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'e widespread adoption of battery electric vehicles (BEVs) is hindered by their limited ranges and long charging times.
Optimizing eco-driving strategies and BEV-specific routing through a thorough understanding of the BEV discharge behavior is
vital to overcome these barriers in the short term.'erefore, this study investigates the impact of road types on the BEV discharge
behavior while accounting for explanatory variables (i.e., ambient temperature, the initial state of charge, and driver). 'irty
participants drove a 2017 Volkswagen eGolf along two predefined routes in Rhode Island. 'e results illustrate that BEVs are the
most efficient on-road types with medium speed and low variation (i.e., “major collectors,” “minor arterials,” and “other principal
arterials”). Meanwhile, findings confirmed a significantly higher average energy consumption rate on roads with higher average
speeds (“interstates” and “other freeways/expressways”). Moreover, “local roads,” associated with a low average travel speed and a
high variation in speed, showed a negative effect on BEV efficiency. 'e study further supported previous findings that BEVs are
less efficient in colder temperatures. 'us, adapting eco-driving strategies, including the alteration of route choice to avoid “local
roads” and “interstates,” can offer BEV drivers the potential for energy savings and range extensions. We propose a consideration
of these findings to mitigate the effects of BEV range limitations and ease BEV adoption and ownership.

1. Introduction

Today, scarcity of nonrenewable energy resources and in-
creasing ecological awareness have intensified efforts to
transition to more environmentally friendly technologies. In
transportation, the electrification of vehicles is a promising
technology for greener, low-emission transportation systems.
'e global electric vehicle (EV) stock has significantly in-
creased over the last decade. In 2020, more than 10 million
EVs were registered worldwide, 20% of which were in the
United States (U.S.), making it one of the biggest EV markets
in the world [1]. Among EVs, battery electric vehicles (BEVs)
have become increasingly popular and currently represent
more than 75% of U.S. EV sales, and the growing demand for
BEVs is expected to continue well into the future [1].

Nevertheless, range limitations and an insufficient
charging infrastructure feed range anxiety (i.e., drivers’ fear
of running out of charge before reaching their destination)

and impede BEV adoption [2]. In addition to equipping EV
models with larger batteries, one way of mitigating these
limitations is adjusting driving behavior and optimizing
BEV-specific routing. In other words, the range of BEVs can
be extended by minimizing energy consumption through
eco-driving and route choices. Understanding how oper-
ating characteristics on different road types impact energy
consumption can be a practical and beneficial consideration
in optimizing the energy-based routing of EVs. Knowing
how much energy the BEVs consume in different driving
situations is a prerequisite for range optimization. Findings
of economical driving behavior can be directly implemented
by drivers and further be used in vehicle navigation to
identify the most economical route (“eco-routing”) [3].
Table 1 summarizes key findings of studies relevant to this
paper.

To date, most of the literature investigating the impact of
traffic planning and road types on fuel consumption and
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driving behavior has focused on conventional internal
combustion engine vehicles (ICEVs) [4, 5]. Ericsson et al.
[3], and Brundell-Freij and Ericsson [4] discovered that the
road and traffic environment, the driver demographics (e.g.,
age and gender), and the car mass affect driving behavior.
However, the studies lack a quantification of the road and
traffic impacts on fuel consumption. Hallmark et al. [6]
identified different on-road geometric and operational
variables at signalized intersections and explored their effect
on the time an ICEV spends in a specific operating mode.
'e findings aimed to improve emission estimates for
passenger vehicles but lack the quantification of fuel con-
sumption. In Faria et al. [7], the fuel-saving potentials of
ICEVs based on driving behavior, road types, and road grade

were assessed. 'e research was conducted under natural
conditions and monitored 47 drivers in Lisbon, Portugal
over six months. 'e highest fuel-saving potential was
observed on minor arterial roads and collector roads with a
speed limit of 50 km/h (31mph). However, the study did not
include BEV consumption models. Ericsson [8] investigated
the variability in urban driving patterns and concluded that
the street type has the most significant influence on the
driving pattern for ICEVs. Furthermore, the study discov-
ered that the average speed and deviation of speed are
significantly different between different road types. How-
ever, specific consumption factors were not considered nor
quantified. Jensen [9] evaluated different driving patterns
and the resulting emissions of ICEVs on different road types.

Table 1: Studies relevant for this paper by author, year, location, type of vehicle analyzed, and relevant key findings of the publications.

Author (s) Year Study
location Methods Vehicles

studied Relevant key findings

Bingham et al. 2012 United
Kingdom

Multimethod analysis of
driving data BEVs

Nonaggressive driving reduces BEV energy
consumption; less acceleration and deceleration

increase efficiency
Brundell-Freij
& Ericsson 2005 Sweden Linear regression analysis ICEVs Traffic environment, driver, and car mass affect

performance

Ericsson 2000 Sweden ANOVA ICEVs
Street type has the highest impact on driving
patterns; driving patterns vary with time of the

day

Ericsson et al. 2006 Sweden Network analysis using
Dijkstra algorithm ICEVs Route choice impacts efficiency due to differences

in traffic patterns

Faria et al. 2013 Portugal Life-cycle assessment
ICEVs,

PHEVs, &
BEVs

Aggressive driving and climate control decrease
vehicle efficiency

Faria et al. 2019 Portugal Multimethods approach;
nonparametric testing ICEVs Road characteristics and driving behavior impact

vehicle efficiency

Fetene et al. 2017 Denmark
Regression analysis,

parametric and nonparametric
testing

BEVs
Road type does not affect BEV efficiency; BEV
performance varies with weather conditions and

driving behavior

Fiori et al. 2019 Italy Simulation analysis using
different vehicle simulators ICEVs, EVs

ICEVs and EVs consumption behavior differ with
speed; EV energy consumption increases with

speed

Franke et al. 2015 Germany Statistical sample comparison BEVs
Eco-driving from ICEVs applicable to BEVs for
increase in efficiency; experience increases eco-

driving potential

Galvin 2017 Germany Simulation modeling and
regression analysis BEVs

BEV efficiency is lower in modest to high
acceleration; BEV energy-optimal speed at

approx. 37 mph

Hallmark et al. 2002 U.S. Linear regression analysis and
regression tree analysis

Various traffic characteristics and volume impact
emission rates

Jensen 1995 Denmark &
Sweden Regression analysis ICEVs Emission levels are impacted by ambient

temperature and speed rather than road type

Kurien et al. 2020 India Simulation modeling BEVs 'e range potential of BEVs decreases with speed
and slope

Liu et al. 2021 China Path modeling BEVs
Avoidance of traffic can decrease BEV efficiency;
BEVs are less efficient in lower temperatures and

higher speeds
Sivak &
Schoettle 2012 — Literature review ICEVs Efficiency differs with route choice and ultimately

the type of road

Wu et al. 2015 U.S. Energy consumption
modeling BEVs BEVs more efficient during in-city driving than

freeway driving

Yao et al. 2013 China Analysis of vehicle-specific
power distribution BEVs

BEV efficiency depends on the road type and
speed; consumption on arterial roads is notably

different
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'e author concluded that speed is the most critical factor,
while the speed deviation in traffic did not explain fuel
consumption. Slightly higher emissions were discovered on
express roads compared to motorways.

Meanwhile, findings regarding ICEV consumption do
not necessarily apply to BEVs. More specifically, BEVs’
speed-related energy consumption is fundamentally differ-
ent compared to ICEVs. According to Galvin’s model, the
minimum energy consumption of BEVs is at approximately
37 mph before increasing exponentially [10]. 'ese findings
were later supported by Fiori et al. [11] and Liu et al. [12],
showing that BEVs reach their highest efficiency at lower
speeds than ICEVs. Speed and its variation differ signifi-
cantly between road types. 'erefore, road types are ex-
pected to be a significant factor in the analysis of assessing
the depletion rate of BEVs [13]. In conventional vehicles,
frequent braking and accelerating significantly increase fuel
consumption compared to trips with a steady speed, such as
driving on highways or the interstate [7]. 'is effect could be
different in electric vehicles because of the ability to recharge
while decelerating [14]. Additionally, BEV efficiency is more
sensitive to ambient temperatures than ICEV fuel con-
sumption. At low temperatures, BEVs are significantly less
efficient than in warm temperatures due to higher battery
storage losses [15, 16] and internal resistance [17].'erefore,
different factors possibly impacting the energy consumption
of EVs should be understood carefully.

Various studies have started this process using different
approaches (see Table 1). For example, in Faria et al. [18], the
energy consumption of three BEV models (i.e., Nissan Leaf,
Smart ED, and Peugeot iOn) was investigated on a defined
test track. In this study, the influence of the air conditioning
system (i.e., off, on-cooling, on-heating), the driving style
(i.e., aggressive, moderate), and the degree of urbanicity (i.e.,
urban, rural) were examined as influencing factors of energy
consumption. An aggressive driving style increased the
power consumption of the Nissan Leaf by 48% (25.01 kWh/
100mi to 16.85 kWh/100mi). With a regular driving style
and the air conditioning switched off, the Nissan Leaf
consumed 21.1 kWh/100mi on the combined route. How-
ever, cabin heating increased the energy consumption to
29.5 kWh/100mi. Faria et al. [18] demonstrated the negative
effect of aggressive driving behavior and quantified its in-
fluence on energy consumption in a naturalistic driving
setting. Franke et al. [19] supported these findings by in-
vestigating the effects of the application of eco-driving
strategies on BEV efficiency. 'e authors stated that driving
economically has significantly reduced BEV energy con-
sumption [19]. Kurien et al. [20] modeled BEV energy
consumption using acceleration and slope as input pa-
rameters in MATLAB Simulink. 'e results show that BEV
efficiency decreases with speed and an increasing slope. In
other words, high slope angles and traveling at high speeds
were found to substantially limit the achievable ranges of
EVs.

However, few studies have investigated the impact of
road types specifically on BEV energy consumption. Applied
road classifications often differ between these studies due to
differences in the underlying definitions by municipalities,

states, or countries. Yao et al. [14] collected data from road
networks in Beijing to estimate EV energy consumption and
emission factors using vehicle-specific power based on speed
and acceleration. 'e authors discovered that energy con-
sumption on principal arterial roadways was significantly
higher than on other road types. In Wu et al. [21], data were
collected through a BEV conversion driven by a single
university faculty member over a total period of five months
in California. 'e authors posited that in-city driving re-
quires more energy than freeway driving. However,Wu et al.
[21] differentiated all trips by these urban categories and did
not account for driver behavior. Another study by Bingham
et al. [22] investigated data collected from different drivers in
a test vehicle on urban and country roads in the United
Kingdom. 'e authors discovered that aggressive driving
could increase the average energy consumption by 30% or
more. 'ey further stated that traffic management and re-
ducing quick acceleration and deceleration offer additional
energy savings and range extension potential. Bingham et al.
[22] did not specifically address a correlation between road
types and energy consumption in their work. One study that
directly explored the impact of road types was conducted by
Fetene et al. [23]. 'e authors collected data from 741 BEV
drivers over two years in Denmark to understand BEV
efficiency behavior. No evidence was found that highway
and non-highway driving were related to significantly dif-
ferent consumption rates. While road types were categorized
in general terms, the study did not include a detailed def-
inition and differentiation.

Consequently, current literature is associated with
limitations when analyzing the impact of road types on EBV
efficiency. While previous studies on the consumption
characteristics of EVs suggested significant differences in
energy consumption behavior over road types, they lack a
clear definition of road types. 'e energy efficiency pa-
rameters for distinct sections in road networks are necessary
for modeling and planning an energy-optimal route. EV
drivers already tend to choose certain road types associated
with lower consumption levels [24], yet this behavior is
based on assumptions and is not proven scientifically in a
naturalistic setting. Furthermore, most of the literature
findings were based on simulations. Manufacturer state-
ments regarding energy consumption and range are mea-
sured under laboratory conditions for specified driving
cycles and, thus, scientifically deviate from real-world
consumption [25, 26]. Hence, there is currently a gap in the
literature regarding identifying and understanding the en-
ergy consumption of EVs and BEVs in a naturalistic setting
with human drivers. 'is study aims to close this gap by
contributing towards a better understanding of BEV energy
consumption on carefully differentiated road types.'rough
various regression models, this study investigates the impact
of road types on the energy consumption of BEVs while
accounting for other explanatory variables (i.e., ambient
temperature, the initial state of charge (SOC), and driver).
'e remainder of the paper will explore answers to the
following research questions: Does the road type impact
BEV energy consumption? If so, how do road types affect the
efficiency of BEVs? With answers to these questions, vehicle
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operators can estimate the total cost of ownership associated
with energy consumption based on vehicle usage. 'is is an
essential element in the purchase decision of EVs and all
future infrastructure decisions [2].

2. Materials and Methods

For this study, driving data were collected in a field study
with a sample of human drivers. 'is section outlines the
experimental design before describing data processing
procedures. 'e section ends with a structured approach to
the statistical analysis.

2.1. Experimental Design. For a substantial enough sample
size to detect the consumption behavior over different road
types, a total of 30 study participants were recruited, fol-
lowing previous research that investigated driving behavior
and energy consumption rates [27, 28]. 'e driver char-
acteristics were intentionally held as homogeneous as pos-
sible to mitigate the effect of individual differences in driving
style on the average energy consumption of the vehicle. All
participants were students at the university without prior
experience in driving a BEV to exclude differences in driving
behavior through different levels of BEV adaptation [19].
'e participants were 40% female and 60% male, between
the ages of 19 and 30, with a mean age of 23.73 years and a
standard deviation of 2.56 years. All participants drove the
test vehicle on two test routes that collectively covered all
road types. Differentiation of the road types was undertaken
accordingly to the U.S. Highway Functional Classification
System of the Division of Statewide Planning, which defines
the roads’ purpose along with specific road characteristics,
such as the material of a street, road width, traffic volume,
location, and its function [29]. 'e Division of Statewide
Planning distinguishes between two primary functions of a
roadway: (a) access to the property and (b) travel mobility
[29]. “Mobility refers to the actual ability of the road to move
traffic, while accessibility refers to the ease of entering or
exiting a roadway to or from adjacent priorities” [29].
Accordingly, the U.S. road network is divided into three
major road classes: arterials, collectors, and local roads. 'e
division defines these as follows: “arterials have high mo-
bility but low land access and are typically used for longer
trips whereas local roads have low mobility (travel at slower
speeds) but provide the highest level of land access.'ese are
used for shorter trips around town. Collectors are in the
middle and often act as the transitional roads from arterials
to local roads” [29]. Furthermore, each road class is sub-
divided into multiple road types. Table 2 lists the three road
classes and the respective road types.

'e road type “interstate” serves high-speed travel and
long-distance freight transport by motor vehicle (high
mobility) and connects the main urban areas of the U.S. By
definition, “other freeways and expressways” include mul-
tiple lanes in both directions that are typically separated by a
physical barrier (e.g., traffic barrier, a strip of grass, or a
boulder) [29]. 'e main function of a “principal arterial,”
also known as a traffic artery, is to direct traffic between

“collectors” and “other freeways and expressways” and
ensure a high level of service between major urban and
metropolitan areas [29]. 'erefore, access to arterial roads is
often limited and only possible through designated roads.
“Minor arterial” roads serve trips of moderate length and at
lower speeds. In rural areas, their purpose is to link cities and
larger towns while also providing land access to the sur-
rounding areas. Collector roads serve shorter distances at
lower speeds than arterial roads. Typically, “minor collec-
tors” are shorter, with a higher density of local driveways and
lower speed limits. “Major collectors” might have multiple
travel lanes and serve a higher annual traffic volume. “Local
roads” offer direct access to abutting land and are often
designed to hinder traffic. 'ese roads make up the most
significant proportion of all roads within the U.S. but are not
intended to serve long-distance travel. 'erefore, “local
roads” are usually traveled at the beginning and end of a trip.

Two test routes were differentiated to obtain driving data
from all road types: (i) Route A and (ii) Route B. 'e road
types covered by Route A were “other freeways and ex-
pressways,” “other principal arterial,” “minor arterial,”
“major collector,” “minor collector,” and “local roads.” To
include the road type “interstate” and avoid the risk of
entering a critical SOC through excessive distances, the
research was extended by Route B, which included the road
type “interstate.” Due to unforeseen construction on a road
section on Route A, the road type “minor collector” had to be
excluded from the analysis. Table 3 shows the distances
covered on each test route and road type.

Based on EV driver travel patterns [30, 31] and research
on air pollution [32, 33], peak hours for travel were assumed
between 7 : 00 AM and 9 : 00 AM and after 4 : 00 PM. 'ese
times were avoided to mitigate the impact of commuter
traffic on the data. Accordingly, weekends and holidays were
excluded due to possible differences in traffic density. Street
surface conditions, bad visibility, and darkness significantly
influence the vehicle’s energy consumption [34, 35].
Darkness was avoided, and trials with wet roads or low
visibility were rescheduled. Data were collected in April and
May of 2019. 'is short trial period was chosen to minimize
the outside temperature range and avoid seasonal temper-
ature effects [23]. Air conditioning settings were held
constant. 'e windows remained closed to keep the aero-
dynamic drag the same throughout each test drive. 'e test
vehicle, a 2017 Volkswagen eGolf, is equipped with a
35.8 kWh battery pack and offers multiple driving modes
(i.e., Normal, Eco, and Eco+) and recuperation intensities
(i.e., B, D, D1, D2, and D3) [36, 37], which in turn have a

Table 2: Road classes and types.

Road class [29] Road type

Principal arterial
Interstate

Other freeway & expressway
Other principal arterial

Minor arterial Minor arterial

Collector Major collector
Minor collector

Local roads Local
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significant influence on the driving and energy consumption
behavior of the vehicle [38, 39]. In this research, the driving
mode “normal” was used since it uses the full power of the
electric engine and, therefore, makes the best use of the
vehicle’s performance. Additionally, the recuperation mode
“D” was used, which recuperated energy only while applying
the brakes. Since the participants in this study were first-time
EV drivers, they were given a brief introduction to the car
before the test drive. 'ey were provided with the oppor-
tunity to adjust the seat to their comfort for safety reasons.
'e same playlist was played during the test drives to exclude
differences in behavior due to the music being played [40].

2.2.Methods ofDataCollection andData Processing. 'e test
vehicle was equipped with a controller area network (CAN)
bus gateway with a data logger to collect energy con-
sumption data. 'e CAN bus gateway is a device offered by
the company FleetCarma which allows for the extraction of
the corresponding data from the vehicle’s onboard diag-
nostics-II system and links it to the corresponding GPS
location and time [41]. 'e resulting data included infor-
mation on the vehicle’s geographic location, battery current,
battery voltage, and speed at a rate of 1Hz.'e raw data were
processed in Python through project-specific code using the
Pandas [42] and Matplotlib [43] packages. Before data
processing, the raw data were cleaned to ensure compara-
bility and uniformity of each trial. 'e start and endpoint of
each test route and the coordinates of each new road type
were defined. Additionally, data before the starting point
and ending point were deleted. A perfect match of the GPS
location and the location of the drives was rarely achieved
due to minor deviations of every drive and the GPS tracking
method. Due to the previously mentioned construction on
Route A, this 1.9-mile stretch was removed from the data.
'e total energy consumption for each road type of every
trial could be calculated based on the battery current and
voltage. 'e formula of uniform motion relates information
about distance, time, velocity, and initial distance to each
other and led to the total distance driven for every trial.

2.3.MethodsofDataAnalysis. 'edependent variable in this
study was the average energy consumption per mile. 'is
continuous variable could be expressed as the difference in

the state of charge per distance (ΔSOC/distance) and was
measured in kilowatt-hours per mile (kWh/mile). 'e ex-
planatory variables considered consisted of continuous
variables (i.e., “initial SOC” and “ambient temperature”) and
categorical variables (“driver” and “road type”). Linear re-
gression models allow for analyzing the effect of categorical
and continuous variables on a continuous dependent var-
iable and have been used for analyzing EV efficiency in the
past [37]. 'erefore, the linear regression analysis was
chosen to examine the impact of the considered explanatory
variables on the average energy consumption per mile. 'e
necessary variables for the analysis and the computation
method are summarized in Table 4.

To determine whether different road types impact the
energy consumption of EVs, all six road types (see Table 3)
were evaluated on their distinct influence on BEV energy
consumption. After the datasets for all drives on both test
routes were separated into the different road types, a sample
size of n� 390 data points was achieved. 'e continuous
variables “temperature” and “initial SOC” were considered
in the model. To analyze the impact of categorical variables
“road type” and “driver,” dummy variables were used in the
regression models. Since differences in driver behavior
significantly influence the energy consumption rate of ve-
hicles, the characteristics of the participants were chosen to
be as homogeneous as possible to minimize the effects of
individual driver behavior. 'e factor “driver” was still
included in themodels as an independent categorical control
variable. Drivers were numbered randomly from 1 through
30. 'e driver with the average consumption closest to the
sample average on both test routes was chosen as a reference
for the driver dummy variable. As the most consistent road
type in lane and shoulder width, median separation, and
entrance/exit ramps, the road type “interstate” served as
reference [44]. A stepwise selection was then applied to find
a potentially better fitting model. In addition to considering
all variables separately, additional regression models ac-
counting for interaction effects between particular variables
and “road type” were analyzed and compared. 'ese models
accounted for an interaction effect between “driver” and
“road type,” “temperature,” and “road type,” and “speed”
and “road type,” respectively. 'e impact of speed has been
shown in various studies [10–12, 20] and was, therefore,
included in the analysis.

All regression models were tested for the observance of
the different prerequisites of linear regressions (i.e., no
outliers, independence of residuals, homoscedasticity, and
normality of residuals). An analysis of variance (ANOVA)
table and a detailed explanation of the results are only given
for regression models that fulfilled all the mentioned pre-
requisites. 'e detection of potential outliers was carried out
through the Grubbs’ test [45]. Normality testing was per-
formed through histograms and scatterplots of the quantiles
of the data. Under consideration of the sample size, the
Jarque-Bera test statistic was calculated to support normality
testing mathematically. To analyze real-world data, a similar
study by Bartels et al. [36] chose a significance level of α� 0.1.
To reduce the risk of a Type I error, we decided to use a
significance level of α� 0.05 for all statistical tests. 'e

Table 3: Distance covered on each road type.

Test route Route A
(miles)

Route B
(miles) Total (miles)

Total distance 24.7 34.4 59.1
Interstate — 13.6 13.6
Freeways/
expressways 5.6 — 5.6

Other principal
arterial 6.1 19.0 25.1

Minor arterial 1.8 — 1.8
Major collector 6.2 1.8 8.0
Minor collector (2.3) — 4.1
Local road 2.6 — 2.6
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coefficient of determination (R2-adj.) was calculated and
interpreted for all models according to the guidelines of
Cohen [46] to assess all regression models. R2 values for
models with endogenous latent variables can be divided into
a weak explanation of variance (0.02≤R2< 0.13), moderate
explanation of variance (0.13≤R2< 0.26), and strong ex-
planation of variance (R2≥ 0.26).

3. Results

Before carrying out the regression models, the prerequisites
listed in the previous section were checked. Although one
data point for the road type “local road” appeared to be
significantly higher with an average consumption of
0.39 kWh/mile, the Grubbs’ test for outliers did not support
the appearance of an outlier (p � 0.671). 'erefore, no data
points were removed from the data set. According to both
the histogram of the data (Figure 1(a)) and the scatter plot of
sample quantiles versus theoretical quantiles (Figure 1(b)),
the data appeared to be approximately normally distributed.
In addition, the Jarque-Bera test statistic supported evidence
for normally distributed data (p � 0.068).

Table 5 summarizes the descriptive statistics for the
average energy consumption per mile, the speed in miles per
hour (mph), and the variation in speed in mph for all
considered road types. 'e results match presumed speeds
on some road types considering their definition. 'e highest
average and median speed were found on “interstate,” fol-
lowed by “other freeways and expressways” and “other
principal arterial.” In contrast, “local road” and “major
collector” showed average and median speeds than “minor
arterial,” which was related to the second-highest variation
in speed. A comparatively high variation in speed was
discovered on “interstate” and “other freeways and ex-
pressways,” which are typically related to steady speeds. 'e
results further indicated that mean, median, and maximum
average energy consumption were comparatively higher on
“interstate” and “local road.” Meanwhile, the road type
“major collector” had the lowest minimum, median, and
mean energy consumption with 0.0616 kWh/mile,
0.1486 kWh/mile, and 0.1608 kWh/mile, respectively. 'e
highest minimum average consumption per mile was on the
“interstate” with 0.1987 kWh/mile. Data from the road types
“major collector” and “local road” showed higher variation
than other road types with a standard deviation of

0.0685 kWh/mile and 0.0683 kWh/mile, respectively. 'is is
also shown in Figure 2. 'e plot further shows that the road
types “other freeways and expressways” and “other principal
arterial” have more minor variations than some other road
types.

'e results for the first regression model that considered
all factors separately without any interaction effects are
summarized in Table 6.

While the factors “driver” (p � 0.774) and “initial SOC”
(p � 0.065) did not show any significance under the chosen
significance level, “temperature” (p � 0.040) and “road type”
(p≤ 0.001) impacted the energy consumption of the vehicle
significantly. Additionally, all different road types showed
statistical significance. 'is model had a coefficient of de-
termination of 35.95%. According to the Jarque-Bera test for
normality, there was evidence that the residuals were fol-
lowing a normal distribution (p � 0.088). 'e plot of the
residuals versus fitted values is displayed in Figure 3. It
provides further evidence of a linear relationship between
the dependent and the independent variables. Furthermore,
the residuals are randomly distributed along the zero line,
which supports the assumption of homoscedasticity.

An extended ANOVA table is summarized in Table 7.
All road types are significant for the model when con-
sidered separately. Negative coefficients of all road-type
dummy variables provide evidence that driving on the road
type “interstate” is related to the highest consumption with
a coefficient of 0.374 kWh/mile compared to driving on any
other considered road type. For example, driving on “local
roads” would reduce the average consumption per mile by
0.0284 kWh/mile, and driving on the road type “major
collector” by 0.1093 kWh/mile. 'e road types “minor
arterial” and “other principal arterial” have a 0.0647 kWh/
mile and 0.0654 kWh/mile lower consumption than
“interstate.”

'e factors “initial SOC” and “driver” were removed
from the initial model through a stepwise regression process.
'e significant factors “temperature” and “road type”
remained explanatory variables. 'e results provided evi-
dence of the significance of the factor “road type” for the
dependent variable (p≤ 0.001). Although remaining in the
model, “temperature” did not show the significance for BEV
energy consumption (p � 0.136). 'is model had an R2-adj.
of 37.06%. However, the residuals did not follow a normal
distribution (p � 0.024). Due to the violation of this

Table 4: Variables and explanation of computation.

Measure Unit Methodology of calculation

Total energy consumption kWh Transform wattage and voltage information provided at 1Hz intervals to kWh using power-law
and energy equation.

Total distance Miles Sum of speed information (mph) provided at 1Hz intervals is divided by the total duration of the
run.

Average consumption per
mile kWh/mile Total energy consumption of the drive is divided by the total distance.

Speed Mph Average speed for the run.
Driver Categorical Drivers were differentiated by unique IDs and then numbered.

Road type Categorical Road types were differentiated according to the definitions of the division of Statewide Planning
[29].

Temperature °F Average ambient temperature information at 1Hz.
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criterium of linear regression, the results for this model will
not be further explained.

'ree more regressions were modeled, which accounted
for possible interactions between particular variables and
“road type.” All of these models included the continuous
variables “temperature” and “initial SOC.” A model that
included the interaction between “driver” and “road type”
adds one dummy variable for each driver and road type
combination, leading to a total of 180 [30∗ 6] combinations.
However, the coefficient of determination of this model was
R2-adj.�1.169%. 'e residuals did not follow a normal
distribution based on the Jarque-Bera test (p � 0.010). 'e
model will, therefore, not be considered further.

Table 8 summarizes the ANOVA results for the re-
gression model that accounted for interaction between
“temperature” and “road type.” 'e results showed that the
interaction effect “temperature” and “road type” is signifi-
cant for the vehicle’s mean energy consumption (p≤ 0.001).

'e factors “driver” (p � 0.815) and “initial SOC”
(p � 0.085) did not show the significance for the dependent
variable. 'is regression model explained 35.33% of the
variance. 'e Jarque-Bera test statistic indicated that the
residuals followed a normal distribution (p � 0.1652).

Figure 4 plots the model’s residuals versus fitted values
that account for an interaction effect between “temperature”
and “road type.” 'e residuals occurred randomly along the
zero line, which supports the assumption of a linear rela-
tionship. 'ere is also no indication for heteroscedasticity of
the residuals.

An extended ANOVA table for this model can be found
in Table 9, displaying p-values for all “road type” dummies
and their coefficients. 'e respective interaction effects of
“temperature” with the road types “major collector”
(p � 0.021), “minor arterial” (p � 0.040), and “other prin-
cipal arterial” (p � 0.029) were significant. 'e highest effect
on the dependent variable was caused by an interaction
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Figure 1: (a) Histogram and (b) Q-Q plot of average energy consumption per mile for the entire sample.

Table 5: Descriptive statistics of consumption data per mile by road type.

Variable N Mean St. Dev. Minimum Q25 Median Q75 Maximum
Interstate
Energy 60 0.2662 0.0301 0.1987 0.2477 0.2663 0.2885 0.3176
Speed 60 61.4583 5.4816 31.8297 58.6115 62.2175 65.3182 70.0913
Speed variation 60 14.6438 2.984 8.2689 12.6918 14.5925 15.7563 30.3741
Other freeways and expressways
Energy 30 0.2329 0.0178 0.1873 0.2242 0.2373 0.2414 0.2701
Speed 30 55.7797 3.1491 49.3646 54.4795 55.0529 58.0075 62.8758
Speed variation 30 14.3000 2.3692 9.5429 12.4092 14.3427 15.9368 20.4052
Other principal arterial
Energy 90 0.2028 0.0170 0.1739 0.1901 0.1990 0.2103 0.2566
Speed 90 39.0169 3.4641 31.5417 36.933 38.9302 41.2102 49.7854
Speed variation 90 11.588 2.8368 4.822 9.4748 11.4359 13.5615 18.2315
Minor arterial
Energy 30 0.2092 0.0247 0.1654 0.1941 0.2120 0.2172 0.2706
Speed 30 22.1247 2.5702 16.686 20.0286 22.8377 23.685 27.3325
Speed variation 30 12.1563 1.1815 10.1625 11.3649 12.1708 13.1329 14.3568
Major collector
Energy 120 0.1608 0.0685 0.0616 0.1033 0.1486 0.2152 0.2886
Speed 120 29.9445 4.9478 17.9305 26.3254 29.5199 34.0545 40.9641
Speed variation 120 11.2858 1.9104 6.9983 9.8735 11.2197 12.3264 16.844
Local road
Energy 60 0.2438 0.0683 0.1262 0.1773 0.2591 0.2952 0.3900
Speed 60 31.4344 4.3612 17.3194 28.6242 32.3901 34.4652 38.1414
Speed variation 60 9.285 2.4479 5.2914 7.4655 8.809 10.201 16.1907
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Figure 3: Residuals versus fitted values plot for initial model.
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Figure 2: Jitter plot of mean energy consumptions for all road types.

Table 6: ANOVA of the road type analysis.

Source Df SS F value Pr (>F)
(Intercept) 1 0.1535 61.8465 0.0000∗∗∗
Initial SOC 1 0.0085 3.4323 0.0648.

Temperature 1 0.0106 4.2549 0.0399∗
Driver 29 0.0569 0.7909 0.7737
Road type 5 0.5645 45.4916 0.0000∗∗∗
Residuals 353 0.0876
Note. ∗p≤ 0.1,∗p≤ 0.05,∗∗p≤ 0.01,∗∗∗p≤ 0.001.
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between “temperature” and “major collector.” Accordingly,
an increase in “temperature” by 1°F would decrease the
energy consumption by 0.0024 kWh/mile. In contrast,
“temperature” and “road type” have the lowest effect when
driving on an “interstate” with a decrease in consumption of
0.006 kWh/mile for an increase in “temperature” by 1°F. 'e
model led to equal coefficients of −0.0024 for “temperature”
interactions with “minor arterial” and “other principal ar-
terial.” 'e coefficients of “temperature” and “local road,”
and “temperature” and “other freeways and expressways”
were given as −0010 and −0012, respectively. 'is shows that
the effect of temperature is lower on road types related to a
higher general consumption compared to the first model.

A final regression model was analyzed accounting for an
interaction effect between “speed.” Although leading to the
highest coefficient of determination with an R2-adj. of
0.4976, the residuals of this model did not follow a normal
distribution (p≤ 0.001). 'erefore, the condition of nor-
mally distributed residuals was not met, and the model could
not be considered for the analysis.

4. Discussion

Different regression models were used to investigate the
impact of road type on electric vehicle efficiency. All ex-
planatory variables (i.e., “initial SOC,” “driver,” “tempera-
ture,” and “road type”) were initially considered separately.
'is first model showed the highest explanation of variance
with a coefficient of determination of 35.95%. Furthermore,
there was evidence for homoscedasticity of the data. 'e

model discovered that both the factor “temperature” and the
factor “road type” are significant for the energy consumption
of electric vehicles. Road types, in general, appear to impact
BEV efficiency significantly. Accordingly, a fully charged
battery operating at a battery service life optimal ambient
temperature of 68°F [16, 17] driving on an “interstate” would
lead to the highest energy consumption. Figure 5 visualizes
the consumption behavior under the given circumstances
for all drivers on different road types.

'e black line displays themean of the fitted values for all
drivers. Driving on an “interstate” would lead to an average
consumption of 0.2367 kWh/mile in the applied setting. 'e
negative regression coefficients have shown that driving on
any other considered road type would increase the vehicle’s
efficiency. For example, driving on a “local road” as the
second-largest energy-consuming road type would lead to
an average consumption of 0.2082 kWh/mile. Ceteris par-
ibus, the lowest average consumption, was related to driving
on a “major collector,” which was associated with a con-
sumption of 0.1273 kWh/mile on average among all drivers.
'e remaining considered road types, “other freeways and
expressways,” “other principal arterial,” and “Minor Arte-
rial,” show similarity in terms of means of the fitted values.
Table 10 summarizes the relative change in mean energy
consumption from one road type based on the fitted values
of the first model. BEVs operate most efficiently on “major
collectors” with a savings potential of 46% when choosing
this road type over an “interstate.” Avoiding the “interstate”
in all cases leads to a reduction in consumption per mile of at
least 12%. Avoiding “local roads” can save between 5% and
38% if choosing an alternate road type that is not an “in-
terstate.” 'e difference in efficiency between “minor arte-
rial” and “other principal arterial” is only marginal and does
not appear to be significant when choosing one over the
other.

While this study differentiated between road types more
carefully than previous studies, the results align with find-
ings in [21], which found that in-city driving is related to
higher consumption levels than freeway driving, assuming
that in-city driving means a high ratio of “local roads.” 'e
relatively high average consumption level on “local roads”
might be caused by the high variation in speed on these
roads, which are often interrupted by intersections. In
Bingham et al. [22], it was stated previously that less ac-
celeration and deceleration could reduce the average con-
sumption of BEVs. Since one of the road type classification
criteria is the ability of a road to move traffic [29], the
relatively high consumption on “local roads” is consistent
with Bingham et al.’s findings. In other words, “local roads”
are not designed to move high traffic volumes while ensuring
uninterrupted flow.

'is study could not confirm previous findings by Yao
et al. [14], who found in their study that BEVs perform the
least efficiently on principal arterial roadways. While their
underlying definition of this type of road might differ, “other
principal arterials” were not related to the highest con-
sumption in this study. 'e results provided evidence that
“interstates” in particular lead to high consumption, which
contradicts the results of [23]. 'e authors posited that a

Table 7: Extended ANOVA table of the road type analysis.

Source Df SS F value Pr (>F)
(Intercept) 1 0.0476 61.8465 0.0000∗∗∗
Initial SOC 1 0.0002 3.4323 0.0648.
Temperature 1 0.0008 4.2549 0.0399∗
Driver 1 1 0.0217 0.0324 0.8574
Driver 2 1 0.0197 0.2440 0.6220
Driver 3 1 0.0196 0.0888 0.7659
⋮ ⋮ ⋮ ⋮ ⋮
Driver 30 1 0.0231 1.2769 0.2590
Freeway/expressway 1 0.0115 12.2220 0.0005∗∗
Local 1 0.0094 9.1264 0.0027∗∗
Major collector 1 0.0081 180.3918 0.0000∗∗∗
Minor arterial 1 0.0115 31.4945 0.0000∗∗∗
Other principal arterial 1 0.0084 60.7776 0.0000∗∗∗
Residuals 353
Note. ∗p≤ 0.1,∗p≤ 0.05,∗∗p≤ 0.01,∗∗∗p≤ 0.001.

Table 8: ANOVA of the road type analysis with interaction effect of
road type and temperature.

Source Df SS F value Pr (>F)
(Intercept) 1 0.1158 46.2141 0.0000∗∗∗
Initial SOC 1 0.0075 2.9865 0.0848.

Driver 29 0.0551 0.7578 0.8150
Temperature× road type 6 0.5561 36.9845 0.0000∗∗∗
Residuals 353 0.8846
Note. ∗p≤ 0.1,∗p≤ 0.05,∗∗p≤ 0.01,∗∗∗p≤ 0.001.
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significant difference between highway and nonhighway
driving could not be found. Again, the underlying defini-
tions used in [23] and this study might differ and could be
caused by general differences in classification criteria be-
tween the U.S. and Denmark. Furthermore, the study
showed that BEV discharge behavior could be fundamen-
tally different from ICEV fuel consumption behavior. No-
tably, while ICEVs perform more efficiently on road types
with steady speeds (e.g., highways and interstates) [7], BEVs
appear to behave more efficiently on different road types
(i.e., “principal arterials” and “minor arterials”). 'e only
road type where ICEVs and BEVs are relatively efficient is on
“major collectors” [7].

While the results of this study have provided evidence
that BEVs’ discharge behavior depends on the used type of
road, other factors impact BEV efficiency. More specifi-
cally, with an increase in ambient temperature, BEVs

operate more efficiently. 'is behavior aligns with studies
on battery performance in different temperatures [15–17].
Batteries are, in general, less efficient in extreme tem-
peratures [47]. 'e factor, “initial SOC,” was insignificant
as previously also shown in [37]. 'e control variable
“driver” was not found to significantly impact the energy
consumption of electric vehicles. 'is variable was used as
a control variable. Its insignificance was likely due to the
homogeneous driver demographics of the sample (all
participants were students under the age of 30 and had no
previous experience in BEV driving). 'is result aimed to
mitigate the effect of variation in driving styles. It should
be stated that previous studies demonstrated the impact of
driver behavior (e.g., aggressive versus nonaggressive) on
BEV efficiency [18, 19, 48]. Furthermore, the impact of
traffic congestion on BEV consumption behavior was
minimized to the extent possible by controlling for the
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Figure 4: Residuals versus fitted values plot for the model with interaction effect of road type and temperature.

Table 9: Extended ANOVA table of the road type analysis with interaction effect of road type and temperature.

Source df SS F value Pr (>F)
(Intercept) 1 0.0460 46.2141 0.0000∗∗∗
Initial SOC 1 0.0002 2.9865 0.0848
Driver 1 1 0.0218 0.0471 0.8287
Driver 2 1 0.0198 0.2323 0.6301
Driver 3 1 0.0197 0.1063 0.7448
⋮ ⋮ ⋮ ⋮ ⋮
Driver 30 1 0.0233 1.450 0.2293
Temperature× interstate 1 0.0008 0.6972 0.4041
Temperature× freeway/expressway 1 0.0008 2.375 0.1242
Temperature× local 1 0.0008 1.748 0.1869
Temperature×major collector 1 0.0008 9.591 0.0021∗∗
Temperature×minor arterial 1 0.0008 4.231 0.0404∗
Temperature× other principal arterial 1 0.0008 4.818 0.0288∗
Residuals 353
Note. ∗p≤ 0.1,∗p≤ 0.05,∗∗p≤ 0.01,∗∗∗p≤ 0.001.
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time of the runs and, therefore, not accounted for.
However, it should be mentioned that the negative effect
of traffic on BEV performance was previously discovered
in Jonas et al. [49].

A stepwise selection did not lead to a better model
because the residuals for the model without the factors
“driver” and “initial SOC” did not follow a normal dis-
tribution. 'is was also found in the model accounting for
the interaction between “road type” and “driver.” In
contrast, the model including the interaction between
“temperature” and “road type” led to residuals following a
normal distribution. 'us, the model could explain almost
the same percentage of variance as the first model. 'e
model demonstrates that individual interactions between
the road types “minor arterial,” “major collector,” and
“other principal arterial” with the factor “temperature” are
individually significant for BEV discharge behavior. More
specifically, the effect of temperature varies with the road
type. Accordingly, the lowest energy savings potential per
1°F increase in ambient temperature can be observed on
“interstates” (−0.006 kWh/mile), followed by “local roads”
(−0.0010 kWh/mile), “other freeways and expressways,”
and “other principal arterials,” and “minor arterials” (both
−0.0017 kWh/mile). Finally, the highest savings potential
was found for “major collectors” with a reduction in av-
erage energy consumption of 0.0024 kWh/mile per 1°F
increase in ambient temperature.

Both models demonstrated the importance of road type
for the efficiency of BEVs and contributed to a deeper
understanding of BEV consumption behavior. Future
studies aiming to improve BEV-specific routing and es-
tablish consumption estimation models should consider
road types as an essential variable. Drivers can consider these
results in improving their eco-driving behavior and, hence,
extending achievable ranges significantly by adjusting their
route choices accordingly. Furthermore, the results of this
study can be implemented into smart routing applications to
increase the eco-driving potential. Adjustments to routing
made by drivers and service providers can reduce the im-
peding effect of range anxiety and contribute to BEV
adoption.

5. Conclusion

Understanding the consumption behavior of BEVs and
driving factors is essential to reducing the barriers to
widespread adoption. 'is study is the first to implement
an analysis that captures the effect of carefully differen-
tiated road types on the energy consumption of BEVs
while using real-world driving data by a sample of BEV-
inexperienced drivers. Multiple models have been ana-
lyzed and compared. We discovered that the type of road
is crucial for the BEV consumption of BEVs. Considering
the type of road in driver’s route choices and BEV-specific
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Figure 5: Fitted values for drivers and different road types.

Table 10: Energy consumption comparison matrix.

Road type Interstate (%) Freeway/expressway Principal arterial Major collector Minor arterial Local
Interstate −17.02% −27.62% −46.20% −27.32% −12.01%
Freeway/expressway 20.51 −12.77% −35.17% −12.41% 6.03%
Principal arterial 38.15 14.64% −25.68% 0.41% 21.55%
Major collector 85.89 54.25% 34.56% 35.11% 63.56%
Minor arterial 37.59 14.17% −0.41% −25.98% 21.06%
Local 13.66 −5.69% −17.73% −38.86% −17.39%
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smart routing applications offers significant energy sav-
ings potential of up to 46%.We discovered that the highest
consumption levels are related to driving on “interstates”
and “local roads.” 'e performance of BEVs was found to
be significantly less efficient on roads that allow for high-
speed traveling (i.e., “interstates”) and roads with defi-
cient mobility that interrupt traffic regularly (i.e., “local
roads”). 'e results provide strong evidence of the im-
portance of route choice on BEV efficiency.

However, there are limitations to the study. 'e road
type “minor collector” could not be considered in this study
due to unforeseen construction. Further research is needed
to determine the effect of this specific road type on energy
consumption. 'ere was no slope data available for the test
drives, meaning the effect of elevation differences was not
considered as a factor that may have affected the results.
Future work should consider slope or elevation data since
the interaction between the type of road and the slope is
presumed but not currently quantified. Traffic data were not
available for the test routes during data collection. Traffic
volume and environment often correlate with the type of
road. 'erefore, considering traffic and intersection mea-
sures in future studies would be a beneficial extension of this
study. Additionally, test runs were undertaken by a small
and homogeneous sample of drivers. Testing with a broader
and more diverse sample of drivers would account for
differences in driving behavior.

'e findings of this study can be used by service pro-
viders, academics, and BEV users to improve energy-optimal
route planning and range forecasts. In addition, the practical
consideration of these findings can help BEV drivers to
successfully apply and optimize eco-driving strategies that
extend achievable ranges. 'e results thereby contribute to a
better understanding of BEV efficiency factors and facilitate
the transition to low-emission transportation systems.
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