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Blind search for available parking space is accountable for most traffic congestion, accident, and pollution in cities, which severely
impact people’s life. Parking management based on an online smart parking system is practical to alleviate parking problems in
which parking allocation is the core. However, existing researches are weak at satisfying allocation effect and speed simultaneously
when solving large-scale dynamic parking allocation problem. To address this problem, we firstly construct an online “Collection-
Allocation-Response” smart parking system (CARSP) to offer parking services to users and rent parking spaces from owners so as
to obtain revenue for system managers. We then propose a novel Doubly Periodic Rolling Horizon allocation approach (DPRH)
that circularly conduct allocation within a short period and reallocation within a long period. We formulate a narrow allocation
model (without reallocation) and broad allocation model (with reallocation), both of which are binary integer programming
models with the objective of maximizing system integrated benefit. We design seven performance metrics to evaluate the overall
allocation effect and speed of CARSP based on DPRH. According to the three-day district-level instance in Beijing, CARSP based
on DPRH performs excellently in balancing allocation effect and speed. (is study is meaningful for constructing and optimizing
an online smart parking system.

1. Introduction

With the swift development in urbanization and the great
growth in living standards, the conflict between the in-
creasing parking demands and scarce parking resources is
becoming severer [1]. Besides parking resource shortage,
inefficient parking resource usage also leads to parking
difficulties, especially the increasing amounts of the blind
search for available parking. Constrained by the limited land
space in the urban area, it is difficult to solve the parking
problem solely by constructing more parking resources.
(erefore, how to efficiently utilize the limited parking
resources has become a significant issue.

In practice, more and more commercial companies
worldwide have built online smart parking systems with the

progress in Internet and communication technology, such as
Airparking (China), Pavemint (the United States), and
Nokisaki Parking (Japan). Applications of the above smart
parking systems indicate that appropriate dynamic alloca-
tion approaches are the key to effectively maximizing system
integrated benefit and maintaining allocation speed.

Most online smart parking systems adopt First-Book-
First-Serve (FBFS), and some studies proposed event-driven
allocation approaches based on FBFS. In FBFS, each un-
allocated demand has a unique allocation priority, and each
allocation process uses all unallocated resources to match
one unallocated demand at demand submission time.
Obviously, FBFS has an extremely high allocation speed
since each demand is allocated immediately. However,
FBFS sacrifices the allocation effect since each demand is
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allocated independently and myopically without any overall
planning.

As the research scale expands, researchers recognize that
a large number of demands will be submitted to the system
concurrently, while FBFS will result in unnecessary waiting
of users. To improve the allocation effect, researchers pro-
posed time-driven allocation approaches based on Rolling
Horizon (RH). Based on Rolling Horizon allocation ap-
proaches, parking system collects demands in each alloca-
tion interval and allocates them simultaneously at the end
time point of the interval. Demands participating in each
allocation have the same priority. Naturally, unallocated
demands could collectively participate in each allocation
time point to achieve a better allocation effect. (e unal-
located demands refer to both newly submitted and pre-
viously submitted but unallocated demands.

On this basis, some researchers noticed that users have
different demand submission preferences: some prefer
submitting demands a long time in advance before the trip,
while some prefer submitting demands a short time in
advance during the trip. Since the parking demands and
resources are submitted to the system dynamically as time
rolls on, the systemmanagers can reallocate the allocated but
unoccupied demands and meanwhile allocate the unallo-
cated demands at each allocation time point to improve the
resource utilization so as to improve the system’s integrated
benefit. (e allocated but unoccupied demands and unal-
located demands are collectively regarded as unoccupied
demands.

(e allocation is called narrow allocation (NA for short)
when only unallocated demands and resources participate,
while the allocation is called broad allocation (BA for short)
when unoccupied demands and resources participate. In
other words, NA is allocation, while BA is the combination
of allocation and reallocation. BA is practical and able to
optimize the allocation effect as long as the system promises
that these allocated but unoccupied demands can be suc-
cessfully reallocated in each BA. (erefore, a rolling horizon
allocation approach conducting NA at each allocation time
point is Rolling Horizon Narrow Allocation (RHN), and a
rolling horizon allocation approach conducting BA at each
allocation time point is Rolling Horizon Broad Allocation
(RHB).

Under the same condition, i.e., the same overall time
horizon, allocation period, demands and resources, RHN
and RHB have different allocation effects and allocation
speeds. In each allocation, the scales of demands and re-
sources in RHN are smaller than that in RHB. (us, RHN
leads to higher allocation speed, while RHB leads to a better
allocation effect. Especially, the larger the research scale is,
the longer the allocation period is, and the closer the parking
peak is, the larger the demand and service scale difference is,
hence leading to the greater allocation effect gap and allo-
cation speed gap between RHN and RHB. In this way, both
RHN and RHB have unique drawbacks.

In this paper, we firstly present an online smart parking
system named CARSP to imply demands and resources
collection, allocation, and response in the dynamic par-
king environment. CARSP not only fully considers the

heterogeneity of demands and resources but also achieves
accurate allocation to parking spaces rather than parking
facilities, which are different from most existing smart
parking systems.

To mitigate the drawbacks of FBFS, RHN, and RHB, we
creatively propose the Doubly Periodic Rolling Horizon
allocation approach that circularly conduct NA within a
short period and BA within a long period. DPRH is a brand
new attempt at a dynamic allocation approach since it
combines the superiorities of RHN and RHB, i.e., optimizing
allocation effect and guaranteeing allocation speed. NA and
BA models are formulated to optimize the integrated benefit
for both system managers and CPLEX solvers are applied to
solve the model at each allocation time point to obtain the
optimal solution.

(e rest of this study is structured as follows. Section 2
reviews the relevant studies. In Section 3, the structure and
reaction scheme of “Collection-Allocation-Response” smart
parking system are presented. In Section 4, the novel Doubly
Periodic Rolling Horizon allocation approach is described.
Meanwhile, the narrow and broad allocation models are
formulated. In Section 5, seven performance metrics are
designed to evaluate the allocation effect and speed.
Meanwhile, a three-day district-level instance in Beijing,
China, is studied. Section 6 gives the conclusions.

2. Literature Review

In existing studies on dynamic parking allocation problems,
some focused on proposing event-driven allocation ap-
proaches. Raichura and Padhariya [2] proposed a smart
parking allocation system containing a static allocation
process and a dynamic allocation process. (e dynamic
allocation process was event-driven, which meant only when
a user arrived at the allocated parking facility earlier would
the user be reallocated to a more suitable parking facility.
Nugraha and Tanamas [3] proposed a dynamic allocation
subsystem based on an event-driven approach to reallocate
FBFS results when trigger events happen. To maximize the
user’s comfort level and the owner’s revenue simultaneously,
Hassija et al. [4] proposed an event-driven parking space
allocation framework based on the Virtual Voting and
Adaptive Pricing Algorithm.

To obtain better allocation effects, some studies focused
on proposing time-driven allocation approaches to allocate
parking demands and parking services group-by-group at
each allocation time point, in which RHN, RHB, and static
allocation models are improved.

2.1. Developments on Rolling Horizon Narrow Allocation.
In the studies on time-driven allocation approaches based on
RH, some focused on Narrow Allocation and proposed a
rolling horizon narrow allocation approach.

Zou et al. [5] firstly formulated a static allocation model
from the perspective of society. Afterward, a dynamic model
with the objective of maximizing social welfare was for-
mulated and solved at each decision time interval as time
rolled on. Both static and dynamic models were improved
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with a payment scheme to align users’ selfish intents with the
system managers’ intents. Lei and Ouyang [6] regarded the
problem as a Stackelberg leader-follower game and for-
mulated a multiperiod bilevel model. (e upper level de-
cided the dynamic parking price of each parking facility and
aimed at maximizing system profits, while the lower level
decided the dynamic allocation and aimed at minimizing
users’ disutility. An approximate dynamic programming
approach was proposed to solve the model at each decision
time point. He et al. [7] proposed an RHN to solve the
dynamic parking allocation problem. A binary integer
programming model with the objective of minimizing users’
costs was formulated. At each decision time point, the static
model was solved by ILOG CPLEX. Yan et al. [8] focused on
the dynamic parking allocation problem under uncertain
demand and supply. Based on RHN, a mixed-integer pro-
gramming model with the objective of minimizing users’
costs was formulated and solved by an iterative two-stage
heuristic algorithm.

2.2. Developments on Rolling Horizon Broad Allocation.
In the studies on time-driven allocation approaches based on
RH, some focused on Broad Allocation and proposed a
rolling horizon broad allocation approach (RHB for short).

Geng and Cassandras [9] and Geng and Cassandras [10]
firstly defined users’ costs function as the weighted sum of
the total monetary costs and walking distance between the
parking space and actual destination. (en mixed-integer
linear programming models with the objective of mini-
mizing users’ costs were formulated. Afterward, the RHB
was proposed to allocate users including unallocated users
and allocated users at each decision time point. However,
users who were away from their destination were kept in a
waiting queue and forbidden to be allocated, which not only
increased users’ waiting costs but also failed to respond
timely to users on providing parking guarantees. Based on
the above studies, Kotb et al. [11] combined dynamic and
static parking space allocation. A mixed-integer program-
ming model aiming at minimizing users’ costs was for-
mulated, in which users’ costs function was similar to the
above studies. Under RHB, users in the dynamic reservation
would participate in BA at each decision time point until
they reached destination zones, while users in static reser-
vation would not participate in subsequent allocation once
they were successfully allocated. Mladenović et al. [12]
proposed a four-layer RH framework to tackle the real-time
updates of parking demands and parking spaces. During
each time interval, users that had not arrived at their parking
will be reallocated. A binary integer programming model
aiming to minimize users’ costs was formulated. A heuristic
algorithm and an exact algorithm were implied to solve the
allocation model at each decision time point. Zhao et al. [13]
researched the large-scale parking allocation problem in a
dynamic parking environment of mixed automated and
human-driven vehicles. A mixed-integer programming
model aiming at minimizing users’ costs was formulated and
solved by Monte Carlo Tree Search at each decision time
point.

2.3. Improvements in Static Allocation Models. Studies fo-
cused on improving static allocation models are from the
perspectives of system managers, users, and society.

From the perspective of system managers, the objective
of allocation models was generally maximizing system
profits. Xu et al. [14] researched the private parking space
sharing problem with the market design theory and ex-
tended the parking space allocation mechanism with money
flow. Static allocation mechanisms named TTCD and PC-
TTCC for lessor-like agents and lessee-like agents, respec-
tively, were proposed. Yang et al. [15] supposed the system
received parking supply and demand before a certain time
and formulated a binary integer programmingmodel aiming
at maximizing system profits. User costs containing walking
time cost and rejection cost were also considered and
transferred into penalties for the system managers in the
objective function. Han et al. [16] focused on the sharing of
residential parking spaces and the improvements in parking
resource utilization. A binary integer programming model
with the objective of maximizing system profits was for-
mulated. Ning et al. [17] focused on the private shared
parking spaces allocation and formulated a binary integer
programming model aiming at maximizing system profits,
in which costs for failing allocating demands were also
considered in the objective function as the penalty for the
system managers. Jiang and Fan [18] focused on the users’
parking unpunctually and formulated a binary stochastic
linear programming model with the objective of maximizing
system profits. (e stochastic programming model was then
transformed into an expectation model by formulating the
parking probability function of users and owners.

From the perspective of users, the objective of allocation
models was generally minimizing user costs. When con-
structing user cost functions, traveling time for parking,
walking distance or walking time from parking facilities to
destinations, and parking price were major considerations.
Arellano-Verdejo and Alba [19] focused on the available
parking space allocation in a city according to users’ pref-
erences. (e user costs function was formulated by com-
bining the driving distance with the preference deviation
distance. (e driving distance was the distance between
users’ current positions and the allocated parking spaces,
and the preference deviation distance was the distance be-
tween the allocated parking spaces and the parking spaces
desired by users. Meanwhile, an evolutionary algorithm
based on Steady-State Evolutionary Algorithm was designed
to solve the problem. To solve the problem brought by
unpunctuality, Li et al. [20] formulated a shared parking
allocation optimization model considering user’s default,
which possibilities were measured by credit value. (e
objective was to maximize the shared parking rate for all
users. (e problem was transformed into a vertex coloring
problem and solved by an improved ant colony algorithm.

From the perspective of society, the objective of allo-
cation models was generally maximizing shared parking
resource utilization. Shao et al. [21] formulated an alloca-
tion model to embrace private residential parking space
sharing between residents and public users. (e objective of
the model was to maximize resource utilization under given
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demand and supply time windows and preset parking
prices.

Some researchers considered all three perspectives, and
therefore, formulated allocation models with multiple ob-
jectives. Jiang et al. [22] constructed a two-stage method to
allocate private parking spaces. �e �rst stage screened the
available parking spaces according to demand walking
distance and parking price.�e second stage allocated spaces
to demands by a formulated multiobjective allocation model
aiming to maximize users’ satisfaction, private idle parking
space owners’ satisfaction, and the system pro�ts. �emodel
was solved by an improved nondominated sorting genetic
algorithm II (INSGA II).

Table 1 shows the summary of the studies on rolling
horizon allocation approaches in smart parking systems, in
which this study is included.

Apparently, existing studies on rolling horizon alloca-
tion approaches were either RHN or RHB. Few had pro-
posed a rolling horizon allocation approach that integrated
the superiorities of RHN and RHB.

3. “Collection-Allocation-Response” Smart
Parking System

In the dynamic parking environment, “Collection-Alloca-
tion-Response” smart parking system (CARSP for short)
collects enough demand and service data at one time, al-
locates demands and services without unnecessary inter-
action processes, and responds to users and owners with
necessary noti�cations. Under this consideration, CARSP is
composed of a collection center (CC for short), allocation
center (AC for short), and response center (RC for short).
CC and RC are responsible for data transmission through
human-machine interaction in the front end, while AC is
accountable for data storing, allocating, and updating in the
back end.�e framework of CARSP is shown in Figure 1. All
notations of this paper are summarized in Table 2.

3.1. Collection Center

3.1.1. Demand Collection. CC collects parking demands
from either leisure or urgent users. Leisure users refer to

users with a long planning time. Urgent users refer to users
with a short planning time. Planning time is the duration
between demand submission time and demand start time.

�e overall time horizon is discretized into a set of
parking time intervals with length τ0. Each user can submit
several parking demands. Each parking demand corre-
sponds to a unique demand time window composed of
continuous parking time intervals.

Each parking demand i ∈ Si 1, 2, . . . , I{ } contains the
following information: submission time tPi , time window
[tSi , tEi ], destination location [longi, lati], the maximum ac-
ceptable walking distance dmax

i , the maximum acceptable
parking price pmax

i , and the maximum acceptable waiting
time wmax

i .

3.1.2. Service Collection. CC collects parking spaces in either
public or private parking facilities from owners. Public
parking facilities refer to the parking facilities that are fully
open to the public, such as the public parking garages and
the curbside parking spaces. Private parking facilities refer to
the parking facilities that are personal belongings, such as
the residential parking garages. In a certain area, both public
and private parking facilities compose the set of parking
facilities Sf 1, 2, . . . , F{ }.

Based on the renting schemes, parking spaces are clas-
si�ed into short-term renting and long-term renting parking
spaces. Owners can choose either renting scheme according

Table 1: Summary of the studies on rolling horizon allocation approach in the online smart parking system.

Study Participants Allocation approach
Case study

Scale (total demands-total spaces) Time horizon Allocation period
Zou et al. [5] U-S RHN 200-100 20 periods NM
Lei and ouyang [6] U-S RHN NM-295 360min 30min
He et al. [7] U-S RHN 1500-1000 1080min 3 min
Yan et al. [8] U-S-O RHN 300-200 720min 10min
Geng and cassandras [9] U-S RHB NM-30 300min 10/15/20/25/30 s
Geng and cassandras [10] U-S RHB NM-2611 3000min 1min
Kotb et al. [11] U-S RHB NM-112 720min NM
Mladenović et al. [12] U-S RHB 1000-480 1440min 1min
Zhao et al. [13] U-S RHB 6944-NM 1667min 10 s
�is study U-S-O DPRH 31494-1800 4320min 0.5/1/5/10/15min
Note. U: users; S: system managers; O: owners; RHN: rolling horizon narrow allocation approach; RHB: rolling horizon broad allocation approach; DPRH:
doubly periodic rolling horizon allocation approach; NM: not mentioned.

New demand

New
demand

Demand
lists

Users

Collection
Center

Allocation
Center

Response
Center

Service
lists

Owners
New service Notifications

New
service

Notifications

Figure 1: Framework of CARSP.
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Table 2: Notations of this paper.

Set Description
St 1, 2, . . . , T{ } (e overall time horizon
SA

t T1
A, T2

A, . . . , TA􏼈 􏼉 (e set of allocation time points
SB

t T1
B, T2

B, . . . , TB􏼈 􏼉 (e subset of BA time points
SN

t T1
N, T2

N, . . . , TN􏼈 􏼉 (e subset of NA time points
Si 1, 2, . . . , I{ } (e set of total parking demands
Sj 1, 2, . . . , J{ } (e set of total parking services
Sf 1, 2, . . . , F{ } (e set of parking facilities
SU

i (t) (e unallocated parking demand set at time point t

SUN
i (t) (e newly submitted parking demand set at time point t

SUP
i (t) (e previously submitted (but unallocated) parking demand set at time point t

SA
i (t) (e allocated (but not occupied) parking demand set at time point t

SAR
i (t) (e arriving parking demand set at time point t

SARN
i (t) (e allocated but not arriving parking demand set at time point t

SAP
i (t) (e approaching parking demand set at time point t

SAPN
i (t) (e allocated but not approaching parking demand set at time point t

SO
i (t) (e occupied (but not terminated) parking demand set at time point t

ST
i (t) (e terminated parking demand set at time point t

SF
i (t) (e failed parking demand set at time point t

SN
i (t) (e NA parking demand set at time point t

SB
i (t) (e BA parking demand set at time point t

SB
i (t) (e unallocated parking service set at time point t

SA
j (t) (e allocated (but not occupied) parking service set at time point t

SAR
j (t) (e arriving parking service set at time point t

SARN
j (t) (e allocated but not arriving parking service set at time point t

SAP
j (t) (e approaching parking service set at time point t

SAPN
j (t) (e allocated but not approaching parking service set at time point t

SO
j (t) (e occupied (but not terminated) parking service set at time point t

ST
j (t) (e terminated parking service set at time point t

SN
j (t) (e NA parking service set at time point t

SB
j (t) (e BA parking service set at time point t

Parameter description
tP
i (e submission time of parking demand i

tR
i (e response time of parking demand i

[tS
i , tE

i ] (e time window of parking demand i

[longi, lati] (e destination location of parking demand i

dmax
i (e maximum acceptable walking distance of parking demand i

pmax
i (e maximum acceptable parking price of parking demand i

wmax
i (e maximum acceptable waiting time of parking demand i

[tS
jtE

j ] (e time window of parking service j

[longj, latj] (e parking space location of parking service j

pj (e parking price of parking service j

rj (e short-term renting price of parking service j 0 - if parking service j is long-term renting
rj
′ (e long-term renting price of parking service j 0 - if parking service j is short-term renting

q (e compensation price
τ0 (e length of parking time interval
τ (e allocation period
τ′ (e BA period
TAR (e time threshold to determine whether demands and services are arriving
TAP (e time threshold to determine whether demands and services are approaching
IN(t) (e size of NA parking demand set at time point t

IB(t) (e size of BA parking demand set at time point t

Ij (e number of parking demands served by parking space j

dij

(e walking distance between parking space location of parking service j and destination location of parking
demand i

cij

(e time window relationship between parking demand i and parking service j 1 - if the time window of parking
demand i is within that of parking service j 0 - otherwise

cii′
(e time window relationship between parking demand i and parking demand i′ 1 - if the time window of parking

demand i is not in conflict with that of parking demand i′ 0 - otherwise

bjf

(ebelonging relationship between parking service j and parking facility f 1 - if parking service j belongs to parking
facility f 0 - otherwise
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to their situations. �ough system managers totally decide
the parking prices, owners can mainly decide the renting
prices.

For each short-term renting parking space, the owner
provides short-term usage authority to CARSP according to
real-time parking arrangements. For example, commuters
can provide their own parking spaces to CARSP for nine-to-
�ve sharing on weekdays. Under the short-term renting
price, the rent will be paid once the parking space is occupied
for a speci�c period.

For each long-term renting parking space, the owner
provides long-term usage authority to CARSP according to
historical parking characteristics. For example, shopping
mall managers can provide long-term idle parking spaces to
CARSP for twenty-four-hour sharing. Under the long-term
renting price, the rent will be paid in advance whether the
parking space is occupied or not.

Each owner can submit several parking spaces, and each
parking space can provide several parking services. Each
parking service corresponds to a unique service time win-
dow composed of continuous parking time intervals.

Figure 2 shows a typical example of one parking space
providing two parking services.�e Time window of parking
space [10: 30, 12: 00] is divided into eighteen parking time
intervals with a length of 5minutes. Time window of parking
service j is [10: 30, 11: 00], and the time window of parking
service j′ is [11: 30, 12: 00]. �e parking space is not for
sharing in the time window [11: 00, 11: 30].

Each parking service j ∈ Sj 1, 2, . . . , J{ } contains the
following information: time window [tSj, tEj ], parking space
location [longj, latj], parking price pj, short-term renting
price rj , and long-term renting price rj′.

3.2. Allocation Center

3.2.1. Demand and Service Storing. Once CC collects a
parking space or a parking demand, AC receives the data
from CC immediately. All data is stored in AC by category.

At time point t, the demand data stored in AC includes
the unallocated parking demand set SUi (t), the allocated (but

not occupied) parking demand set SAi (t), the occupied (but
not terminated) parking demand set SOi (t), the terminated
parking demand set STi (t) , and the failed parking demand
set SFi (t). Furthermore, the unallocated parking demand set
SUi (t) includes both the newly submitted parking demand set
SUNi (t) and the previously submitted (but unallocated)
parking demand set SUPi (t). Meanwhile, the allocated (but
not occupied) parking demand set SAi (t) includes both the
arriving parking demand set SARi (t) and the allocated but not
arriving parking demand set SARNi (t). Given an appropriate
time threshold TAR, parking demand i in SAi (t) belongs to
the arriving parking demand set SARi (t) if tSi ≤ t + TAR, while
it belongs to the allocated but not arriving parking demand
set SARNi (t) otherwise.

Simultaneously, the service data stored in AC includes
the unallocated parking service set SUj (t), the allocated (but
not occupied) parking service set SAj (t), the occupied (but
not terminated) parking service set SOj (t), and the termi-
nated parking service set STj (t). Moreover, the allocated (but
not occupied) parking service set SAj (t) includes both the
arriving parking service set SARj (t) and the allocated but not
arriving parking service set SARNj (t). Given the same time
threshold TAR, parking service j in SAj (t) belongs to the
arriving parking service set SARj (t) if tSj ≤ t + TAR and the
allocated but not arriving parking service set SARNj (t)
otherwise.

Inspired by Spectrum, a parking spectrum graph is in-
troduced to demonstrate the transition of all demand and
service sets. In Figure 3, except for the failed parking demand
set SFi (t), the further to the left, the more necessary demands
and services are to be allocated. Conversely, the further to

11:3010:30
Parking

space

Parking service j Parking service j′Parking time interval τ0

11:00 12:00

Figure 2: Example of one parking space providing two parking services.

Table 2: Continued.

Set Description
ai �e current status of passenger demand i 1 - if passenger demand i is arriving 0 - otherwise

x̃ij
�e last allocation result between parking demand i and parking service j 1 - if parking service j was allocated to

parking demand i 0 - otherwise
Variable description

xij
�e allocation result between parking de mand i and parking service j 1 - if parking service j is allocated to parking

demand i 0 - otherwise.

Si
F(t) Si

UP(t) Si
UN(t) Si

ARN(t)

Si
U(t)

Sj
ARN(t)Sj

U(t)

Si
AR(t)

Si
A(t)

Sj
AR(t)

Sj
A(t)

Si
T(t)

Sj
T(t)

Si
0(t)

Sj
0(t)

Figure 3: Smart parking spectrum graph.

6 Journal of Advanced Transportation



the right, the more parking details are required by relevant
users and owners.

3.2.2. Demand and Service Allocating. At each allocation
time point, AC selects specific demand and service to
participate in the allocation process.

Parking service j can serve parking demand i if the
following three criteria are achieved. Firstly, parking price pj

is within the maximum acceptable parking price pmax
i .

Secondly, walking distance dij (calculated by destination
location [longi, lati] and parking space location [longj, latj])
is within the maximum acceptable walking distance dmax

i .
(irdly, time window [tS

i , tE
i ] is within the time window

[tS
j, tE

j ]. On this basis, parking service j can serve parking
demand i′ at the same time if time window [tS

i′ , tE
i′] is not in

conflict with time window [tS
i , tE

i ].
Figure 4 shows a typical example of one parking service

serving two parking demands. Time window of parking
service j[10: 00, 11: 00] is divided into twelve parking time
intervals with length of 5 minutes. Time window of parking
demand i is [10: 00, 10: 30], and time window of parking
demand i′ is [10: 45, 11: 00]. Parking demand i has no time
conflicts with parking demand i′ so that they can be allocated
to parking service j simultaneously.

It is preset that users cannot cancel or modify parking
demands and owners cannot cancel or modify parking
services. (at is, users will accept the parking services al-
located by CARSP, and owners will accept the parking
demand allocated by CARSP.

3.2.3. Demand and Service Updating. Once the allocation
process is complete, AC updates demand and service im-
mediately according to the allocation results.

Unallocated parking demand i will be moved to SUPi (t) to
wait for the next allocation process if waiting time t − tP

i is
within the maximum acceptable waiting time wmax

i . Unal-
located parking demand i will be moved to SF

i (t) and added
to failed demand list if waiting time t − tP

i exceeds the
maximum acceptable waiting time wmax

i . Allocated parking
demand iwill be moved to SAR

i (t) (if tS
i ≤ t + TAR ) or SARN

i (t)

(otherwise) and added to the allocated demand list.
Unallocated parking service j will be moved to SU

j (t) to
wait for the next allocation process. Allocated parking
service j will produce Ij totally allocated parking services
and at most Ij + 1 totally unallocated parking services. All
totally allocated parking services will be moved to SAR

j (t) (if
tS
j ≤ t + TAR) or SARN

j (t) (otherwise). All totally unallocated

parking services will be moved to SU
j (t) to wait for the next

allocation process.
Figure 5 shows a typical example of one parking service

producing several parking services. Since parking service j

serves parking demand i and parking demand i′, it produces
two totally allocated parking services and, at most, three
totally unallocated parking services. (ere are eight cases
due to the different relationships of time windows [tS

j, tE
j ],

[tS
i , tE

i ], and [tS
i′ , tE

i′]. Parking service j produces two parking
services in Case 1. Parking service j produces three parking
services in Cases 2, 3, and 4. Parking service j produces four
parking services in Cases 5, 6, and 7. Parking service j

produces five parking services in Case 8.
(e overall time horizon is discretized into a set of time

units St 1, 2, . . . , T{ }. Each time unit corresponds to its end
time point, so that St is also a set of time points. At each time
point, AC also updates demand and service periodically.

Parking demand i in SARN
i (t) will be moved to SAR

i (t)

and added to arriving demand list if tS
i � t + TAR. Parking

demand i in SAR
i (t) will be moved to SO

i (t) and added to the
occupied demand list if tS

i � t. Parking demand i in SO
i (t)

will be added to leaving demand list if tE
i � t + TAR. Parking

Parking service j

10:00 11:00

10:00 11:0010:4510:30

Parking demand i Parking demand i′

Figure 4: Example of one parking service serving two parking demands.

Parking service j

Parking demand i Parking demand i′

Parking demand i′Parking demand i

Parking demand i Parking demand i′

Parking demand i′Parking demand i

Parking demand i

Parking demand i Parking demand i′

Parking demand i′Parking demand i

Parking demand i Parking
demand i′

Parking demand i′

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Figure 5: Example of one parking service producing several
parking services.
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demand i in SOi (t) will be moved to STi (t) and added to
terminated demand list if tEi � t.

Parking service j in SARNj (t) will be moved to SARj (t) if
tSj � t + TAR. Parking service j in SARj (t) will be moved to
SOj (t) and added to occupied service list if tSj � t. Parking
service j in SOj (t) will be moved to STj (t) and added to
terminated service list if tEj � t.

Figures 6 and 7 show the state transitions of demands
and services, respectively.

3.3. Response Center. Once receiving the demand and ser-
vice lists from AC, RC sends speci�c noti�cations to relevant
users and owners.

After each allocation process, RC will send “allocation
success” noti�cations to users in the allocated demand list
and send “allocation failure” noti�cations to users in failed
demand list. “Allocation success” noti�cation is the parking
promise, but it does not contain a speci�c number and
location of the parking facility and parking space. Speci�c
number and location of parking facilities will be sent to users
whose demands are in SARi (t) and the details of parking

spaces will be sent to users in the occupied demand list. �is
kind of noti�cation scheme provides a possibility for inte-
grating all available parking services.

At each time point, RC will send “parking start” noti-
�cations to users in the occupied demand list and owners in
the occupied service list and send “parking end” noti�ca-
tions to users in terminated demand list and owners in the
terminated service list. [23] “Parking start” noti�cations
should contain accurate information of parking facility and
parking space to users and owners, and “parking end”
noti�cations should contain bill information to users and
owners.

Besides, RC will send “arriving reminder” noti�cations
to users in arriving demand list and send “leaving reminder”
noti�cations to users in leaving demand list. “Arriving re-
minder” noti�cations should prompt users to drive to the
allocated parking facility on time, and “leaving reminder”
noti�cations should prompt users to leave the parking fa-
cility on time.

It is assumed that users and owners are punctual. �at is,
users will arrive at and leave parking spaces on time, and
owners will guarantee that parking services are available.

TerminatingOccupying

Arriving

Arriving

Succeed

Si
F(t)Si

UP(t)Si
UN(t)

Si
ARN(t) Si

AR(t) Si
0(t) Si

T(t)

Succeed

New
demands

Failed yet within
maximum

waiting time

Failed and exceed
maximum

waiting time

NA
BA

Allocated
but not
arriving

Figure 6: State transitions of demands.

TerminatingOccupying

Arriving

Arriving

Succeed

New
services

NA
BA

Allocated
but not
arriving

Sj
U(t)

Sj
ARN(t) Sj

AR(t) Sj
T(t)Sj

0(t)

Figure 7: State transitions of services. After each update, AC sends the demand and service lists to RC.
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4. Doubly Periodic Rolling Horizon
Allocation Approach

4.1. Allocation Approach Description. As a classical theory,
the rolling horizon has been widely used in optimization,
estimation, control, and other fields [24, 25]. Referring to the
relevant studies, time-driven rolling horizon allocation (RH
for short) is introduced to replace event-driven First-Book-
First-Serve (FBFS for short). In a large-scale dynamic
parking allocation problem, RH aims at realizing the overall
optimization in each period but not the overall optimization
throughout the entire time horizon.

As mentioned before, CARSP executes either NA or BA
at each allocation time point. (us, CARSP is based on
Rolling Horizon Narrow Allocation if it conducts NA at each
allocation time point, while CARSP is based on Rolling
Horizon Broad Allocation if it conducts BA at each allo-
cation time point. Under the same condition, RHN shows
superiority in allocation speed while RHB shows superiority
in allocation effect and both RHN and RHB have unique
advantages and cannot be replaced.

In this way, we propose a Doubly Periodic Rolling
Horizon allocation approach in CARSP to combine the
superiorities of RNA and RHB.

(ree principles are clarified to ensure allocation effect
and allocation speed in CARSP based on DPRH.

Firstly, the unallocated parking service set SU
j and the

allocated parking service set SA
j cannot be simply merged but

should be deeply integrated before each BA process. Re-
ferring to Figure 5, the parking service is split into several
parking services. (en, the several parking services will be
integrated into one parking service to participate in the BA
process.

Secondly, the parking guarantee for each parking de-
mand i ∈ SA

i cannot be broken, which means that each al-
located parking demand must be reallocated to one parking
space in each BA process.

(irdly, the parking facility for each parking demand
i ∈ SAR

i cannot be changed, which means that each arriving
parking demand must be reallocated to one parking space
within the parking facility in each BA process. Given this,
parking facility information will be sent in “Arriving re-
minder” notifications, and parking service information will
be sent in “Parking start” notifications.

(e overall time horizon is discretized into a set of al-
location time points SA

t T1
A, T2

A, . . . , Tn
A􏼈 􏼉 with period τ.

SA
t T1

A, T2
A, . . . , Tn

A􏼈 􏼉 can be divided into a subset of BA time
points SB

t T1
B, T2

B, . . . , Tn
B􏼈 􏼉 with period τ′ and a subset of NA

time points SN
t T1

N, T2
N, . . . , Tn

N􏼈 􏼉. In RHN, SN
t � SA

t , SB
t � ∅.

In RHB, τ′ � τ, SB
t � SA

t , SN
t � ∅. (us, in DPRH, we de-

scribe the relation of τ′ and τ as τ′ � m∗ τ(m> 1) and
SB

t ⊊SA
t , SN

t ⊊SA
t , SB

t ∪ SN
t � SA

t .
Figure 8 shows the process of DPRH, in which the black

arrow points to the direction of time rolling, demands and
services participating in NA are indicated by green rect-
angles, and the demands and services participating in BA are
denoted by orange rectangles. (e green and orange rect-
angles are also marked in Figures 6 and 7.

At each NA time point t ∈ SN
t , the unallocated parking

demand set SU
i (t) is the NA parking demand set SN

i (t), and
the unallocated parking service set SU

j (t) is the NA parking
service set SN

j (t). (e NA model allocates parking demands
in SN

i (t) and parking services in SN
j (t).

At each BA time point t ∈ SB
t , the unallocated parking

demand set SU
i (t) and the allocated parking demand set

SA
i (t) are simply merged into the BA parking demand set

SB
i (t), and the unallocated parking service set SU

j (t) and the
allocated parking service set SA

j (t) are deeply integrated
into the BA parking service set SB

j (t). (e BA model al-
locates parking demands in SB

i (t) and parking services in
SB

j (t).
DPRH can theoretically reach the ideal allocation effect

and speed. However, in practice, especially in a large city, BA
demand and service sets SB

i (t) and SB
j (t) should be con-

trolled within reasonable scales due to the limitation of
computing power. Considering the differences in allocation
urgency, the unallocated demand and service sets SU

i (t) and
SU

j (t) should be totally reserved in BA, while the allocated
demand and service sets SA

i (t) and SA
j (t) should be partly

erased from BA. Given an appropriate time threshold TAP

(TAP >TAR), parking demand i in SA
i (t) belongs to the

approaching parking demand set SAP
i (t) if

t + TAR < tS
i ≤ t + TAP, while it belongs to the allocated but

not approaching parking demand set SAPN
i (t) if tS

i > t + TAP.
Simultaneously, parking service j in SA

j (t) belongs to the
approaching parking service set SAP

j (t) if t + TAR < tS
j ≤ t +

TAP and the allocated but not approaching parking service
set SAPN

j (t) if tS
j > t + TAP. Obviously, the approaching de-

mand and service sets SAP
i (t) and SAP

j (t) should be reserved
to participate in BA.

4.2.AllocationModels. In DPRH, NA and BA are conducted
at specific allocation time points. Both models are formu-
lated to maximize revenue for system managers and min-
imize waiting time for users. We integrate user waiting time
into system cost so that the objectives of both models are
maximizing integrated benefit for system. (e integrated
benefit consists of system revenue and system cost. System
revenue comes from the parking fees paid by allocated users.
Under parking price pj, parking fees are positively corre-
lated with occupancy time of parking demands. System cost
refers to not only the renting cost paid to owners but also the
compensation cost paid to users waiting to be allocated.
Under short-term renting price rj, renting cost is positively
correlated with occupancy time of parking demands. Under
long-term renting price rj

′, renting cost is not correlated with
occupancy time of parking demands. Under compensation
price q, compensation cost is positively correlated with
waiting time of parking demands.

Five binary parameters are designed in NA and BA
models: (1) cij expresses the time window relationship be-
tween parking demand i and parking service j. cij � 1 if time
window of parking demand i is within that of parking service
j, while cij � 0 otherwise. (2) cii′ expresses the time window
relationship between parking demand i and parking demand
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i′. cii′ � 1 if time window of parking demand i is not in
conªict with that of parking demand i′, while cii′ � 0 oth-
erwise. (3) bjf indicates the belonging relationship between
parking service j and parking facility f. bjf � 1 if parking
service j belongs to parking facility f, while bjf � 0 oth-
erwise. (4) ai denotes the current status of passenger demand
i. ai � 1 if passenger demand i is arriving, while ai � 0
otherwise. (5) x̃ij represents the last allocation result be-
tween parking demand i and parking service j. x̃ij � 1 if
parking service j was allocated to parking demand i in the
last allocation, while x̃ij � 0 otherwise.

Besides, a binary variable xij is introduced to represent
the allocation result between parking demand i and parking
service j. xij � 1 if parking service j is allocated to parking
demand i, while xij � 0 otherwise.

4.2.1. Narrow Allocation Model. Narrow allocation model is
formulated as a binary integer programming model with the
objective of maximizing system integrated bene�t at each
NA time point t ∈ SNt , as formula (1) shows and it is subject
to constraints (2)-(7).
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Figure 8: Process of DPRH.
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maxZN(t) � 􏽘

i∈SN
i

(t)

􏽘

j∈SN
j

(t)

pj − rj􏼐 􏼑 · t
E
i − t

S
i􏼐 􏼑

· xij − q · τ · 􏽘

i∈SN
i

(t)

1 − 􏽘

j∈SN
j

(t)

xij
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

(1)

􏽘

j∈SN
j

(t)

xij ≤ 1, ∀i ∈ S
N
i (t),

(2)

xij ≤ cij, ∀i ∈ S
N
i (t), ∀j ∈ S

N
j (t), (3)

xij + xi′j
≤ cii′

+ 1,

∀i, i′∈ S
N
i (t),

i≠ i′,
∀j ∈ S

N
j (t),

(4)

dij · xij ≤d
max
i , ∀i ∈ S

N
i (t), ∀j ∈ S

N
j (t), (5)

pj · xij ≤p
max
i , ∀i ∈ S

N
i (t), ∀j ∈ S

N
j (t), (6)

xij ∈ 0, 1{ }, ∀i ∈ S
N
i (t), ∀j ∈ S

N
j (t). (7)

Constraint (2) restricts that each parking demand cannot
be allocated to more than one parking service. Constraint (3)
claims that each parking demand cannot be allocated to the
conflicting parking service. Constraint (4) implies that every
two conflicting parking demands cannot be allocated to the
same parking service. Constraint (5) ensures that each
parking demand cannot be allocated to parking services with
too long walking distances. Constraint (6) assures that each
parking demand cannot be allocated to parking services with
too high parking prices. Constraint (7) defines variable xij.

4.2.2. Broad Allocation Model. Broad allocation model is
formulated as a binary integer programming model with the
objective of maximizing system integrated benefit at each BA
time point t ∈ SB

t , as formula (8) shows.
To ensure allocation effect, different from NAmodel, BA

model must guarantee that all unoccupied demands par-
ticipating in BA are successfully allocated. Meanwhile, BA
must guarantee that all approaching demands will not be
reallocated to another parking facility. Constraints are
shown in (9)-(16).

maxZB(t) � 􏽘

i∈SB
i

(t)

􏽘

j∈SB
j

(t)

pj − rj􏼐 􏼑 · t
E
i − t

S
i􏼐 􏼑 · xij

− q · τ · 􏽘

i∈SB
i

(t)

1 − 􏽘

j∈SB
j

(t)

xij
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

(8)

􏽘

j∈SB
j

(t)

xij ≤ 1, ∀i ∈ S
B
i (t),

(9)

xij ≤ cij, ∀i ∈ S
B
i (t), ∀j ∈ S

B
j (t), (10)

xij + xi′j
≤ cii′ + 1,

∀i, i′ ∈ S
B
i (t),

i≠ i′,

∀j ∈ S
B
j (t),

(11)

dij · xij ≤d
max
i , ∀i ∈ S

B
i (t), ∀j ∈ S

B
j (t), (12)

pj · xij ≤p
max
i , ∀i ∈ S

B
i (t), ∀j ∈ S

B
j (t), (13)

􏽘

j∈SB
j

(t)

xij ≥ 􏽘

j∈SB
j

(t)

􏽥xij, ∀i ∈ S
B
i (t),

(14)

􏽘

j∈SB
j

(t)

bjf · xij ≥ 􏽘

j∈SB
j

(t)

ai · bjf · 􏽥xij, ∀i ∈ S
B
i (t), ∀f ∈ Sf,

(15)

xij ∈ 0, 1{ }, ∀i ∈ S
B
i (t), ∀j ∈ S

B
j (t). (16)

Constraints (9)-(14) are derived from constraints (2)-(7),
respectively. Constraint (15) specifies that each allocated
parking demand must be allocated to one parking space.
Constraint (16) stipulates that each arriving parking demand
can only be reallocated to another parking space within the
same parking facility.

4.3. Performance Metrics. RHN, RHB, and DPRH are all
based on RH and it is meaningless to compare the total value
of the objective function or the value of the objective in each
allocation. (erefore, we set seven performance metrics to
assess the actual allocation performances throughout the
overall time horizon rather than simply comparing the
values of the objective [26]. Performance metrics (1) to (5)
describe allocation effect, in which (1) represents system
integrated benefit throughout the overall time horizon, (2)
and (3) indicate resource utilization, (4) and (5) denote user
satisfaction. Performance metric (6) expresses allocation
speed. Performance metric (7) shows total computing time.

4.3.1. Total Integrated Benefit (TIB for Short). TIB refers to
total integrated benefit throughout the overall time horizon,
which is calculated in (3). A higher TIB means that system
managers can guarantee more sustainable operation.

TIB � 􏽘
i∈Si

􏽘
j∈Sj

pj − rj􏼐 􏼑 · t
E
i − t

S
i􏼐 􏼑 · xij

− T · 􏽘
j∈Sj

rj
′ − q · 􏽘

i∈Si

t
R
i − t

P
i􏼐 􏼑.

(17)

4.3.2. Service Temporal Utilization (STU for Short). STU
refers to the ratio of total occupancy time to total available
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parking time, which is calculated in (4). A higher STUmeans
that system managers can utilize parking services more
adequately.

STU �
􏽐i∈Si

t
E
i − t

S
i􏼐 􏼑 · xij

􏽐j∈Sj
t
E
j − t

S
j􏼐 􏼑

. (18)

4.3.3. Effective Service Temporal Utilization (ESTU for Short).
ESTU refers to the ratio of total occupancy time to total
effective parking time, which is calculated in (5). Effective
parking time is the time of the parking service that has been
allocated to at least one parking demand. A higher ESTU
means that systemmanagers can utilize the allocated parking
services more efficiently.

ESTU �
􏽐i∈Si

t
E
i − t

S
i􏼐 􏼑 · xij

􏽐j∈Sj
t
E
j − t

S
j􏼐 􏼑 · yj

. (19)

4.3.4. Allocation Success Probability (ASP for Short). ASP
refers to the ratio of allocated parking demands to total
parking demands, which is calculated in (6). A higher ASP
means that users can obtain parking services more easily.

ASP �
􏽐i∈Si

􏽐j∈Sj
xij

I
. (20)

4.3.5. Average Planning Time (APT for Short). APT refers to
the average duration between demand submission time and
demand start time, which is calculated in (7). A shorter APT
means that urgent users can obtain parking services more
easily.

APT �
􏽐i∈Si

􏽐j∈Sj
t
S
i − t

P
i􏼐 􏼑 · xij

􏽐i∈Si
􏽐j∈Sj

xij

. (21)

4.3.6. Average Waiting Time (AWT for Short). AWT refers
to the average duration between demand submission time
and response time, which is calculated in (8). A longer AWT
means that users can obtain responses faster.

AWT �
􏽐i∈Si

t
R
i − t

P
i􏼐 􏼑

I
. (22)

4.3.7. Total Computing Time (TCT for Short). TCT refers to
the total computing time throughout the overall time ho-
rizon. Under the same computing environment, a shorter
TCT means that the approach is more efficient and more
practical.

5. Large-Scale Real-World Instance

5.1. Instance Setup. Figure 9(a) shows the district in
Chaoyang District, Beijing, China, where the historical

parking data come from. Figure 9(b) shows the normalized
district, of which the length and width are both 1 km. (ere
are five adjacent blocks in the district. Blocks with the same
color have the same land use.(e green block is for business,
the yellow block is for commercial, and the orange block is
for residential. (e solid circle in each block represents a
parking facility. (e numbers beneath each solid circle
represent the coordinates of each parking facility. (e five
parking facilities rent parking spaces to CARSP for sharing.
(e sizes of blocks are also set as Figure 9(b) shows. Table 3
shows the parameters of the instance.

(e instance selects historical parking data from 00 : 00
on April 20th, 2018, to 00 : 00 on April 23rd, 2018, so that the
overall time horizon is 3 days. (e overall time horizon is
divided into 4320 time units with length of 1minute. (e
parking time interval is set to be 5minutes.

(e total number of historical parking demands is 31494.
Figures 10 and 11 show the start time and end time dis-
tribution of parking demands [27]. For each parking de-
mand, the submission time varies within [5, 1440] minutes
before its start time. (e maximum acceptable walking
distance varies within [100, 700] meters. (e maximum
acceptable parking price varies within [0.5, 1.2] CNY per
5minutes according to Beijing Parking Charge Standard.
(e maximum acceptable waiting time varies within [1, 10]
minutes.

(e total number of parking services is 1800. Table 4
shows the details of parking services. According to land use,
parking facilities 1, 2, and 3 provide long-term renting
parking services, while parking facilities 4 and 5 provide
short-term renting parking services. For each short-term
renting parking service, the time window varies within [1,
4320]. (e renting price is 0.5 CNY per 5minutes. (e
parking price varies within [0.6, 1.2] CNY per 5minutes. For
each long-term renting parking service, the time window is
[1, 4320]. (e renting price is 0.1 CNY per 5minutes. (e
parking price is 0.5 or 0.7 CNY per 5minutes.

Besides, the compensation price is set to be 0.025 CNY
per minute. (e arrival time threshold is 15minutes. (e
approaching time threshold is 30minutes.

(e instance sets thirteen groups to test the performances
of different allocation approaches with different allocation
models under different allocation periods. Table 5 shows the
details of the test groups. Group 1 is the FBFS group. Groups
2 to 5 are the RHN groups, in which τ ∈ 0.5, 1, 5, 10{ } and
τ′ � 0. Groups 6 to 9 are the RHB groups, in which
τ ∈ 0.5, 1, 5, 10{ } and τ′ � τ. Groups 10 to 13 are the DPRH
groups, in which τ ∈ 0.5, 1{ } and τ′ ∈ 5, 10{ }.

(e CARSP programs based on FBFS, RHN, RHB,
DPRH allocation approaches are all encoded in Visual
Studio 2017 using C# language. (e software used to solve
the allocation problem at each allocation time point is IBM
ILOG CPLEX Solver 12.6.3. All computations were per-
formed on a personal computer with Intel Core i5-7200U
CPU, 8G RAM, and a 64 bit Windows 10 Operating System.

5.2. Instance Results. We set two tests to study the perfor-
mance of CARSP based on FBFS, RHN, RHB, and DPRH
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Table 3: Parameters of the instance.

Parameters Descriptions Value
T �e number of time units 4320
I �e number of parking demands 31494
J �e number of parking services 1800
F �e number of parking facilities 5
dmax
i �e maximum acceptable walking distance of parking demand i (m) [100, 700]
pmax
i �e maximum acceptable parking price of parking demand i (CNY/5min) [0.5, 1.2]
wmax
i �e maximum acceptable waiting time of parking demand i (min) [1, 10]

pj �e parking price of parking service j (CNY/5min) [0.5, 1.2]
rj �e short-term renting price of parking service j (CNY/5min) 0.5
rj′ �e long-term renting price of parking service j (CNY/5min) 0.1
q �e compensation price (CNY/min) 0.025
ρ �e split penalty coe«cient (CNY/min) 0.001
τ0 �e length of parking time interval (min) 5
TAR �e time threshold to determine whether demands and services are arriving (min) 15
TAP �e time threshold to determine whether demands and services are approaching (min) 30
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Figure 10: Start time distribution of parking demand.
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Figure 11: End time distribution of parking demand.
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Figure 9: District of the instance.
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when applying to large-scale real-world instance. Test 1 aims
to explore the effects of different allocation approaches. Test
2 aims to explore the effects of different allocation periods.

(e performances of different groups over three days are
shown in Table 6.

5.2.1. Test 1: Performance of Different Allocation Approaches.
Test 1 aims to seek the effects of different allocation ap-
proaches. Min-Max normalization is applied to normalize
the performance metric values of thirteen groups. In this
way, under each performance metric, the strengths and
weaknesses of each allocation approach can be demonstrated
more clearly. (e allocation approach is better if TIB, STU,
ESTU, and ASP are higher while APT, AWT, and TCT are
lower. (erefore, the normalization equation for the former
kind of performance metrics is shown as (23). (e

normalization equation for the latter kind of performance
metrics is shown as (24). Under each performance metric,
Max is the maximum of thirteen performance metric values
while Min is the minimum. Current is the performance
metric value of the current allocation approach, while
Current∗ is the normalized performance metric value.
(erefore, the allocation approach is better if the normalized
performance metric value is higher.

Current∗ �
Current − Min
Max − Min

, (23)

Current∗ �
Max − Current
Max − Min

. (24)

Figure 12. Comparisons of FBFS, RHN, RHB, and
DPRH.

Table 4: Details of parking services.

Parking facility Number of parking services Renting type Renting price (CNY/5min) Parking price (CNY/5min)
1 400 Long-term 0.1 0.5
2 600 Long-term 0.1 0.7
3 400 Long-term 0.1 0.7
4 200 Short-term 0.5 [0.6, 1.2]
5 200 Short-term 0.5 [0.6, 1.2]

Table 5: Details of the test groups.

Group index Group code Allocation approach Allocation models τ (min) τ’ (min)
1 FBFS FBFS — — —
2 RHN-0.5

RHN NA model

0.5 0
3 RHN-1 1 0
4 RHN-5 5 0
5 RHN-10 10 0
6 RHB-0.5

RHB BA model

0.5 0.5
7 RHB-1 1 1
8 RHB-5 5 5
9 RHB-10 10 10
10 DPRH-0.5-5

DPRH NA model
BA model

0.5 5
11 DPRH-0.5-10 0.5 10
12 DPRH-1-5 1 5
13 DPRH-1-10 1 10

Table 6: Performances of different groups over three days.

Group code TIB (CNY) STU ESTU ASP APT (min) AWT (s) TCT (h)
FBFS 276239.40 0.450 0.529 0.580 801.05 0.06 0.29
RHN-0.5 277690.72 0.452 0.532 0.573 805.28 15.15 0.47
RHN-1 277370.12 0.452 0.531 0.571 806.58 30.37 0.42
RHN-5 278382.68 0.454 0.533 0.566 808.52 158.74 1.11
RHN-10 276771.09 0.452 0.531 0.566 809.70 317.21 0.99
RHB-0.5 283237.34 0.458 0.538 0.583 790.82 24.85 26.84
RHB-1 284196.22 0.459 0.539 0.582 792.15 41.18 12.75
RHB-5 285339.14 0.460 0.541 0.581 791.09 172.57 4.89
RHB-10 284600.37 0.459 0.540 0.582 790.15 337.12 3.66
DPRH-0.5-5 282422.16 0.457 0.537 0.581 791.82 16.61 3.85
DPRH-0.5-10 280797.81 0.455 0.536 0.577 795.10 15.28 2.10
DPRH-1-5 283141.95 0.458 0.538 0.582 790.34 32.95 3.73
DPRH-1-10 282115.44 0.457 0.538 0.578 792.69 31.65 2.04
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Figure 12: Shows the comparisons of FBFS, RHN, RHB, and DPRH.
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For FBFS, the lowest AWT indicates excellent allocation
speed. However, the lowest TIB reflects dreadful integrated
benefit, the lowest STU and ESTU reflects dreadful resource
utilization, and the moderate ASP and APTreflect poor user
satisfaction. Meanwhile, FBFS requires the shortest com-
puting time.

For RHN, the normalized TIB of all RHN Groups ranges
widely, but on the whole, RHN leads to poorly integrated
benefit. Similarly, the normalized STU and normalized
ESTU of all RHN Groups range widely, but on the whole,
RHN results in poor resource utilization. (e normalized
ASP and normalized APTof all RHN Groups are centralized
in the lower half, thus, RHN leads to dreadful user satis-
faction. (e normalized AWT of all RHN Groups ranges
widely, but on the whole, RHN results in good allocation
speed. Meanwhile, RHN requires the second shortest
computing time.

For RHB, the normalized TIB of all RHB Groups are
centralized in the upper half, which indicates that RHB
results in well integrated benefit. Similarly, the normalized
STU and normalized ESTU of all RHB Groups are cen-
tralized in the upper half, which indicates that RHB results in
good resource utilization. (e normalized ASP and nor-
malized APTof all RHB Groups are centralized in the upper
half. Meanwhile, RHB results in the highest ASP and APT.
(us RHB results in excellent user satisfaction. (e nor-
malized AWT of all RHB Groups ranges widely, but on the
whole, RHB leads to dreadful allocation speed. Meanwhile,
RHB requires the longest computing time.

For DPRH, all normalized performance metrics values
are centralized in the upper half. Comparing the thirteen
Groups, DPRH results in the highest TIB, STU, and ESTU.
Compared with FBFS, DPRH raises TIB by 3.83%, raises
STU by 2.65%, and raises ESTU by 2.72%. (erefore, DPRH
results in excellent integrated benefits, excellent resource
utilization, good user satisfaction, and good allocation speed.
Meanwhile, DPRH requires the second-longest computing
time.

5.2.2. Test 2: Effects of Different Allocation Periods. Test 2
aims to seek the effects of different allocation periods in the
same allocation approach and the same allocation model.
Allocation periods τ ∈ 0.5, 1, 5, 10{ }. (e normalization (9)
and (10) are also applied to demonstrate the strengths and
weaknesses of each allocation period more clearly.

Figure 13 shows the comparisons of different allocation
periods in RHN. Figure 14 shows the comparisons of dif-
ferent allocation periods in RHB. Figure 15 shows the
comparisons of different allocation periods in DPRH.

In the light of Figure 13, in RHN, when allocation period
τ � 0.5 (i.e., RHN-0.5), TIB, STU, and ESTU are good.
Meanwhile, ASP and APT are the best. AWT is the best and
TCT is good. When allocation period τ � 1 (i.e., RHN-S-1),
TIB, STU, and ESTU are poor. ASP and APTare good. AWT
is good and TCT is the best. When allocation period τ � 5
(i.e., RHN-5), TIB, STU, and ESTU are the best. ASP and
APT are poor. AWT is poor and TCT is the worst. When
allocation period τ � 10 (i.e., RHN-10), TIB, STU, ESTU,

ASP, APT, and AWT are the worst while TCT is poor.
Clearly, RHN-0.5 performs the best in user satisfaction and
allocation speed, while RHN-5 performs the best in inte-
grated benefit and resource utilization. From the perspective
of system managers, the integrated benefit is the most
concern. However, allocation speed is also vital since it is the
representation of system service quality. In light of Table 6,
the TIB of RHN-5 is raised by 0.25%, while the AWT of
RHN-5 is ten times that of RHN-0.5.

In the light of Figure 14, in RHB, when allocation period
τ � 0.5 (i.e., RHB-0.5), TIB, STU, and ESTU are the worst.
ASP is the best and APT is good. AWT is the best, but TCT is
the worst. When allocation period τ � 1 (i.e., RHB-1), TIB,
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Figure 13: Comparisons of RHN with different allocation periods.
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Figure 14: Comparisons of RHB with different allocation periods.
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STU, and ESTU are poor. ASP is good but APT is the worst.
AWT is good but TCT is poor. When allocation period τ � 5
(i.e., RHB-5), TIB, STU, and ESTU are the best. ASP is the
worst and APT is poor. AWT is poor while TCT is good.
When allocation period τ � 10 (i.e., RHB-10), TIB, STU, and
ESTU are good. ASP is good, while APT is poor. AWT is
poor while TCT is good. (ough RHB-5 and RHB-10
perform better than RHN; AWT is a defect that cannot be
ignored.

In the light of Figure 15, in DPRH, when allocation
period τ � 0.5 and τ′ � 5 (i.e., DPRH-0.5-5), TIB is good,
STU and ESTU are poor. ASP and APT are good. AWT is
good while TCT is the worst. When allocation period τ � 0.5
and τ′ � 10 (i.e., DPRH-0.5-10), TIB, STU, ESTU, ASP, and
APTare the worst. AWT is the best and TCT is good. When
allocation period τ � 1 and τ′ � 5 (i.e., DPRH-1-5), TIB,
STU, ESTU, ASP, and APT are the best. AWT is the worst
and TCT is poor. When allocation period τ � 1 and τ′ � 10
(i.e., DPRH-1-10), TIB is poor. STU and ESTU are good.
ASP and APT are poor. AWT is poor while TCT is the best.
In summary, it is clear that when τ is the same, DPRH with
τ′ � 0.5 achieves higher integrated benefit, higher resource
utilization, and higher user satisfaction but a lower alloca-
tion speed than DPRH with τ′ � 1. When τ′ is the same,
DPRH with τ � 1 achieves higher integrated benefit, higher
resource utilization, and higher user satisfaction but lower
allocation speed than DPRH with τ � 0.5.

6. Conclusion

(is study researched the large-scale dynamic parking al-
location problem by proposing a smart parking system
CARSP based on a novel rolling horizon allocation DPRH.

(e “Collection-Allocation-Response” smart parking
system (CARSP) is constructed to amply describe trilateral

requirements, deeply portray trilateral relationships, and
thoroughly realize trilateral data transmission in the dy-
namic smart parking environment. (e Doubly Periodic
Rolling Horizon allocation approach (DPRH) is proposed to
combine the superiorities of RHN and RHB.(e NA and BA
models integrate the user’s waiting time and system revenue
so as to maximize system integrated benefit from the per-
spective of both users and system managers.

According to the large-scale real numerical instance
study, DPRH is superior to FBFS, RHN, and RHB in bal-
ancing allocation effect and allocation speed:(ough FBFS is
unparalleled in allocation speed, DPRH achieves better al-
location effect, i.e., the total integrated benefit is raised by
3.83%, resource utilization is raised by 2.7%, user satisfaction
is raised by 1.53% with acceptable allocation speed. DPRH
reaches nearly the same allocation speed as RHN but leads to
a better allocation effect. DPRH achieves nearly the same
allocation effect as RHB but improves allocation speed.

Future research will focus on the following aspects.
Firstly, the allocation approach can be improved to achieve
nearly the same allocation speed as FBFS. Secondly, the
allocation approach and allocation model can be improved
to deal with the unpunctuality of users and owners in a
realistic smart parking environment. (irdly, dynamic
pricing can be considered in the allocation models to further
improve the allocation effects.
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