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Traffic prediction is the key for Intelligent Transport Systems (ITS) to achieve traffic control and traffic guidance, and the key
challenge is that traffic flow has complex spatial-temporal dependence and nonlinear dynamics. Aiming at the lack of the ability to
model complex and dynamic spatial-temporal dependencies in current research, this paper proposes a traffic flow prediction
model Attention based Graph Convolution Network (GCN) and Transformer (AGCN-T) to model spatial-temporal network
dynamics of traffic flow, which can extract dynamic spatial dependence and long-distance temporal dependence to improve the
accuracy of multistep traffic prediction. AGCN-T consists of three modules. In the spatial dependency extraction module,
according to the similarity of historical traffic flow sequences of different loop detectors, an adjacency matrix for the road network
is constructed based on a sequence similarity calculation method, Predictive Power Score (PPS), to express latent spatial de-
pendency; and then GCN is used on the adjacency matrix to capture the global spatial correlation and Transformer is used to
capture dynamic spatial dependency from the most recently flow sequences. And then, the dynamic spatial dependency is merged
with the global spatial correlation to obtain the overall spatial dependency pattern. In the temporal dependency extractionmodule,
the temporal dependency pattern of each traffic flow sequence is learned by the temporal Transformer. (e prediction module
integrates both patterns to form spatial-temporal dependency patterns and performs multistep traffic flow prediction. Four sets of
experiments are performed on three actual traffic datasets to show that AGCN-T can effectively capture the dynamic spatial-
temporal dependency of the traffic network, and its prediction performance and efficiency are better than existing baselines.
AGCN-T can effectively capture the dynamics in traffic flow. In addition to traffic flow prediction, it can also be applied to other
spatial-temporal prediction tasks, such as passenger demand prediction and crowd flow prediction.

1. Introduction

Traffic flow prediction is the prerequisite for traffic control and
traffic guidance, and it is also the key to the research and
implementation of the Intelligent Transportation System (ITS).
Traditionally, real-time traffic data are collected by in-ground
loop detectors or traffic surveillance camera systems, which are
fixed measure stations that obtain information in terms of
flows, occupancy, speed, or videos. Prediction of one or more
information of these within one or several hours ahead is
typically called short-term flow prediction [1]. In this work, we
focus on traffic speed prediction, which predicts the future
traffic speeds for each loop detector using historical speed.

(e traffic flow on a loop detector is spatially affected by
the dynamic traffic of other loop detectors in the traffic

network and has multiple timing characteristics such as
proximity, periodicity, and trend. (ese complex dynamic
spatial-temporal correlations make traffic flow prediction
become a very challenging task. Early studies regarded traffic
flow as an independent time series and used time series-
based methods to predict it. (e most representative one is
ARIMA (Autoregressive Integrated Moving Average) model
and its variants [2–4]. (is type of method requires data to
be stable and continuous and cannot be well adapted to
dynamic and complex traffic flow prediction. Subsequent
research gradually considered spatial relationships and ex-
ternal background data, such as locations, weather, and
events, and used traditional machine learning methods for
modeling [5–8]. However, these models rely heavily on
expert experience in related fields and require manual
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feature engineering. In recent years, as deep learning has
been widely used, a large number of studies have adopted
RNN (Recurrent Neural Network) and/or CNN (Con-
volutional Neural Network) to automatically extract spatial-
temporal correlation features from traffic flow, which greatly
improves the prediction accuracy [9–12]. However, these
works still have some limitations, including the following:①
RNN-type methods may cause serious training problems
due to the vanishing gradient and explosive gradient
problems; ② CNN-type methods are based on a regular
network structure, but gridding the traffic network will
result in the inability to effectively express non-Euclidean
spatial characteristics of the traffic network. To solve the
problem, the GNN (Graph Neural Networks) method,
which constructs the traffic network as an irregular graph
structure, has received a lot of research in recent years. In
GNNs, GCN (Graph Convolutional Network) has gained the
most attention because of its natural fusion of structure
(spatial characteristics in traffic flow) and attributes (tem-
poral characteristics in traffic flow) [13–17]. At the same
time, research based on Graph Attention Network (GAT) is
gradually increasing because the attentionmechanism it uses
can effectively learn the dynamics in traffic flow [18].

However, GNNs still fall short of modeling traffic flow
due to the following challenges. Firstly, in the expression of
spatial dynamics, existing GNNs rely heavily on a predefined
network structure and lack consideration or expression of
time-varying spatial correlation. However, on the one hand,
existing topology construction methods for traffic networks
usually consider the local connection characteristics of
roads, constructing the topology based on connectivity or
distance, and ignoring the global impact among roads, so the
constructed traffic network may ignore the correlation
among distant roads which share similar temporal patterns.
On the other hand, the spatial dependence between roads is
not strictly stable, and the spatial pattern of traffic flow will
also change significantly over time. For example, on
weekdays and weekends, or morning peak and evening peak,
two specific roads usually have a different relationship.(ere
are complex spatial dependencies between different road
nodes, and the traffic flow between different areas at different
times has complex temporal dependencies, so different roads
have different patterns of traffic flow. Secondly, when
expressing temporal dynamics, existing GNNs usually
combine RNN-type methods to capture short-term trends
and long-term periodicity. However, RNN-type methods
have problems of time-consuming iterative propagation and
gradient explosion or disappearance and cannot simulate the
temporal change pattern well. Finally, the current prediction
model is generally oriented to single-step prediction, which
makes its forecast accuracy decrease significantly as the
forecast time range increases. However, in practical appli-
cations, multistep prediction is more valuable, and how to
improve the accuracy of multistep prediction becomes an
urgent problem to be studied.

To meet the above challenges, we study the problem of
multistep traffic prediction by proposing a new model
AGCN-T (Attention-based Graph Convolution Network
and Transformer) by fusing GCN and Transformer. AGCN-

T extracts the global dependencies between nodes based on
the similarity between time series firstly and builds the basic
network topology by extracting the global dependencies
among nodes in the traffic network based on the similarity
among historical traffic sequences on different loops de-
tectors. On this basis, GCN is used to capture global spatial
correlation. At the same time, a spatial Transformer network
with the attention mechanism learns the local influence of
different loop detectors and provides the ability to dy-
namically perceive spatial dependent changes. And then, the
temporal Transformer network is used to capture the dy-
namic temporal dependencies on each loop detector. Finally,
the learned spatial-temporal features are fused and used for
multistep traffic flow prediction. Notice that the Trans-
former used can obtain multistep prediction at one run
instead of multiple predictions based on existing prediction
results. Notice that in addition to traffic flow prediction,
AGCN-T can also be applied to other spatial-temporal
prediction tasks, such as passenger demand prediction and
crowd flow prediction. (e main contributions of the paper
include the following:

(i) We adopt a network building method PPS (Pre-
dictive Power Score), to learn hidden spatial de-
pendencies among historical traffic sequences. PPS
has intuitive physical meaning. Notice the method
can automatically discover invisible network
structures from the data without the guidance of
prior knowledge. It is the first time that PPS has
been used in the construction of an adjacency
matrix for a traffic network.

(ii) AGCN-T is proposed to model the dynamic spatial-
temporal dependence for traffic flow prediction. To
extract spatial pattern, the spatial dependency is
learned by GCN and the spatial Transformer to
extract the global and local spatial relationships,
respectively, to indicate the periodicity and trend
separately. (e temporal dependency is learned
through the temporal Transformer. Especially,
Transformer is used instead of RNN technologies to
solve the multistep prediction problem.

(iii) Experiments are conducted on real traffic data sets,
and the results show that the effect of AGCN-T is
better than the existing mainstream prediction
methods.

(e paper is organized as follows: Section 2 gives a
summary of state-of-the-art research in predicting traffic
flow. We then formalized the traffic prediction problem and
proposed the AGCN-T model in Section 3. Section 4 dis-
cusses the experiment design and the performances of the
tested models. Conclusions are then drawn in Section 5.

2. Literature Review

(e field of traffic flow prediction has existed for almost five
decades and covers a wide array of methodologies which can
be divided into two categories, traditional statistical methods
and machine learning methods.
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2.1. Traditional Statistical Methods. (e research field of
traffic prediction has evolved greatly ever since its inception
in the late 1970s, while Ahmed et al. used ARIMA for
highway traffic flow prediction for the first time [2]. Sub-
sequently, ARIMA and its variants [3, 4], VAR [19], Kalman
filter [20], and other algorithms used and regarded traffic
flow as time series and performed statistical analysis on
historical traffic flow to realize the prediction of future ones.
(e advantage of these models is their simplicity, but their
prediction performance is poor, and the ability to mine the
potential correlations among traffic flows and various
influencing factors is insufficient because most of them are
based on linear assumptions.

2.2. Machine Learning Methods

2.2.1. Classical Machine Learning Methods. Due to the de-
ficiencies of traditional statistical models, researchers
flocked to machine learning models, which can learn the
nonlinear relationship between traffic flow and influencing
factors and greatly improve the performance of traffic flow
prediction. Typical methods include Support Vector Re-
gression (SVR) [5], Bayesian model [6], kNN [7], Random
Forest Regression (RFR) [8], etc. However, machine learning
models rely on artificial feature engineering rather than
learning directly from raw data. Artificially defined features
are often difficult to capture the overly complex spatial-
temporal correlations of traffic flow, resulting in information
loss. Besides, shallow and simple structures of machine
learning models also limit their prediction power.

2.2.2. Deep Learning Methods. As theoretical and techno-
logical advances emerged in the middle of the 2010s, re-
searchers started to apply DNNmodels for traffic prediction.

(ese models can automatically extract and capture the
characteristics from data and have strong nonlinear data
mining capabilities, showing superior performance.
According to how they model spatial-temporal correlations,
there are classified into temporal dependency models and
spatial dependency models.

(1) Temporal Dependency Models. First of all, RNN and its
variants, such as LSTM [9] or GRU [10], are neural network
models that process sequential data well and are commonly
used to model temporal dependency. But they only regard
the traffic flow as a time series. However, these methods still
treat traffic flow as time series. It is easy to lose the content
learned at the previous time step, resulting in poor per-
formance when the input data is a long series. Different from
RNN, CNN is a fully convolutional network, which captures
the time trend of nodes through the time convolutional
layer, while the convolutional network does not rely on
previous calculations, and the elements in the sequence can
be parallelized. (e receptive field of CNN is usually small,
which is not conducive to capturing and storing long-dis-
tance dependent information [11]. Since traffic flow pre-
diction has inherently complex spatial-temporal
dependence, some research use hybrid CNN-RNN models

for archiving better predictive effect than single models [12].
For example, CNN is used to extract interday and intraday
traffic flow patterns, and LSTM is used to learn the evolution
of intraday traffic flow in [21]. Refence [22] uses the density
peak clustering algorithm and the genetic algorithm to
optimize the input so that to improve the accuracy. In recent
years, the self-attention mechanism adopts in traffic pre-
diction to effectively capture long-term dependence because
it can be easily adapted to data sequences of different lengths.
Some recent research takes Transformer into account and
achieves encouraging results [23].

(2) Spatial Dependency Models. To characterize the spatial
correlation, CNN is a natural choice because it can capture
the spatial local features well [11]. However, CNN is
designed for the Euclidean spatial structure and needs to be
based on the regular grid structure, which violates the
natural non-European nature of the traffic network, so CNN
cannot fully express the spatial association of traffic flow.
GNNs present a new opportunity for traffic prediction due
to their ability to capture spatial correlations in non-Eu-
clidean network structures. In GNNs, GCN is used for traffic
prediction in most cases. For example, T-GCN [13] is the
first research to introduce GCN into traffic flow prediction;
DCRNN [14] uses diffusion GCN to describe the infor-
mation diffusion process in spatial networks and uses RNNs
to model temporal correlation; ST-GCN [15] adopted
Chebnet to capture the spatial correlation of traffic flow.
(ese models usually combine RNN and GCN to model
temporal and spatial correlation, respectively. In addition to
GCN, attention-based traffic flow prediction methods
gradually emerge. For example, ASTGCN [16] simulta-
neously employs graph convolutions and attention mech-
anisms to model the traffic flow; Graph WaveNet [17]
proposed a new adaptive dependency matrix to capture the
hidden spatial dependencies; and STGAT [18] adopted a
dual path network with gating mechanisms and residual
architecture, which contains gated temporal convolution
and graph attention layer. However, the local similarity of
road space is not considered.

(ese studies show that GCN is a powerful tool to deal
with complex spatial-temporal dependencies, and the at-
tention mechanism can be used to extract the dynamic
changes of these dependencies. Although existing hybrid
models of GNN and RNN have improved the prediction
performance, there are still limitations, and before applying
GNN and attention to traffic prediction tasks, there are three
basic problems to be studied. Firstly, how to accurately
represent the complex structure of the traffic network?
Secondly, the predefined network structure is usually local
and static, how to capture spatial dynamics on this basis?
(irdly, how to learn the temporal pattern of traffic flow
better? Next, we will show our solutions to these problems.

3. Methodology

First, we need to formalize the traffic flow prediction
problem, and then introduce the AGCN-T model, and
elaborate on the details of AGCN-T in the following. A list of
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abbreviations of the definitions and notations used in the
paper is firstly given in Table 1.

3.1. ProblemFormalization. Traffic flow prediction means to
perform prediction on future traffic information, as given
historical information collected by a group of loop detectors.
In this paper, traffic speed adopted by loop detectors is taken
as a prediction object. In this section, we first give some
definitions and then formalize the traffic prediction
problem.

Definition 1. (Graph for Traffic Network G): (e traffic
network can be abstracted as a graph, which is represented as
G � (V, E, A), where V is the set of vertices in graph G with
|V| � n, represents nodes in the traffic network, such as loop
detectors; E represents the set of edges between loop de-
tectors. A ∈ Rn×n denotes the weighted adjacency matrix that
is derived from the graph G. Element Aij in matrix A is used
to describe the relationship strength between vertex i and
vertex j. Usually, the larger values mean that the two ver-
texes have higher correlations.

Definition 2. (Feature Matrix X): X ∈ RT×n is the recorded
historical observations, where T represents the total number
of historical time steps.

X ∈ R
T×n
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(1)

where Xt is represented as the feature vector and vt
i is the

speed detected by the loop detector i at time t.
(e formal definition of the traffic speed prediction

problem is to find a mapping function f � (·), such that we
can infer the snapshots of graph G with X in the future T′
snapshots according to T historical observations:

y
t+T′

� f G; X
t− T+1

, . . . , X
t−1

, X
t

  . (2)

(e objective is to find parameters of the model which
can minimize the error between the predicted speed and the
observed ones:

θ∗ � argminL y
t+T′, y

t+T′; θ∗ , (3)

where yt and yt are observed and predicated traffic at time t

separately. L is the loss function and θ∗ is the optimal set of
parameters for the function f.

3.2. Framework of AGCN-T. Figure 1 gives an overview of
AGCN-T, which contains three modules: spatial depen-
dency extraction module, temporal dependency extraction
module, and prediction module. Firstly, the spatial depen-
dency extraction module constructs an adjacency matrix for
a traffic network based on historical speed sequences of
nodes in a traffic network and uses the adjacency matrix as
input tomine the global spatial dependency pattern by GCN;
then, the spatial Transformer is used to obtain hourly dy-
namic spatial dependency; secondly, the temporal depen-
dency extraction module uses the temporal Transformer to
learn temporal dependency pattern of historical traffic se-
quences. In the end, the prediction module integrates
learned spatial and temporal dependencies and performs
multistep traffic flow prediction.

Table 1: Notations in AGCN-T.

Notation Definition and Description
G � (V, E, A) Traffic network G with nodes V, edges E and adjacency matrix. A

n Number of nodes in. V

Aij (e strength of the relationship between vertex i and. j

X Feature matrix of. G

T Total number of historical time steps.
vt

i (e speed detected by the loop detector i at time. t

yt Predicted traffic speed at time. t

yt Observed traffic speed at time. t

θ∗ (e optimal set of parameters.
Xi, Xj Sequences of traffic detected by detectors i and. j

SMAE
ij MAE values of Xi predicting. Xj

SM
ij (e median of. SMAE

ij
A (e adjacency matrix A by adding the identity matrix. I

ZW Global spatial dependence matrix.
F (e dimension of the embedding vector.
A′ (e normalized adjacency matrix of A′. G

D Degree matrix of. G

SA (e attention matrix.
ZL Local spatial dependence matrix.
ZS Spatial dependence matrix.
ZT Temporal dependence matrix.
ZST Spatial-temporal dependence matrix.
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Figure 1: (e framework of AGCN-T.
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AGCN-T solves three difficult problems: ① adjacency
matrix construction for traffic networks without connection
features; ② extraction of spatial dynamic dependency; and
③ extraction of temporal dependency. In the next few
sections, each part of AGCN-T is elaborated in more detail.

3.3. AdjacencyMatrix Construction. As we have mentioned,
GCN is used in AGCN-Tto extract spatial correlations in the
traffic network. GCN needs a predefined adjacency matrix to
perform graph convolution operations, so adjacency matrix
construction is the key to the success of GCN.

Current mainstream research is usually based on the
physical connectivity between nodes [16] or [17] distance
between latitude and longitude [24, 25] to build an adjacency
matrix. (e literature [26] obtains the hidden interdepen-
dence between historical traffic sequences by the Pearson
correlation coefficient. However, the Pearson correlation
coefficient is more suitable for expressing linear relation-
ships, but the traffic sequences are often nonlinearly related;
second, the correlation coefficient matrix is symmetric, and
due to the upstream and downstream relationship between
the detectors in the road network, their mutual influence is
not symmetrical. To this end, AGCN-Tuses the PPS method
to learn the correlation between nodes. (is is the first time
that PPS has been used in the construction of an adjacency
matrix for a traffic network.

(e PPS is a normalized index (ranging from 0 to 1) that
tells us how much the variable x could be used to predict the
variable y. (e higher the PPS index, the more the variable x

is decisive in predicting the variable y. Assuming that the
traffic sequences detected by the two detectors i, j in the
traffic network are Xi and Xj respectively, the ability of Xi to
predict Xj represents the correlation between Xi and Xj. In
PPS, Xj is treated as the target variable and Xi as the only
feature, and then a regression decision tree is calculated. In
detail, the method needs to divide the feature space Xi. Each
division examines all values of all features in Xi one by one
and selects the best one as the segmentation point according
to the square error minimization criterion, and then a re-
gression decision tree is built to obtain the MAE (Mean
Absolute Error) value SMAE

ij .Record the median of SMAE
ij is

recorded as SM
ij , then the element value of the adjacency

matrix is obtained by the ability of Xi to predict Xj :

Aij � 1 −
S
MAE
ij

S
M
ij

⎛⎝ ⎞⎠. (4)

PPS models the nonlinear correlation among traffic
sequences and obtains the adjacency matrix A, as shown in
Figure 2.

(e construction process mentioned above does not
consider the influence of loop detectors themselves, so we
update the adjacency matrix A by adding a self-loop.

A � A + I, (5)

where I is the identity matrix with size n × n.
It is worth noting that in the above topology con-

struction method, the direction dependence has been

implicitly integrated into the adjacency matrix, so this paper
adopts a simple and easy-to-calculate undirected graph
instead of the complex directed graph.

3.4. SpatialDependenceExtraction. Traffic flows often show
a multiscale correlation in spatial dimensions, including
global dependence and local dependence. (e traffic
status in different loop detectors tends to correlate with
each other, and the strength of spatial correlations varies
at different locations and highly depends on the un-
derlying traffic network structures. (is is global de-
pendence. At the same time, the traffic conditions are
temporalvarying. For example, the strength of the de-
pendence between adjacent road sections is different in
the morning peak and evening peak, which means that
the spatial relationship is dynamic, and this is local
dependence. Establishing an extraction model for mul-
tiscale spatial dependence among nodes in the road
network is the key to accurately capturing spatial
dependence.

AGCN-T uses GCN to mine the global spatial depen-
dence pattern, uses a spatial Transformer to obtain the local
dynamic spatial dependence that evolves, and then fuses the
learned global spatial features and local dynamic features.
Combined with adjacency matrix construction, the spatial
dependence extraction module can be regarded as a general
message passing GNN for dynamic graph construction and
feature learning.

3.4.1. Global Spatial Dependence Extraction. Taking the
global correlation graph constructed by PPS as input, GCN
is used to capture the inherent spatial dependence among
nodes in the traffic network. (e representation matrix ZW

obtained by GCN is as follows:

Z
W

� GCN(X, A), (6)

where the size of ZW is n × F, and F represents the di-
mension of the embedding vector. GCN is composed of two
layers of convolutions:

GCN(X, A) � ReLU A′ReLU A′XW0( W1( , (7)

where A′ � D− 1/2 AD− 1/2 is the symmetric normalized ad-
jacency matrix, in which D is the degree matrix, Wi is the
weight matrix of layer i.

3.4.2. Local Spatial Dependence Extraction. After applying
GCN to capture the whole spatial correlations of traffic, we
are seeking a way to capture the local spatial dependence.

D1 D1

D2 D2

D3 D3
A =

1

1

0.35 0.64

0.40 0.40

0.65 0.33 1

Figure 2: Construction of adjacency matrix by PPS.
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Here we use a spatial Transformer to capture the spatial
dependence behind hourly timing information and express
the dynamic impact of local changes on the traffic network
structure.

(e input and output of the spatial Transformer are two
sequences of vectors. Notice that the input is the flow matrix
of the last 12 intervals, namely, (XT−12, . . . , XT−1, XT)T, with
5minutes at intervals. In the spatial Transformer, each
vector in the input sequence is linearly transformed into
three vectors called query Q, key K , and value V [27]. Each
output vector is computed as a weighted sum of all the
values, where the weights are the outputs of a softmax layer,
and the inputs of the softmax layer are scaled dot products of
the corresponding query with all keys. (e spatial Trans-
former is calculated as follows:

Q � XWq,

K � XWk,

V � XWv,

S
A

� softmax
QKT

���
dK

 V ,

(8)

where Wq, Wk, and Wv are the weight matrices corre-
sponding to Q, K, and V respectively, SA is the attention
matrix, and dK is the dimension of the vector K. After
further learning through a three-layer feedforward neural
network, the representation of local spatial dependence is
obtained:

Z
L

� ReLu ReLu S
A

W0 W1 , (9)

where W0, W1 are the parameters of different layers in the
feedforward neural network.

3.4.3. Fusion. (e global spatial dependence learned by
GCN represented by ZW and the local spatial dependence
learned by using the attention mechanism represented by ZL

are combined to adjust the spatial correlation of nodes in the
graph, and thereby effectively simulate dynamic spatial
dependence. Notice that the multimodal fusion mechanism
of the Transformer can convert different features into a
unified sequence, solve the problem of inconsistent multi-
modal input, and ensure the consistency of spatial-temporal
feature fusion.

Z
S

� Z
W

+ Z
L
. (10)

3.5. Temporal Dependence Extraction. Traffic status at the
same loop detector also exhibits strong correlations over
time. To capture this temporal dependence, a temporal
Transformer is used to model the sequence relationship of
the flow sequence. On the one hand, this is to solve the
problem that the RNN-type methods cannot extract long-
term periodicity well. Transformer supports the multihead
self-attention mechanism instead of abandoning the

recurrence mechanism in RNN, and this can avoid the
“forgetting” problem and solve the challenges faced by RNN.
On the other hand, the attention mechanism and position
coding strategy in Transformer can dynamically capture the
context-related characteristics of sequence data to realize the
traffic prediction of multiple time steps better.

(e calculation process of the temporal Transformer and
the spatial Transformer is the same, and the difference is that
the input is a series of past traffic data, that is, the historical
time series feature matrix X, instead of the traffic matrix of
the last 12 moments, and the output is a temporal depen-
dence representation ZT.

3.6. Prediction. Spatial dependence and temporal depen-
dence affect traffic flow together. (erefore, we first merge
spatial-temporal dependence learned to form spatial-tem-
poral feature and then performmultistep prediction through
two convolutional layers:

Z
ST

� Z
S

+ Z
T
,

y � Conv Conv Z
ST

  ,
(11)

where Conv(·) is a 1∗ 1 convolutional operation.(e goal of
model training is to minimize the error between the actual
traffic speed y and the predicted one y, so the loss function is
mean absolute loss:

L � ‖y − y‖1. (12)

4. Experimental Analyses

To verify the effectiveness of AGCN-T, four sets of exper-
iments are designed to try to answer the following questions:

(1) Question 1: How is the overall traffic prediction
performance of AGCN-T as compared to various
baselines?

(2) Question 2: How do the designed different sub-
modules contribute to the model performance?

(3) Question 3: Is the PPS-based adjacency matrix
construction method effective compared with the
classic adjacency matrix construction method for
traffic networks?

(4) Question 4: From the perspective of running time,
how is the model efficiency of AGCN-T?

4.1. Experiment Preparation

4.1.1. Experimental Environment and Dataset. (e experi-
mental development environment is shown in Table 2.

(ree real network-scale traffic speed datasets are uti-
lized in the experiments.

PeMSD7 [15] collects traffic information from 228
monitoring stations in the California state highway system
during the weekdays fromMay through June of 2012. Traffic
speeds are aggregated every five minutes and normalized
with Z-Score as inputs.
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Seattle [28] is collected from inductive loop detectors
deployed on four connected freeways (I-5, I-405, I-90, and
SR-520) in the Greater Seattle area and contains traffic data
from 323 sensor stations over the entirety of 2015 at 5-
minute intervals.

Los-loop [13] collects 207 loop detectors and their traffic
speed fromMarch 1 to March 7, 2012, on the highway of Los
Angeles County. Traffic speeds are also aggregated every five
minutes.

We use 60% of the data as the training set, 30% as the
validation set, and 10% as the test set in strict chronological
order.

4.1.2. Evaluation Standard. To summarize various evalua-
tion indicators in the literature, the most commonly used are
the following: Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), and Root Mean Square Error
(RMSE), and their calculation formulas are shown below.

MAE �
1
n



n
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yi − yi


.

RMSE �

������������

1
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n

i�1
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2
.
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n

i�1

yi − yi

yi




× 100%.

(13)

where yi and yi are the actual observed value and predicted
one of node i respectively.

4.1.3. Baselines. We compare AGCN-T with three types of
baseline methods, namely, classical statistical models such as
ARIMA, DNN models that do not consider spatial infor-
mation such as FC-LSTM, and GNN models based on
spatial-temporal fusion such as T-GCN and ST-GCN,
DCRNN.

(1) ARIMA [2] predicts future data through a combi-
nation of statistical methods including autore-
gression, moving average, and difference calculations
on historical data.

(2) (e encoder and decoder in FC-LSTM [9] both
include multiple layers of LSTM and then use the
fully connected layer for prediction.

(3) T-GCN [13] uses GCN to learn the spatial charac-
teristics of the traffic network, uses GRU to learn the
temporal characteristics, and then fuses them for
prediction.

(4) (e core of ST-GCN [15] is two ST-Conv Blocks.
Each ST-Conv Block has two time-gated

convolutions and a spatial GCN in between to extract
temporal and spatial features, respectively.

(5) DCRNN [14] captures the spatial dependence by
bidirectional diffusion random walks and captures
the temporal dependence by an encoder-decoder
architecture with presampling.

4.1.4. Experimental Parameter Settings. We train our model
using an Adam optimizer with a learning rate of 0.0001. (e
dimension of AGCN-T is 512, and the number of heads in
the attention of the Transformer is 8. Dropout with P � 0.5 is
applied to the outputs of the graph convolution layer.

4.2. Evaluation Results and Analysis

4.2.1. Experiment 1: Prediction Performance of AGCN-T.
Aiming to answer Question 1, Experiment 1 compares
AGCN-Twith baselines and predicts the speed of each node
on the three data sets of PeMSD7, Seattle, and Los-loop in
the future 15 minutes, 30 minutes, 45 minutes, and 60
minutes respectively, the performance of each method is
indicated by MAE, MAPE, and RMSE. (e experimental
results are shown in Tables 3–5.

It can be seen intuitively from the figures that AGCN-T
has the best performance overall, while ARIMA has the
worst prediction effect. (is is because ARIMA is a tradi-
tional statistical method and has limited ability to model
complex traffic data with nonlinear characteristics. FC-
LSTM, like ARIMA, does not consider the spatial depen-
dence among nodes in the traffic network, so the prediction
ability is lower than the other four methods which consider
the spatial dependence. By performing bidirectional diffu-
sion graph convolution on the explicitly designed directed
matrix to consider the influence of directionality, DCRNN
outperforms ST-GCN and T-GCN. However, the influence
of directionality is complicated and hard to measure. In-
stead, AGCN-T uses PPS to capture the dynamical directed
spatial dependence in a data-driven manner to achieve
similar results with a simple undirected adjacent matrix, and
adopts Transformer to enhance the dynamical spatial de-
pendence, demonstrating the effectiveness of modeling.
Furthermore, compared with ST-GCN adopting three pairs
of spatial and temporal units, AGCN-T consistently out-
performs it with the combination of GCN and Transformer.

4.2.2. Experiment 2: Sub-Module Comparison. For Question
2, to evaluate the effects of modules including temporal
dependence extraction, spatial-dependence extraction, and
spatial-temporal fusion in AGCN-T, disassemble AGCN-T
to form four methods: AGCN-T-T, AGCN-T-A, AGCN-T-
G, and AGCN-T, while AGCN-T-T only implements the
temporal dependence extraction module in AGCN-T,

Table 2: Development environment.

Operating system Processor Memory (GB) Development environment Development language
Windows 10 Intel core i5-8250 CPU @ 1.60GHz 16 PyCharm Python3.5
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AGCN-T-A implements the temporal extraction module
and the global spatial dependence extraction submodule,
and AGCN-T-G implements the temporal extraction
module and the local spatial dependence extraction sub-
module. AGCN-Tcontains all modules. Tables 6–8 show the
prediction performance of each method.

Observing Tables 6–8, it can be seen that with the in-
crease in prediction time, the overall performance of AGCN-

T is always better than the other three variants, which shows
that the comprehensive use of all modules can achieve the
best prediction effect. At the same time, the prediction
performance of AGCN-T-G and AGCN-T-A is better than
AGCN-T-T, indicating the importance of considering
spatial dependence extraction; the overall prediction effect of
AGCN-T-G and AGCN-T-A is similar, while AGCN-T-A is
better on PeMSD7 and AGCN-T-G is slightly better on Los-

Table 3: Prediction performance of each method on PeMSD7.

Time (min) Evaluation Metrics
PeMSD7

ARIMA FC-LSTM T-GCN ST-GCN DCRNN AGCN-T

15
MAE 9.3507 9.0169 6.4001 6.3835 6.1991 4.3097

MAPE (%) 12.6691 12.0103 10.5345 10.3706 10.2325 10.0922
RMSE 9.9915 9.8204 7.3981 6.8004 6.1723 4.8063

30
MAE 9.1279 9.4351 7.2408 6.2026 6.2422 4.2688

MAPE (%) 13.3908 12.4609 11.2786 10.5237 10.3404 10.1716
RMSE 9.7209 9.6602 7.7804 6.6337 6.6007 4.7951

45
MAE 9.3672 9.1027 7.4326 7.0218 6.4205 4.2936

MAPE (%) 13.0813 12.9773 11.3014 11.1254 10.1624 10.0164
RMSE 10.8952 9.6274 8.1323 7.3609 6.9523 4.7809

60
MAE 10.1145 9.2512 8.1004 7.3711 7.0213 4.4184

MAPE (%) 13.8922 12.6821 11.2004 11.1055 11.3105 10.3243
RMSE 10.9011 9.8308 8.5835 7.6606 8.9028 4.9245

Table 4: Prediction performance of each method on Seattle.

Time (min) Evaluation Metrics
Seattle

ARIMA FC-LSTM T-GCN ST-GCN DCRNN AGCN-T

15
MAE 8.5586 7.3821 6.2605 6.1344 6.1285 4.2835

MAPE (%) 15.3808 14.6208 13.4823 12.3895 12.0035 12.5774
RMSE 8.8708 8.4208 6.7457 6.6926 6.2604 4.6178

30
MAE 8.4039 7.4755 6.3435 6.6204 6.4912 4.3161

MAPE (%) 16.2407 15.5821 14.6907 14.1455 12.4211 12.0112
RMSE 8.7053 7.8238 6.7307 6.9121 6.8134 4.7331

45
MAE 9.3711 8.1826 6.3942 6.0143 6.2233 4.2224

MAPE (%) 16.7621 15.6608 13.3916 13.2402 13.1903 11.9529
RMSE 9.6308 9.6313 6.9763 6.6647 6.7311 4.6066

60
MAE 9.3907 8.0623 7.0564 7.2304 7.4671 4.4373

MAPE (%) 16.7206 15.3104 14.4216 13.1615 13.5909 12.4127
RMSE 10.3506 9.1268 8.4527 7.9032 7.9124 4.9595

Table 5: Prediction performance of each method on Los-loop.

Time (min) Evaluation Metrics
Los-loop

ARIMA FC-LSTM T-GCN ST-GCN DCRNN AGCN-T

15
MAE 8.6587 7.5821 6.5607 6.0342 6.3283 5.5518

MAPE (%) 15.9802 14.9203 15.9824 14.6891 14.0238 15.2011
RMSE 8.3708 8.9205 8.2458 8.9921 8.5604 8.1386

30
MAE 8.9032 7.9756 6.7432 6.5203 6.0904 5.4398

MAPE (%) 16.3402 15.9821 15.9903 14.3457 14.0214 15.0389
RMSE 8.2057 7.9231 8.2459 8.0112 8.2137 8.0911

45
MAE 9.8713 8.9825 6.7943 6.0346 6.9239 5.4472

MAPE (%) 16.8629 15.7609 15.5914 15.3409 14.5908 15.2411
RMSE 9.4309 9.4312 8.9403 8.7621 8.9316 8.1582

60
MAE 9.9908 8.4623 7.3568 7.0309 7.4451 5.5311

MAPE (%) 16.9203 15.3102 15.9213 15.2652 15.5809 15.0778
RMSE 10.4507 9.0238 9.9522 8.7012 8.9128 8.1084
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loop, indicating that for traffic flow prediction, both local
and global spatial dependencies are valuable.

4.2.3. Experiment 3: Effect of PPS. In the construction of the
adjacency matrix, AGCN-Tuses PPS instead of the distance
between loop detectors (a.k.a. Adj) or Pearson correlation
between traffic sequences (a.k.a. Cov). To answer Question 3
and to study the influence of different spatial structure
representation methods on the prediction effect, Experiment
3 verifies the effect of the PPS by comparing the prediction
effect through changing the input of GCN in AGCN-T to the

adjacency matrix constructed by Adj, Cov and PPS, re-
spectively. (e prediction results are shown in Table 9.

It can be seen from Table 9 that after the three data sets
of PeMSD7, Seattle, and Los-loop are verified that the
adjacency matrix constructed by PPS enables AGCN-T to
achieve the best performance. (e adjacency matrix con-
structed based on the distance of the latitude-longitude
pair is only suitable for situations where there is a fixed
spatial-temporal relationship between loop detectors and
cannot reflect the dynamic influences of traffic flows. On
the contrary, Pearson correlation and PPS are suitable for
expressing the dynamic influence among loop detectors

Table 6: Performance of variants of AGCN-T on PeMSD7.

Time (min) Evaluation metrics AGCN-T-T AGCN-T-A AGCN-T-G AGCN-T

15
MAE 5.6168 4.5984 4.7472 4.4256

MAPE (%) 14.2441 11.3237 11.8711 10.8202
RMSE 8.3871 7.1304 5.7158 6.7791

30
MAE 5.6118 4.5819 4.7474 4.4363

MAPE (%) 14.1983 11.2825 11.7499 10.7861
RMSE 8.4001 7.2551 5.8557 5.5786

45
MAE 5.6667 5.6095 4.7581 6.9967

MAPE (%) 14.3808 11.7872 11.8599 10.8902
RMSE 8.4702 7.3045 6.8202 6.8397

60
MAE 5.7903 4.7118 5.2767 6.8753

MAPE (%) 14.6821 11.9023 12.9301 11.7486
RMSE 8.6377 7.7448 7.8442 7.1922

Table 7: Performance of variants of AGCN-T on Seattle.

Time (min) Evaluation metrics AGCN-T-T AGCN-T-A AGCN-T-G AGCN-T

15
MAE 5.4521 4.2821 4.5121 3.9826

MAPE (%) 17.4125 12.3318 13.5921 11.1394
RMSE 8.2782 6.3716 6.8016 5.9907

30
MAE 5.4356 4.2468 4.5951 4.0206

MAPE (%) 17.8181 12.1546 13.4543 11.2235
RMSE 8.2469 6.3168 6.8143 6.0103

45
MAE 5.4483 4.2385 4.6619 4.2175

MAPE (%) 17.8553 12.1304 13.6041 11.2301
RMSE 8.2661 6.3378 6.8343 6.1332

60
MAE 5.5267 4.3451 4.7084 4.3032

MAPE (%) 18.0679 12.4229 13.9697 11.6223
RMSE 8.3715 6.4904 7.0653 6.1932

Table 8: Performance of variants of AGCN-T on Los-loop.

Time (min) Evaluation metrics AGCN-T-T AGCN-T-A AGCN-T-G AGCN-T

15
MAE 6.4086 5.6626 5.4912 5.5518

MAPE (%) 17.8962 15.5348 15.5348 15.2011
RMSE 9.4501 8.3365 8.2559 8.0986

30
MAE 6.4682 5.6977 5.4644 5.4398

MAPE (%) 18.0092 15.6929 15.6609 15.0389
RMSE 9.5057 8.3926 8.2992 8.1511

45
MAE 6.4774 5.7609 5.5355 5.4472

MAPE (%) 18.0913 15.8714 15.6214 15.2411
RMSE 9.5265 8.4556 8.4143 8.1982

60
MAE 6.5484 5.7511 5.6634 5.5311

MAPE (%) 18.3326 16.8024 15.9994 15.0778
RMSE 9.6421 8.5178 8.4268 8.2084
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because they can reflect joint change degree of speed
among detectors. However, Pearson correlation tends to
extract symmetrical and linear influences, which do not
conform to the asymmetric and nonlinear nature of traffic
flow. PPS reflects the ability of one node to predict another
node, which is not affected by symmetry requirements and
has no linear correlation restrictions, so the constructed
adjacency matrix is more in line with the characteristics of
traffic flow.

4.2.4. Experiment 4: Comparison of Efficiency. Aiming to
Question 4, we compare the computation cost of AGCN-T
with its baselines. Figure 3 gives the running time of each
method on PeMSD7.

As can be seen from Figure 3, due to the use of the
statistical method, the efficiency of ARIMA is significantly
higher than that of deep learning-based methods and GNN-
based methods. Compared with ST-GCN and DCRNN,
AGCN-T has doubled its operating efficiency. (is is be-
cause AGCN-T generates multistep predictions in one run
while the other two have to produce the results conditioned
on previous predictions. FC-LSTM and T-GCN adopt RNN
technology which requires iterative training and learning, so
their computational efficiency is lower than that of Trans-
former, which calculates multistep predictions in one run.

In summary, after the comparison of the above four sets
of experiments, AGCN-Tproposed in the paper has a certain
improvement in the multistep traffic prediction, and also has
obvious advantages in prediction efficiency.

5. Conclusions

In this paper, a novel traffic prediction model AGCN-T is
proposed. A matrix construction method PPS is used to
identify the asymmetric and nonlinear relationship in data
sets. AGCN-Tcan dynamically model spatial dependency by
GCN and spatial Transformer and temporal dependency by
temporal Transformer. Four sets of experiments on three
real datasets demonstrate the superior performance of
AGCN-T in multistep prediction. Based on AGCN-T, an
experimental platform for traffic flow prediction is realized,
and it can be used in practice after expansion and
optimization.

However, AGCN-T only considers the traffic data itself,
ignoring the impact of other related information such as
traffic events such as accidents [29] and so on. Multisource
data will be the direction of data sources for traffic flow
prediction in the future. How to effectively use these data for
more accurate modeling will be continually studied in the
follow-up work for traffic prediction on multisource data.
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