infinite-dimen-
sional random variable when the worst scenario occurs, for
example, overloading and empty loading. .e second is the
restrictive hypotheses, such as the homogeneity of the house-
holds, closed environment with only endogenous trip demand,
and simple transit system with only one center, one transit line,
and one transit mode.

Appendix

Notation

See Table 1.
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