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Accurate travel time prediction is one of the most promising intelligent transportation system (ITS) services, which can greatly
support route planning, ride-sharing, navigation applications, and effective traffic management. Several factors, like spatial,
temporal, and external, have big effects on traffic patterns, and therefore, it is important to develop a mechanism that can jointly
capture correlations of these components. However, spatial sparsity issues make travel time prediction very challenging, especially
when dealing with the origin-destination (OD) method, since the trajectory data may not be available. In this paper, we introduce
a unified deep learning-based framework named joint spatial-temporal correlation (JSTC) mechanism to improve the accuracy of
OD travel time prediction. First, we design a spatiotemporal correlation block that combines two modules: self-convolutional
attention integrated with a temporal convolutional network (TCN) to capture the spatial correlations along with the temporal
dependencies.,en, we enhance our model performance through adopting a multi-head attention module to learn the attentional
weights of the spatial, temporal, and external features based on their contributions to the output and speed up the training process.
Extensive experiments on three large-scale real-world traffic datasets (NYC, Chengdu, and Xi’an) show the efficiency of our model
and its superiority compared to other methods.

1. Introduction

Travel time forecasting (TTF) has been considered as one of
the most essential services in intelligent transportation
systems (ITSs), which greatly supports route planning, ride-
sharing, navigation applications, and effective traffic man-
agement. TTF is widely used throughout location-based
applications and has become one of the most important
services in these applications. However, producing an ac-
curate TTF is still challenging since understanding the ef-
fects of different dynamic factors (such as urban flows, jams,
peak hours, and special situations like public holidays,
events, and vacations) on the travel time is a complex task
[1]. ,e dynamic factors can be categorized into four groups
as follows:

(1) Spatial dependencies: travel time is greatly affected
by the traffic conditions of each region and its

neighbors as well, so trips from areas with heavy
traffic will take a longer time than others.

(2) Temporal dependencies: traffic conditions during
different periods of the day affect the time of travel.
For example, road traffic congestion in downtown
cities is more severe during the morning and evening
peak hours.

(3) Periodical dependencies: periodic patterns such as
working hours, weekends, and public events can also
affect travel time, where traffic is more congested
during workdays and peak times, for example.

(4) External factors: several external factors have also a
big impact on the travel time fluctuations, such as
weather, holidays, and public events.

Due to the complexity of the spatiotemporal correla-
tions, TTF is a very challenging problem, so accurately
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predicting travel time has become a vital task recently [2, 3].
In general, the TTF has been treated as one of two methods
(route-based and OD-based) using statistical methods,
classical machine learning, and deep learning approaches.
First, for route-based approaches, GPS and time series
datasets of trajectories are useful in estimating travel times
for both road segments and the entire path. However, some
complex issues in this technique lead to inaccurate results
and costly computations, such as sparsity in trajectory data
and GPS devices’ errors. Second, the OD-based approach is
completely based on the shortest path between the origin
and destination points, which reduces the heavy compu-
tations and minimizes accumulated error rates of GPS de-
vices. ,erefore, the aim of this work is to provide a solution
that improves the forecasting accuracy of the OD-based
travel time. Many methods have been proposed for TTF,
including linear regression (LR) [4], time-varying [5],
Kalman filtering (KF) [6, 7], autoregressive integrated
moving average (ARIMA) [8], seasonal ARIMA (SARIMA-
KF) [9, 10], and random forest (RF) with gradient boosting
(GB) (RF-GB) [11]. However, the major disadvantage of
these approaches is that they are inappropriate for capturing
the relationships between the complicated traffic factors.
Most recent researchers have proposed deep learning
models that strive to enhance TTF results, such as
backpropagation neural networks (BP-NNs) [12–14], long
short-term memory (LSTM) [15, 16], convolutional neural
networks (CNNs) combined with LSTM (CNN-LSTM) [17],
and attention mechanism [18].

Unfortunately, these approaches still suffer from some
difficulties, e.g., time-consuming and low speed during the
training process, so these methods cannot perform con-
current processing. ,e sparsity of traffic data represents
another concern of TTF approaches, where the historical
traffic data do not cover the entire region. On the other hand,
the correlations between the spatial features have been
considered in many existing works, but most of these
methods only focused on the local spatial correlations with
the observance of the GPS coordinate points’ nearby rela-
tionships [19–21]. Sometimes there may not exist similar
records with the same location in the historical traffic data.
,erefore, we attempt to solve this issue by considering the
records of distant neighbors. Besides, nearby regions can be
relevant and very similar in terms of traffic patterns during
various periods. Herein, finding a mechanism capable of
integrating relevant spatial and temporal features and si-
multaneously capturing the complicated dependencies be-
tween them can be very helpful. ,e supplementary critical
factors play a significant role in traffic pattern fluctuations,
especially within the extreme circumstances of these factors
as examples (weather conditions, public holidays, events,
and vacations). ,us, we model these features according to
the features’ correlations and dependencies between each
other and also consider the features’ contributions to the
output. ,e main contributions of our work can be sum-
marized as follows:

(i) Since data sparsity is a key challenge in real traffic
scenarios, we propose a method to solve this issue

and achieve better results by splitting the city into N
× N grids using geo-hashing techniques and di-
viding the city into different clusters using the
K-means algorithm. ,is allows us to use neigh-
boring trips if there are no historical records or if the
historical records are insufficient.

(ii) We propose a new mechanism to capture both
spatial and temporal dependencies.,is mechanism
comprises two modules: the spatial self-attention
module (SSAM) that is used to infer the spatial
relationships and the residual dilated convolutional
module (RDCM) to capture dynamic time
dependencies.

(iii) Moreover, we adopt a multi-head attention ap-
proach to learn the attentional weights of a multi-
modality factor (spatial, temporal, and external)
based on their contributions to the target. While
many previous works use RNNs in their models,
which are time-consuming in the training stage due
to their recurrent nature, we use a multi-head at-
tention mechanism that supports parallel comput-
ing in this work to dramatically reduce training
time.

(iv) We conduct extensive experiments using three
large-scale traffic datasets in three different cities
(NYC, Chengdu, and Xi’an). ,e results demon-
strate the efficiency of our model compared to other
methods under various traffic conditions.

,e rest of this paper is organized as follows. Section 2
reviews the related works about the TTF approaches. Section 3
contains the problem definition and formalization, followed
by data processing and analysis. ,ereafter, we describe our
proposed framework (JSTC) in detail. Section 4 discusses the
experimental results of our model compared to other
models. Finally, a summarized conclusion of this paper is
presented in Section 5.

2. Related Work

Generally, TTF methods can be classified into two cate-
gories: route-based and OD-based methods.

2.1. Route-Based Methods. Route-based methods can be
divided into two approaches.

2.1.1. Segment-Based Method. ,is method divides the road
into segments and then estimates the travel time for each
segment individually. Finally, the total travel time for the
entire path is the summation travel time of all segments
[22, 23]. Many researchers consider the TTF as time series
forecasting for a single road, such as the ARIMA model and
KF [24, 25], which have been applied in short-term fore-
casting for road section travel time. In addition, support
vector regression (SVR) was used due to its competence and
generalization compared to the historical average (HA)
method [26]. ,e gradient boosting decision tree method
(GBDT) has been also used to improve prediction accuracy
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on TTF problems [27]. Wang et al. [15] investigated the
sequence relationship between the road segments. ,ey
treated the travel time of the segment as a sequence of time
series data and then used the LSTM model to solve this
sequence prediction problem. ,e spatiotemporal hidden
Markov method (STHM) was also applied to capture the
correlations among different traffic time series and then
predict the travel time [28].

2.1.2. Path-Based Method. Another group of researchers
combined multiple route segments as an entire path instead
of using one road segment to solve the TTF problem. ,is
considers the impact of intersections and traffic lights, which
leads to more accurate predictions in the path-based method
[21, 29]. A non-parametric technique for route TTF based on
floating car data (FCD) is the first to use the path-based
approach [30]. It accumulated the travel time of each road
segment from a low frequency instead of calculating the
travel time of the subpath. Rahmani in [31] also proposed a
route-based method for route TTF by combining multi-
traffic data sources collected by FCD and automated number
plate recognition (ANPR). In [32], the K-shortest path al-
gorithm was developed to infer the possible paths from each
OD trip and then predict the link travel time. However, these
techniques frequently suffer from dispersed data or the high
cost [21]. Nowadays, vast amount of taxi trajectory data is
collected by GPS equipment, so the TTF model for a direct
path was proposed based on a three-dimensional tensor by
applying two essential components; first, compute the travel
time for each segment by the tensor decomposition. ,en,
find the most optimal elements that help to estimate the
route’s travel time [33, 34]. In [35], a deepIST model was
proposed that takes spatial and temporal dependencies of
traffic patterns into account by using map image informa-
tion of the trajectory to predict travel time. In this frame-
work, two CNN-based modules were combined to make
images of the route segments and then look for spatial and
temporal traffic correlations. To address the data sparsity
issue that may occur in some trajectory segments, a CNN
with LSTM model named DeepTTE was proposed for raw
trajectory data processing [17].

2.2. OD-BasedMethod. Many scholars have chosen the OD-
based methods to address the TTF issues, to minimize the
time needed and avoid the complex computations and
complicated implementation. In [20], the authors proposed
a multi-task representation learning model (MURAT) based
on OD data, which achieved promising results. However,
this method requires a long processing time and needs a lot
of data, which seems to be the main disadvantage of this
model.

,e estimation of the average time of the urban routes
based on the candidates’ paths expected between OD trip
coordinates was proposed in [19, 32]. ,ey combined the
trucks’ and taxis’ travel datasets to predict travel time be-
tween each grid zone, followed by the same methodology in
[32], while Faruk in [36] were the first scholars to develop a
model for the TTF based on travel distance predicted directly

through the OD coordinates’ GPS data. However, they ig-
nored delays in intersection queuing, which can reduce the
TTF prediction precision. Recently, an ensemble technique
with a multi-modality data source model named TTE-En-
semble was proposed in [21]. In this model, the ensemble
method was adopted with GBDT and DNN models. GBDT
and DNN predicted the travel time separately. ,en, each
models’ results are fed to a decision tree algorithm as a meta-
learner model to achieve the final TTF for each OD trip.
However, this model basically relied on converting the
trajectory data into 2D square cells instead of real OD lo-
cations which means that all trips with the same grid ID will
have similar characteristics regardless of their distance.
Nevertheless, the GBDT and decision tree approaches are
unsuitable for big data due to the high computational cost.

Recently, the attention mechanism has been widely used
for traffic forecasting. In [37], the authors proposed a pair-
wise self-attention mechanism for capturing the spatial and
temporal dependency of traffic flow prediction. In [18], a
deep learningmodel named FMA-ETAwas proposed, which
predicted travel time by combining a feed-forward network
and self-attention. ,is model focus on spatial dependencies
while temporal correlations were ignored. Besides, con-
volutional and graph neural networks have been used for
spatial and temporal correlations in traffic speed forecasting
[38]. A model called GSTGCN, which applies dilated con-
volutional network architectures to take the advantage of
dilation rate by increasing covered spaces between the in-
puts, was designed.

,e literature survey concluded that most of the pre-
viously discussed methods did not completely handle the
TTF issues and achieve high accuracy due to the complexity
of spatial-temporal correlations learning, considering the
differentiation of the road network topology and extreme
temporal conditions. Also, there are some techniques that
could be beneficial for improving the accuracy of travel time
prediction. Inspired by the aforementioned ideas, we pro-
pose a JSTC framework relying on OD-based strategy, which
can achieve high accuracy with promising performance in
predicting the travel time for any given OD GPS points.
Herein, our work mainly addresses the sparse spatial data
problem and also focuses on the multi-component corre-
lations between spatial, temporal, and external factors,
which significantly affect the travel time.

3. Methodology

,e aim of the traffic forecasting task in this paper is to
predict travel time between any pair of locations by means of
the observed historical traffic datasets. ,e general overview
of our methodology mainly consists of three main parts: data
preparation and preprocessing, analysis of traffic pattern
similarity, and introducing our proposed model in detail. To
begin, data preparation and preprocessing are critical, which
include data cleaning and removal of noise and outliers,
feature extraction, and geo-localization (clustering and grid-
partitioning). ,en, we get through the spatial and temporal
dependencies’ similarity investigation to observe the influ-
ence of these components in traffic patterns’ fluctuation.
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Finally, we introduce our prediction model, which aims to
predict the total travel time of the OD trips accurately. ,e
detailed descriptions of each of these parts are given in the
following sections. In advance, we formalize the traffic
forecasting problem in this work as in the following key
concepts and definitions.

3.1. Preliminaries. We define and formalize the TTF
problem as a travel time prediction task between two given
points (A) and (B).

Definition 1. OD-trip P i: We define a trip from the historical
records as (P), which consists of 5-tuples (o, d, t, D, T), where
(o) is the pickup location (A), while (d) is the drop-off location
(B). Also, (t) denotes the trip time-stamp, which includes the
pickup and drop-off times as (to) and (td), respectively. Both the
origin (A) and destination (B) are 2-tuple GPS coordinates, as
oi � (olati, olongi) and di � (dl ati, dl ongi), where trip
distance (D i) can be obtained from these coordinates. To find
the matched historical trips for trip Pi, we define a query (Q) as
follows:

Q � Pi 
N

i�1. (1)

Definition 2. Spatial and temporal tensors: after splitting a
city into N × N grids (G) and K-clusters (C) as a geo-region
based on the OD-GPS coordinates, the GPS points have been
mapped into G and K as well. We define two 3D tensors
δi ∈ PHδ×Fδ×1 and τi ∈ PHτ×Fτ×1 to represent spatial features
(δi) including pick-up locations, drop-off locations, speed,
distance, cluster-ids, grid-ids, and other auxiliary features.
Besides, temporal (τi) features include the day of the week
in-between (0–6), the hour of the day in-range (0–23), and
the day of the month as (0–30), where H represents the
historical record ID and F denotes spatial or temporal
features. Note that we consider the trip features as sequence.

Definition 3. TTF for trip P i: we define the travel time Ti as
the total time for the trip P i from (A) to (B) as follows:

Ti � tdi
− toi

 . (2)

Hence, the main goal of our work is to estimate the total
time (Ti) for an OD-trip (P i) with an assist from the his-
torical trips by a query (Q).

3.2. Data Analysis and Preprocessing. In this paper, we used
three large-scale real-world traffic datasets (NYC, Chengdu,
and Xi’an) to verify the efficiency of our model across
various road network topologies and traffic patterns. ,e
first dataset is the NYC taxi dataset, which is provided by the
New York City Taxi and Limousine Commission (TLC) [39]
with billions of trip records from 2009 until now and
comprises 21 different variables, including GPS coordinates
for pick-up and drop-off, pick-up and drop-off time-stamp,
total trip distance in miles, and other features. Following
[40], we extracted six months of the traffic data between 01/
01/2016 and 30/06/2016 for analysis and experiments in our

work. ,e data we have selected contain approximately 75
million records, with over 12 million trips per month and
416,666 trips per day. ,e other two datasets are Chengdu
and Xi’an, which were provided by the “Didi Chuxing
platform” containing 9,707,970 and 5,272,758 taxi trajec-
tories in September and October 2018 for Chengdu and
Xi’an, respectively. ,e average trip per day is (123,463 and
133,843) trips, respectively (Table 1).

,e analysis of traffic data can greatly assist in recog-
nizing the fluctuations in traffic patterns. Spatiotemporal
data cleaning and anonymous value filtration were con-
ducted by removing the invalid or uncharted trips’ records
that containmissing information in one or more parts of OD
GPS location, passenger count, and pick-up/drop-off in-
terval-time records. We consider the trips out of the city
boundary as spatial outliers and clean them accordingly.
Also, all trips with a distance less than 500meters and more
than 100 kilometers have been cleaned. ,e temporal
components have been filtered by taking only the records
with the travel time less than 24 hours (86,400 seconds) and
over 3 minutes (180 seconds). In order to observe the traffic
patterns over the whole city, 15 regions were classified
according to the city’s boundaries. ,en, each region was
grouped by temporal dependencies (day of month and day of
week) to obtain the similarity of week and day rhythms.
Considering the time-interval of the day as (0–23), we
measured the average rate of travel time for all trips within
the same spatial and temporal information, as well as traffic
intensity for all trips that flow in and flow out across these
regions. Figure 1(a) represents the average rate of trip
density, and we can see a low-density rate in the period from
midnight up to 6 AM. In contrast, we can notice that the
maximum density rate happens during two peak periods,
from 7 AM to 9 AM as morning rush hours and from 6 PM
to 8 PM as the evening rush period. For example, during the
early morning and evening rush hours, there is heavy traffic
congestion that means the movement will be slow. ,ere-
fore, through the non-peak hours, traffic patterns seem to be
normal. Note that the average rate of travel time in
Figure 1(b) is quite similar to the density rhythm in terms of
increase and decrease rate, except for trips with a long
duration. So, each trip was considered as one counted trip in
the density rate computation, whereas the trip’s duration
was taken into account while calculating the average rate of
travel time, which affects the total average time in this case.
Moreover, to determine peak and non-peak periods for
Chengdu and Xi’an cities, we did some statistical analysis
over various given regions within the same conditions. We
randomly chose regions to illustrate the influence of traffic
patterns. Table 1 shows that the average traffic volume
measured (historical records which enter or leave the cluster
or grid) is probably relatively low or high, especially in areas
with heavy activity. ,e results show that the average travel
time varies from one region to another according to the
traffic rhythms during the hours of the day. On the other
hand, traffic density during morning and evening hours is
much higher than night and afternoon hours, which explains
that traffic overcrowding influences traffic speed and travel
time.
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Eventually, to ensure that our proposed model is capable
of producing effective results, after investigating the traffic
patterns’ similarities, two peak periods have been adopted

for NYC, Chengdu, and Xi’an as the morning and evening
peak periods, which include (7 ∼ 10 AM and 5 ∼ 8 PM),
respectively.

Table 1: Statistical analysis of the traffic patterns and fluctuations in particular locations in Xi’an and Chengdu cities.

Day 10 Oct 13 Oct 15 Oct
#Xi’an∖#Chengdu #Xi’an∖#Chengdu #Xi’an∖#Chengdu

Pick_Hour 9, 11, 20 8, 10, 16 7, 14, 19
Pick_location_Grid 136∖20 136∖20 136∖20
Drop_location_Grid 39∖38 39∖38 39∖38
Avg_traffic_volume/grid 2593, 2301, 2311∖1610, 1381, 1370 1470, 1633, 2177∖1551, 1338, 996 2368, 1405, 2563∖1457, 1238, 706
Trip_distance (km) ∼ 8.5∖ ∼ 5.3 ∼ 8.5∖ ∼ 5.3 ∼ 8.5∖ ∼ 5.3
Trip_speed (kms) 30.7, 33.3, 57.06∖19.1, 12.1, 17.5 39.1, 33.8, 23.9∖10.3, 19, 26.5 24.5, 41.5, 52.6∖11.3, 19.1, 23.9
Trip_duration (sec) 1372, 1368, 744∖1178, 1986, 1324 1076, 1242, 1761∖2187, 1178, 951 1719, 1014, 798∖2394, 1263, 923
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Figure 1: Traffic pattern visualization for city boroughs. (a) Average rate of trip density. (b) Average rate of trip duration.
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3.3. Feature Extraction and Data Preparation. Similar to
[21], we apply data preprocessing based on the perspective of
multi-modality. ,us, accurate prediction of TTF is greatly
influenced by numerous dynamic components, including
complicated spatial and temporal dependencies, and the
influence of external factors such as weather status, social
events, or public holidays [41, 42]. Hence, to improve the
prediction accuracy, we adopted three components in our
proposed method: spatial, temporal, and external. We adopt
two 3D tensors δi and τi for spatial and temporal compo-
nents’ representation, while the external components were
divided into two subvectors: weather data and public holiday
data.

3.4. Spatial Components. ,e original dataset provides the
trips’ pick-up and drop-off GPS locations only, so we further
extracted additional spatial features from these two points
such as distance and speed, which are essential spatial
features. We applied two different methods to calculate the
distance between two GPS locations. ,e two methods are
the Manhattan and haversine distance approaches [40].
Manhattan distance is formulated as follows:

△latPi



 + △lonPi



, (3)

where△latPi
and△lonPi

denote the total distance difference
between the ordered pairs of OD coordinates computed by
the following equations:

△latPi
� oilat − dilat


,

△lonPi
� oilon − dilon


.

(4)

,e haversine distance is also formulated as follows:

2rarcsin
�������������������������������������

sin2(△ϕ/2) + cos oilat( cos dilat( sin2(△λ/2)



,

(5)

where (△ϕ) is (△latPi
) and (△λ) is (△lonPi

).
Furthermore, the average speed was calculated regarding

the trip distance and trip duration. In addition, we extracted
other supplementary spatial features from the GPS coor-
dinates, for example, cluster and grid density, which are
explained in Definitions 4 and 5, respectively. In the real-
world road network, traffic patterns’ variation is highly
related to time (e.g., traffic tidal phenomena during the
weekdays) and space, including neighboring regions. ,us,
the traffic patterns in neighboring regions are more relevant.
Generally, traffic in neighboring regions exhibits similar
flows over the day-time intervals.

To improve the proposed model’s performance, we
applied the K-means clustering method in the spatial
component preprocessing phases. Since K-means attempts
to group places based solely on their Euclidean distance, it
returns clusters of places that are close to each other and geo-
positioning trips within nearby regions into the same cluster.
In order to determine whether we are using the right number
of clusters, we applied the elbow curve method [43] based on
calculating the sum of squared errors (SSE) for a range of
values of k (60, 80, 100, 120, and 150) and then picking the

elbow of the curve as the optimal number of clusters to use
by choosing a small value of k that still has a low SSE. From
Figure 2, we can observe that the optimal value of K is 100.

Similarly, we mapped each OD-trip into 2DD grid cells
with an area of approximately 0.5 km × 0.5 km.,us, we can
represent each trip with two grid-ID features, one for pick-
up and the other for drop-off. Finally, after the clustering
and geo-location mapping processing, the degree of
crowding for each part (cluster and grid) throughout the city
is computed depending on the following definitions.

Definition 4. Density score for cluster:

Clusterdensity dC(  � 
N

i�1
oCi

+ 
M

i�1
dCi

. (6)

Definition 5. Density score for grid cell:

Griddensity dG(  � 
N

i�1
oGi

+ 
M

i�1
dGi

, (7)

where N and M represent the total number of origin (o) and
destination (d) trips’ locations recorded within the same
cluster (C) and grid (G) at time interval of the day. ,ese
two spatial features are essential to reflect the traffic flow of
the region through different periods.

3.4.1. Temporal Components. ,e temporal features are
significant factors to understand travel time changes through
time variation. ,erefore, trip duration is affected by several
temporal factors, which may occur daily, weekly, or sea-
sonally [44]. ,e rhythm of commuters’ flow over work-
places, schools, and even public places is an example of
activities that cause traffic jams at various times. To this end,
the following temporal features were extracted from the
traffic datasets, using the one-hot encoding (OHE) and label-
encoding techniques as follows:

(i) We represent the day of the month as a label value
from 0 to 30.

(ii) We represent weekdays as a categorical value from 0
to 6.

(iii) We represent hours of the day as a label value from 0
to 23.

(iv) Working days and weekends take 0 or 1.

3.4.2. External Components. ,e external factors were di-
vided into two parts: weather conditions and public holiday.
Generally, the trip is affected by one or more of the following
weather conditions (heavy rain, snow, storms, and so on).
Different weather conditions can also result in varying travel
times with similar spatial patterns and different interval
times. Hence, the weather is considered as an important
external factor in this work. Table 2 shows the weather data
categories, which are classified into 10 types (sunny, cloudy,
rainy, windy, and so on). Also, three more features are used
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to describe the weather situation of trips circumstances in
terms of extreme weather conditions (snowing, raining, or
foggy). ,ere are 16 different types of weather conditions,
according to the historical weather data provided in [45].
,us, this classification process makes similar weather
conditions much closer and helps to reduce the data di-
mensions. Because of variable weather conditions, the same
spatial locations in terms of OD-grids may not have the same
trip times, as shown in Figure 3. ,is figure shows that when
the weather is regular, travel time between the same origin
and destination grids takes less time than hours charac-
terized by extreme weather conditions when comparing two
different days.

Besides the factors mentioned above, the traffic patterns
during public holidays and events can differ from those of
the daily routine, due to increased outdoor activities or
variation in daily traffic patterns, leading to extreme traffic
jams. As a result, two subcategorical features are concluded
from the NYC and China public holiday datasets to rep-
resent whether the day is a holiday or not. Eventually, ex-
ternals are classified into two types: categorical features by
using the OHE technique and discrete features. Further-
more, data standardization and scaling techniques for fea-
tures have been utilized.

3.5. JSTC Model Architecture. Our proposed framework
mainly comprises three modules, as shown in Figure 4.
,e first block is designed to learn the dependencies

between spatial and temporal components and capture
their complicated relations. ,is block also helps to
capture the correlation between grids and clusters for OD-
trips during different time patterns, especially when ob-
serving adjacent locations’ properties and dealing with the
sparse data. After processing the external features, we
combine all feature representations and pass them to the
last block, which is the multi-head attention module to
learn the attentional weights of all features based on their
contribution to the output. Next, we describe each part in
detail.

3.5.1. Spatial Self-Attention Module. In this section, we
develop a self-convolutional attention mechanism that
captures the correlations across different spatial features
and learn their attentional weights. To this end, we adopt a
1D convolutional layer followed by self-attention heads.
Figure 5 shows our proposed spatial self-attention
module, and the spatial feature’s tensor includes a pair of
GPS coordinates, a pickup cluster, a drop-off cluster, a
pickup grid, a drop-off grid, distance, and speed {D and S}.
First, we reshape the input into three dimension as an
input for the 1D convolutional layer. To do so, we used a
reshape function to reshape the 2D features vector into 3D
tensor δi. ,en, we used the convolution filter and kernel
size as shown in Figure 5 to handle the spatial input
tensor. ,us, we can get Query {Q δ}, Key {K δ}, and Value
{Vδ} as an output from each 1D-Conv layer followed by
the ReLU activation function as follows:

Q
δ

� ωf
q · χδ, K

δ
� ωf

k · χδ, v
δ

� ωf
V · χδ,

Conv1d(K,Q,V)δ � χδi,j � 

J

j�1
ω(j)

f ⊙ χ(i+κ) + βj
,

ReLU(χ) � Max(0, χ),

(8)

where χ denotes the tensor input, i is the convolution
processed index, j refers to the filter (f ) position, and κ is
the kernel size. (ωj

f) represents the filter (fj) weight
matrix, and (βj) is the learnable parameter (bias). We set
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Figure 2: Investigation of selecting K-means clustering value using elbow curve method.

Table 2: Weather data formalization and labeling.

Weather condition Label
Clear 1
Overcast, partly cloudy, mostly cloudy, scattered clouds 2
Haze, fog 3
Light freezing fog, light freezing rain, 4
Light snow 5
Rain 6
Snow 7
Heavy rain 8
Heavy snow 9
Light rain, sleet 10
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the �lter and kernel size to 1 and 3, respectively. We set
the padding to “same” to avoid dropping some infor-
mation and verify that all inputs are completely repre-
sented. �erefore, the weight matrix (U

�
) between Kδ and

Qδ is computed by using the scaled dot attention func-
tion, and then the �nal attention score ( �Wδ) is computed
as in the following equation:

U
�
� Kδ ⊙Qδ,

W
� δ

� U
�
⊙Vδ.

(9)

Afterward, the �nal attention output is obtained over the
multiple self (attention) layers, and then we �atten the
output of the spatial self-attention block and concatenate it
with the temporal correlation output.

Spatial-Temporal
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Figure 4: Joint spatial and temporal correlation (JSTC) mechanism architecture combines spatiotemporal correlation block, which includes
the spatial self-attention module (SSAM) and residual dilated convolutional module (RDCM).�en, we used a multi-head attentionmodule
(MHAM).
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Figure 3: Visualization of travel time changes when the weather is di�erent, for example, from pick-up grid-id� 774 to drop-o� grid-
id� 1116 on the NYC dataset on two di�erent days over the same time interval.
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3.5.2. Residual Dilated Convolutional Module. ,e temporal
convolutional module aims to capture the temporal pat-
terns. Several previous studies have considered the tem-
poral dependencies of traffic forecasting tasks. In [46, 47],
the RNN architecture was applied to capture temporal
relations, while references [48, 49] utilized the gated re-
current units (GRUs) and long-short memory (LSTM)
networks to model the temporal components on traffic
pattern fluctuations. Although these approaches have
shown good performance, they still suffer from many
problems (e.g., exploding/vanishing gradients, time-con-
suming in the training phase, and some other limitations in
modelling long sequences).

Inspired by the recent success of the temporal con-
volutional network (TCN), we propose a residual tem-
poral correlation module (RDCM), which comprises
multiple dilated 1D-Conv layers stacked together as
shown in Figure 6. We employed the TCNs advantages in
the convolutional operations expanding domain by
adjusting the dilation rate parameter on each layer.
Empirically, same as the preprocessing we have used for
the spatial components, we construct 3D tensor (τi) for
the temporal features. Since the traffic patterns during the
different periods of the day are highly affected by the
traffic flow in each region. Accordingly, while investi-
gating the dependencies of temporal factors, some spatial
features should be considered due to their significant
impact on the output. In our case, the density score grid
and cluster for both pick-up and drop-off, which are
measured hourly, have been adopted as supplementary
features for the temporal correlation modelling. By now,
the temporal component of each trip record is represented
by the (χτi ) tensor, which includes the temporal features
and the supplementary features.

In order to capture the interactions and patterns of
temporal features in terms of long-short dependencies
between the input features, we built three dilated con-
volutional layers with different “dilation −rates” as � { 1, 2,
4 } to address the following two key points: avoiding the
backpropagation issue (gradient vanishing or exploding)
and receptive field expansion to cover the entire input’s
representation through the shallow hierarchical layers.
,us, to achieve the normal convolution operation, we set
the dilation “d r � 1” and the kernel-size “K� 3” in the first
layer followed by ReLU and drop layers, and then the
output is used as an input for the next dilated convolution
layer with “d r � 2” and “K � 3.” ,en, “d r � 4” and “K � 5”
for the last layer. Figure 6(b) illustrates the dilated con-
volution steps. As a result, we make sure that the different
space (long-short) of the relationship between the temporal
factors has been considered. Also, an efficient represen-
tation of the features without missing any important in-
formation is also considered. ,e dilated convolutional
layers were combined into a residual block, and an ele-
ment-wise concatenation layer was used to add the last
output to the input (χτi ), which can improve training and
maintain an optimal feature correlation distribution. In
this paper, we formulated the DRCM block operations as
follows:

f τdr
i  � f χτi(  + χτi ,

f χτi(  � 
S

s�1
χτi + d

r⊛ s ω[s],
(10)

where dr denotes the “dilation −rate” and s denotes the
“filter− size.” Eventually, the temporal correlation output is
concatenated with the previous spatial correlation outputs
and passed to a multi-head attention mechanism.

Self-attention features score (Wδ)
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Figure 5: ,e structure of spatial self-attention module (SSAM).
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3.5.3. Multi-Head Attention Module. ,e multi-head atten-
tion mechanism is illustrated on the right side of Figure 4 as
reported in [42], which has been adopted in our model in
charge of getting accurate prediction results. First, due to the
impact of the external features on the travel time as mentioned
before, we apply a fully connected layer followed by ReLU and
dropout layers as subblock to represent the external factors
(weather details and public holidays), and then we combine the
external features’ representation vector with the vector that
represents the spatial and temporal correlations outputs (for
more details, see Sections 3.4.1 and 3.4.2). By implementing this
mechanism, we can enhance our model’s ability to learn the
attentional weights of various features using multiple attention
layers. Besides, it makes the training process robust and fast
where it guarantees processing strategies across multiple
(HAtth

) heads. ,us, from the concept of learning the atten-
tional weights of all features based on their contribution to the
output. In this study, the attention scores represent the inter-
correlations of the input features to the target (travel time).
,erefore, we applied a “scaled-dot” function to compute the
attention score based on the contribution of each feature to the
output target. To do so, we constructed (query (Q), key (K), and
value (V)) vectors, which include the feature representations.
Firstly, we can get the features’ scores (weights) between
each feature in (Q) and the set of keys, and then the second
round of dot-product function takes these scores’
(weights) vector and set of keys (K) to get the values’ (V)
vector, for calculating the final attention score. We for-
mally defined this process as follows:

MHAtt(Q, K, V) � Concat HAtt1, . . . , HAtth
 W

O
,

HAtti � Attention QW
Q
i , KW

K
i , VW

V
i ,

(11)

where QWQ
i , KWK

i , and VWV
i represent the (K, Q, and V)

weights for each head and WO is a combination of scores’/
weights’ matrix. h is the number of head parameter; after
several trials with the h values { 4, 6, 8, 10 }, we adopted 6 as
the number of attention heads, which leads to fast perfor-
mance and achieves optimal results.

Eventually, we use a dense layer followed by a linear
operation to get the final prediction results (yi

ODτ
) ideally as

follows:

y
i
ODτ

� φ Wfχ
i
+ bf , (12)

where (φ) is the linear activation function and (Wf) and
(bf) are learnable parameters.

4. Experimental Results and Analysis

We used three large-scale traffic datasets (NYC, Chengdu,
and Xi’an) in our experiment. Section 3.2 describes in detail
the data analysis and preprocessing. We randomly split the
datasets into 80% for training and 20% for testing. ,e
training set was then divided into two subsets: 70% for
model training and 30% for validation. ,e learning rate
values range (0.01, 0.001, and 0.0001), batch size as (128,
256, and 512), dropout values range (0.1, 0.2, and 0.3), and
multi-head (h) as (4, 6, 8, and 10). ,e optimal values for
parameters are as follows: the learning rate is 0.001, the
number of training epochs and attention heads is (60 and 6),
respectively, and batch size is 512. Besides, to reduce
overfitting, we applied both the kernel regularizer (L2
norm) and dropout (0.2). Also, we adopted the Adam
optimizer as an optimizing function with a linear acti-
vation function.
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Figure 6: An illustration of our proposed residual dilated convolutional module (RDCM). On the left side of the figure, we show the RDCM
module’s architecture. ,e right side represents the dilation convolutional operations by expansion of the receptive field (dilation parameter) and
different sizes of kernels (K) to obtain optimal feature representations.
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4.1. Evaluation Metrics. To evaluate our model, we use two
common prediction metrics.

Mean absolute percentage error (MAPE) is calculated as

MAPE �
100%

N


N

i�1
y

i
− y

i/yi


. (13)

Mean absolute error (MAE) is calculated as

MAE �
1
N



N

i�1
y

i
− y

i


, (14)

where yi and yi are the actual and predicted OD-trip du-
rations in seconds, respectively. N indicates the total
number of records in the test dataset.

4.2. Results

4.2.1. Comparison of Various Models’ Results with JSTC
Model. To show the performance efficiency of our model,
we compared it with the following models:

(i) LRM: we applied the LR model in [20] with almost
all features except the grid and cluster, which have a
high dimension and cause overflow.

(ii) XGBoost: a machine learning model widely used
for both classification and regression problems.
However, XGBoost with a deep tree may lead to
better predictions. Following [50], we set the max-
depth parameter between 4 and 6 to avoid
overfitting.

(iii) LightGBM: the LightGBM model is based on de-
cision tree algorithm with leaf-wise and level-wise.
,is model is more appropriate for large datasets
with large dimension of features [51]. Accordingly,
we set the LightGBM parameters same as in [21].

(iv) ST-NN: spatiotemporal-based model was proposed
in [19], which combined two DNN modules to
predict the trip distance and then used this distance
to predict the travel time.

(v) TTE-Ensemble: the collaborative model proposed
in [21] combines machine learning and neural
network (GBDT and DNN) modules for modelling
multi-modality data to predict the OD-trip travel
time.

(vi) FMA-ETA [18]: a deep learning model based on a
multi-self-attention technique integrated with a
feed-forward structure (FFN) for capturing spatial
and temporal dependencies and obtaining TTF.

(vii) STTNs [37]: two spatial-temporal blocks are inte-
grated into an approach based on graph neural
network and transformer (STTNs), which jointly
investigates the dynamic spatial and temporal de-
pendencies to enhance the traffic flow prediction
result’s accuracy.

Table 3 illustrates our model results compared with other
models in terms of MAPE and MAE for the NYC, Chengdu,

and Xi’an datasets. ,e results show that our model out-
performs other approaches. As previously mentioned, we
divided the comparative models into two parts (ML and DL
models). ,e results of ML (LR, XGBoost, and LightGBM)
models show worse accuracy compared with the DL models
because these simple statistical ML algorithms have difficulty
in modelling the non-linearity relations of complex traffic
patterns. We notice that the LRmodel gives the worst results
compared to others (26.12, 24.37, and 25.85) in MAPE and
(168.34, 176.33, and 197.14 sec) in MAE for NYC, Chengdu,
and Xi’an, respectively.,e error rate (MAE) was reduced by
(14.4, 14.14, and 9.11 sec) and (18.62, 20.94, and 20.88) with
the XGBoost and LightGBM models, respectively. In con-
trast, our model shows better performance where it reduces
the errors by approximately (71.22, 104.4, and 108.26 sec)
compared with LR and (56.82, 90.26, and 94.15) on
XGBoost, while (52.6, 83.46, and 82.38) for LightGBM on
NYC, Chengdu, and Xi’an, respectively.

On the other hand, the ST-NN achieved the lowest
results of all the DL models because it only utilizes two MLP
blocks. In comparison, our model reduced the errors
(MAPE) by at least ( ∼ 7%) on NYC and Chengdu, while
6.31% on Xi’an. Furthermore, our model has also shown
remarkable superiority over the TTE-Ensemble model by
reducing the errors by (5.19%, 5.5%, and 4.73%) on NYC,
Chengdu, and Xi’an, respectively. ,us, we can observe that
ST-NN and TTE-Ensemble models achieved better results
than ML algorithms (LRM, XGBoost, and LightGBM). ,is
is because deep learning approaches consider the non-linear
relations between the variables. Although, the ST-NN ap-
plied two DNNmodules for estimating the trip distance first,
then using this distance to predict the time, which means
they also adopted the spatial component (distance) only,
while the temporal patterns was ignored.,e TTE-Ensemble
model was built based on combining the DNN module with
the ML (GBDT) model. ,ese models are not sufficient to
capture the complicated correlations.

Eventually, as it can be seen from the table, FMA-ETA
and STTN models give results which are more closer to our
proposed model because these models have also adopted
attention mechanisms to capture the non-linear correlations
between the spatial and temporal features. ,e auxiliary
spatial features that influence traffic patterns play a signif-
icant role when considering the dynamic scales of inner
spatial and temporal correlations.

,erefore, compared to FMA-ETA, our proposed model
components (SSAM, RDCM, and MHAM) play a significant
role in reducing the MAPE and MAE error rates by (2.67%,
3.74%, and 1.91%) and (15.09, 35.42, and 27.25 sec). Also,
our model achieves better performance than the STTN
model through reducing the errors by at least (1.24%, 2.17%,
and 1.61%) and (8.11, 22.68, and 16.78 sec) on MAPE and
MAE for NYC, Chengdu, and Xi’an, respectively.

Moreover, to validate our model, two different datasets
at morning peak (7 to 10 AM) and evening peak (5 to 8 PM)
have been used to test all models during these two periods in
terms of MAPE and MAE, as shown in Tables 4 and 5 for
NYC, Chengdu, and Xi’an, respectively. Prediction errors
are typically higher during these two peak periods than
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during non-peak periods. From the results shown above, we
can demonstrate that our model provides more accurate
results compared to other models, even during the morning
and evening peak hours. Also, based on the random se-
lection of trips used for testing our proposed model, Figure 7
shows a comparison between actual values and predictions
of 50 random trips for all models on NYC, Chengdu, and
Xi’an, respectively. Each point on the X-axis represents a trip
from the test set, while the y-axis indicates the trip duration
in seconds.

4.2.2. Ablation Analysis. We built our model based on three
main components (SSAM, RDCM, and MHAM). Besides,
we consider external factors that influence travel time by
improving the accuracy of our results. ,erefore, additional
experiments were conducted to verify the contribution of
each component in our prediction task. ,e ablation models
we use in this analysis are as follows:

(1) Without SSAM: in this model, we removed the
spatial self-attention module (SSAM) and applied
RDCN and MHAM modules only with a fully
connected and output layer.

(2) Without RDCM: in this model, we removed the
DRCM module and applied SSAM and MHAM
modules only with a fully connected and output
layer.

(3) Without externals: to verify the effect of external
factors (weather and public holidays), we remove the
block responsible for representing these factors’
dependencies.

(4) Without MHAM: we removed a multi-head module
(MHAM). So, after getting the spatial and temporal
components’ correlations, we concatenate these
blocks’ outputs with external features’ representa-
tions and then apply fully connected and output
layers directly.

We should mention that MLP layers were adopted as an
alternative to each module that was removed during the
ablation investigation phases 1, 2, and 4, as shown in Table 6.
However, the impact of externals was just measured by
removing the external factors’ representation block in ab-
lation 3. ,e results in Table 6 demonstrate that the per-
formance of all modules combined together in one model
leads to better results. In contrast, removing some parts
affects the process of capturing traffic pattern fluctuations.

Table 4: An illustration of all models’ performances with morning and evening peak periods (MAPE) for NYC, Chengdu, and Xi’an.

Model
NYC MAPE Chengdu MAPE Xi’an MAPE

Morning Evening Morning Evening Morning Evening
ST-NN 25.42 26.33 24.12 25.74 26.04 27.16
TTE-Ensemble 22.36 23.65 21.01 23.66 23.75 24.52
FMA-ETA 20.52 21.33 18.77 21.82 20.16 22.93
STTNs 17.78 19.42 16.34 18.25 17.66 19.38
JSTC 15.82 17.13 14.52 16.04 16.27 18.45
We denote our model’s results in bold font as the best scores for each metric.

Table 5: An illustration of all models’ performances with morning and evening peak periods (MAE) for NYC, Chengdu, and Xi’an.

Model
NYC MAE Chengdu MAE Xi’an MAE

Morning Evening Morning Evening Morning Evening
ST-NN 159.02 164.34 166.62 168.87 163.46 170.19
TTE-Ensemble 145.28 154.11 150.84 155.43 150.22 161.82
FMA-ETA 128.61 133.72 126.96 140.48 137.63 144.57
STTNs 119.83 125.61 117.13 128.72 121.75 134.44
JSTC 108.74 115.93 98.31 118.49 106.59 125.16
We denote our model’s results in bold font as the best scores for each metric.

Table 3: Comparison of all models’ results on the NYC, Chengdu, and Xi’an datasets.

Model
NYC Chengdu Xi’an

MAPE MAE (sec) MAPE MAE (sec) MAPE MAE (sec)
LRM 26.12 168.34 24.37 176.33 25.85 197.14
XGBoost 25.39 153.94 22.59 162.19 23.37 188.03
LightGBM 22.19 149.72 21.98 155.39 21.51 176.26
ST-NN 20.04 136.34 19.02 131.26 20.44 154.07
TTE-Ensemble 18.33 122.71 17.58 114.08 18.86 136.35
FMA-ETA 15.81 112.21 15.74 107.17 16.04 121.13
STTNs 14.38 105.23 14.25 94.61 15.74 110.66
JSTC 13.14 97.12 12.08 71.93 14.13 93.88
We denote our model’s results in bold font as the best scores for each metric.
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We can notice that the MAPE increases by (8.22, 8.41, and
8.63) and the MAE increases by (55.15, 67.23, and 70.29 sec)
in NYC, Chengdu, and Xi’an, respectively, when removing
the SSAM block, while removing the RDCM block increases
the MAPE by approximately (6.95, 6.25, and 6.28) and MAE
by (47.66, 53.98, and 55.5 sec). By removing external factors,
the MAPE increases by at least (4.29, 4.85, and 4.92) and the
MAE increases by (93.68, 46.44, and 41.66 sec). ,at means

applying external factors improves our model’s results by a
significant margin.Whereas, applying the SSAM and RDCM
modules combined with external factors representation
without the MHAM block, we achieve results with small
errors rates (MAPE%) about (3.67, 2.87, and 3.45) and MAE
at least by (21.42, 38.39, and 27.38 sec) for NYC, Chengdu,
and Xi’an, respectively, compared to combining all the JSTC
model’s components. We can observe that disabling joint
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Figure 7: Comparison of prediction vs. actual values for all models on (a) NYC, (b) Chengdu, and (c) Xi’an.
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correlation mechanisms (SSAM and RDCM) increases the
error rates more than removing a multi-head block, which
means these two modules have a higher impact on our
model since they are responsible for capturing correlations
of traffic spatial and temporal factors. On the other hand,
external factors play an important role in improving our
prediction results. Conclusively, these results emphasize the
importance of each proposed block through their contri-
butions to improving travel time prediction results.

4.2.3. Computational Cost Measurement. Measuring the
computational complexity has been considered in this paper.
We compute the time consumption of our model compared
with deep learning-based models (ST-NN, TTE-Ensemble,
FMA-ETA, and STTNs). Table 7 reports the average time of
training and predicting functions for one million trips (1M)
with only one epoch on NYC, Chengdu, and Xi’an datasets.
Note that we performed our experiments on the same
NVIDIA GPU (GeForce GTX 1050 Ti) with 4GB. Also, we
set the batch size to 512 for all models’ training phase. ,us,
we could observe that the complicated model’s structure
took more training time than the simple ones. Actually, one
logical reason is that this model’s complexity represents an
improvement to give more accurate prediction results. In
comparison, we can notice that the computation time of our
model is much closer to that of the STTN model due to the
fact that both models have a relevant structure.

5. Conclusion

In this paper, we first discussed the various characteristics of
traffic patterns that affect travel time. ,en, we presented a
mechanism for capturing interactions between spatial and
temporal factors based on self-convolutional attention and
dilated convolutional techniques. In addition, we adopted
spatial auxiliary features and integrated them with the

temporal features, which play a significant role in capturing
the dynamic traffic patterns and their correlations. Fur-
thermore, we applied a multi-head attention mechanism to
learn the attentional weights of the spatial, temporal, and
external features based on their contribution to the output
and speed up the training process. Extensive experiments
using three large-scale real-world traffic datasets (NYC,
Chengdu, and Xi’an) have shown that our JSTC model
outperforms prior methods.
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