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With the development of freeway system informatization, it is easier to obtain the traffic flow data of freeway, which are widely
used to study the relationship between traffic flow state and traffic safety. However, as the development degree of the freeway
system is different in different regions, the sample size of traffic data collected in some regions is insufficient, and the precision of
data is relatively low. In order to study the influence of limited data on the real-time freeway traffic crash risk modeling, three data
sets including high precision data, small sample data, and low precision data were considered. Firstly, Bayesian Logistic regression
was used to identify and predict the risk of three data sets. Secondly, based on the Bayesian updating method, the migration test
towards high and low precision data sets was established. Finally, the applicability of machine learning and statistical methods to
low precision data set was compared. +e results show that the prediction performance of Bayesian Logistic regression improves
with the increasing of sample size. Bayesian Logistic regression can identify various significant risk factors when data sets are of
different precision. Comparatively, the prediction performance of the support vector machine is better than that of Bayesian
Logistic. In addition, Bayesian updating method can improve the prediction performance of the transplanted model.

1. Introduction

In recent years, the potential safety hazard of new energy
vehicles has gradually attracted attention, especially the
accident of pure electric vehicles [1, 2]. As new energy
vehicles and shared vehicles enter the freeway, they are also
facing the risk of traffic collisions. As one of the important
subsystems of the road system, the freeway greatly facilitates
people’s travel and improves the transportation efficiency of
goods. At the same time, because of the large traffic volume
and fast speed of vehicles on freeways, relatively serious
traffic crashes are easy to occur, which brings great harm to
the safety of people’s lives and property. Freeway traffic crash
has become one of the problems that cannot be ignored [3].

A large number of scholars have done extensive re-
searches on traffic safety. Some scholars analyzed the in-
ternal relationship between the factors causing accidents
and the distribution law of accidents based on the historical

traffic accident data collected and then put forward the
corresponding countermeasures. For example, considering
the differences in time, Yuan et al. adopted an improved
association rule mining algorithm to analyze the associa-
tion among the influencing factors of freeway traffic
crashes, in which the hidden association rules were found
and the accuracy of the algorithm was improved [4]. Tian
et al. analyzed the temporal and spatial distribution
characteristics of freeway crashes in mountainous areas
based on historical crash data, identified the significant
influencing factors, and proposed corresponding im-
provement strategies [5]. Some scholars have analyzed the
main influencing factors of accidents according to specific
accident scenarios. Mergia et al. analyzed the crash at the
junction. It was pointed out that drunk driving and
overspeed have increased the severity of crashes in the
diverging area, bad weather increased the severity of
crashes in the merging area, and adverse linear conditions
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would increase the severity of crashes in the diverging area
[6]. Xin et al. studied the factors not observed, proving that,
under different severities, driving behaviors, environ-
mental characteristics, and other factors have significant
differences in the impact of the crash rate [7]. Haghighi
et al. studied the impact of road design features on crashes
and found that 10-foot wide lanes and narrower shoulder
were significantly associated with crash severity and in-
creased vehicle density and guardrail length could reduce
crash severity [8]. In order to study the influence of drivers’
ages on crash severity, Osman et al. constructed a gener-
alized ordered response probit model to reduce the in-
terference of heterogeneity and found that each variable in
different age groups had a different influence on crash [9].
Xu et al. introduced the Bayesian spatial random coefficient
model to consider the heterogeneity of spatial structure and
unstructured data when studying the spatial variation law
of crash rate and cause factors, which improved the fitting
effect of the model and verified that the existence of spatial
structure heterogeneity would cause bias to parameter
estimation [10]. Wang et al. explored risk factors’ influence
on urban traffic crashes frequency while considering both
the spatial and temporal correlation/heterogeneity of traffic
crashes. +e linear regression model, spatial lag model
(SLM), spatial error model (SEM), and time-fixed effects
error model (T-FEEM) were established and compared,
respectively [11]. To figure out the factors relating to crash
risk in different regional types and their inner relation,
Yang et al. took three sections of highway (areas of
downtown, suburb, and mountain, in Washington State,
USA) as the research object and, based on AHP improved
Apriori association rule mining algorithm, identified the
crash risk influencing factors and their complex association
rules were [12]. Li et al. investigated the possibility of using
support vector machine (SVM) models for crash injury
severity analysis and compared the performance of the
SVM model and the order probit model. It was found that
the SVM model produced better prediction performance
for crash injury severity than did the OP model [13]. In
addition, Logit and Tobit models are also widely used in
traffic crash analysis [14–22].

With the development of freeway informatization and
the improvement of dynamic traffic management, the
real-time crash risk model has been widely studied
[23–26]. Based on loop detector data and crash data
collected by the Shanghai expressway system, Sun et al.
established a Bayesian network (BN) model to analyze
real-time traffic flow parameters and crash risk of ex-
pressway [27]. You et al. established a support vector
machine model to analyze highway traffic flow data for
rear-end crash. +e results showed that the SVM classifier
has high practical value and reliability of real-time crash
prediction based on traffic flow data of a single volume

detector [28]. Xu et al. established a crash risk prediction
model based on traffic flow data and meteorological data
by using the Logistic model based on American freeway
data. +e results showed that weather conditions have a
significant impact on crash risk [29]. Ma et al. established
a crash risk assessment and analysis model using highway
crash data and real-time traffic flow data. +e significant
variables were selected by a random forest algorithm, and
the support vector machine model was established. +e
evaluation ability of models under different kernel
functions was compared. +e results showed that the
model could effectively evaluate road crash risk based on
real-time traffic flow [30, 31].

+e traditional “postevent” traffic safety analysis can
analyze the main influencing factors of crash occurrence, but
it is difficult to reflect the influence of dynamic traffic flow
characteristics on crash risk. At present, most of the re-
searches on using traffic flow data to establish real-time crash
risk models are based on existing data for modeling and
analysis. However, different regions have different levels of
development, and the data collection of traffic flow and
traffic crash will be different. +en does the traffic flow
variable also have a significant impact on the occurrence of
traffic crashes? If the impact is small, can certain technical
means be used to improve the accuracy of the corresponding
model?

In order to study the above questions, based on the basic
data necessary for the real-time crash risk model, this paper
constructs three types of data sets: (1) high precision data set;
(2) small sample data set; (3) low precision data set. On the
basis of the above three types of data sets, statistical and
machine learning methods are used to study the classifi-
cation and prediction performance of the model under
different data sets, and the applicability of the twomethods is
further analyzed.

From the perspective of data, this paper uses statistical
Logistic regression, Bayesian theory, and support vector
machine to simulate the impact of different types of data on
real-time crash risk modeling. Furthermore, the applicability
of different methods under different data types is compared.
+e conclusions of this paper can be used as a reference for
the subsequent practice and research of highway traffic
safety.

2. Data Description

2.1. $e Data Source. +is paper selects the traffic flow and
traffic crash data of milepost 100–132 of I-5 in Washington
State in 2016. Figure 1 describes the main freeway section in
the study area.

In 2016, a total of 332 traffic crashes occurred in this
freeway section. In the selected area, 152 groups of loop
detectors are arranged bidirectional, and the average
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distance between adjacent loops is about 0.7 km. Each loop
detector collects average speed, occupancy, and traffic vol-
ume in each lane over a 20-second period.

2.2. Variable. In existing studies, traffic flow data of 5-
minute lumps are used for analysis, and good research re-
sults are obtained [8–13]. +erefore, this paper adopts traffic
flow data of 5-minute lumps for analysis, mainly including
the volume, speed, and occupancy rate of each lane.+e time
period of 5–10 minutes before the crash is selected and two
groups of upstream and downstream loop detectors were
taken into account, as shown in Figure 2.

In addition to the basic data detected by the loop detector
above, such as volume, speed, and occupancy of upstream
and downstream loops, this paper combines the traffic flow
variables as follows [2]. Considering that the difference
values in volume, speed, and occupancy between upstream
and downstream loops may lead to vehicle crash, the ab-
solute value of the difference values between volume, speed,
and occupancy between upstream and downstream loops is
constructed. At the same time, the lateral crash between
lanes is also one of the main forms of crash. +e average
difference values of volume, speed, and occupancy between
adjacent lanes are constructed to describe the related vari-
ables of lateral collision. +e specific meanings are shown in
Table 1.

2.3. Sample Structure Design

2.3.1. High Precision Data Set Sample. High precision data set
refers to the traffic flow data and traffic crash data collected by
the American freeway system as the standard.+e freeway loop

detector in the United States has a high laying density, and the
traffic crash information is collected completely.

In this paper, the paired sampling method is adopted to
match control samples, and noncrash data under the same
conditions are extracted for each crash data with a ratio of
1 : 4. +e ratio of crash data to noncrash data is 1 : 4 for
matching [2]. After data preprocessing, 191 traffic crash
data and 764 noncrash data are obtained. +e high pre-
cision data set sample is shown in Figure 3.

2.3.2. Small Sample Data Set. In order to study the influence
of data sample size on the real-time crash risk model
constructed, it is necessary to obtain small sample data with
different sample sizes. +e main ideas of constructing small
sample data set in this paper are as follows: obtain andmatch
the high precision data set, and extract data from the high
precision data set in a proportion of 5%, 10%, 20%, 30%, and
50%, so as to construct small sample data set of different
proportions. +e small sample data set is shown in Figure 4.

Figure 1: Study section of freeway.

Traffic flow direction

Location of crash

Upstream detector Downstream detector

Figure 2: Traffic crash diagram.
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Table 1: Variable name and physical meaning.

Variable Meaning Variable Meaning
up_v +e upstream volume down_o Average downstream occupancy

up_s Average speed of upstream traffic volume down_dif_v Average absolute value of volume difference between
adjacent downstream lanes

up_o Average upstream occupancy down_dif_s Average absolute value of speed difference between
adjacent downstream lanes

up_dif_v Average absolute value of volume difference between
adjacent upstream lanes down_dif_o Average absolute value of occupancy difference between

downstream adjacent lanes

up_dif_s Average absolute value of speed difference between
adjacent upstream lanes abs_dif_v Absolute value difference between upstream and

downstream volume

up_dif_o Average absolute value of occupancy difference
between upstream adjacent lanes abs_dif_s Absolute value of speed difference between upstream and

downstream

down_v +e downstream volume abs_dif_o Absolute value difference between upstream and
downstream occupancy

down_s Average speed of downstream traffic volume

Figure 3: High precision data set sample.

Figure 4: Small sample data set.
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2.3.3. Low Precision Data Set Sample. Low precision data set
refers to the data set constructed from the data collected by
the detectors with lower density compared to the US freeway
system. Considering that the data is difficult to obtain, this
paper constructs a low precision data set through certain
manual processing methods. Compared with the freeway
system in the United States, many freeways in China do not
have complete loop detection devices, and the distance
between the detectors is relatively long. In this paper, the
average distance between detectors of a certain section of
freeway in China is taken as a reference, and the freeway data
of the US is used to construct a low precision data set. +e
low precision data set sample is shown in Figure 5.

+e main processing ideas are shown in Figure 6.
Manually delete part of the loop number in the loop file so
that the average distance between the remaining loops is
approximately equal to the reference value. +en the pro-
cessed loop file is used to match the data set to get the low
precision data set. After screening, there are a total of 32
bidirectional loops. +e low precision data set is screened by
paired sampling method, and 161 crash data and 644
noncrash data were obtained.

3. Real-Time Crash Risk Prediction Model

3.1. Bayesian Logistic Regression. Logistic regression is a
generalized linear regression model commonly used in
statistical methods. Based on the binomial Logistic regres-
sionmodel, this paper establishes a crash risk model between
freeway crashes and real-time traffic flow [23, 28]. +e crash
probability corresponding to a certain data in the research
data set is shown as follows:

P xi(  �
1

1 + e
− x ′

i
β

, i � 1, 2, . . . , n, (1)

where xi represents the i th data; P(xi) represents the
probability value of crash occurrence; −xi

′β represents a
linear combination of explanatory variables and their
coefficients.

+e Bayesianmethod is used to estimate the coefficients of
the Logistic regression model. +e Bayesian method assumes
that all unknown parameters in the model are random var-
iables. Before establishing the Bayesian model M, it is nec-
essary to set the prior probability distribution π(Θ | M) of all
parameters Θ in the model, which represents the known
information of this parameter before obtaining the training
data Y. After obtaining the training data Y, the Bayesian
statistical model makes statistical inference on Θ through the
posterior probability distribution. According to the Bayesian
theorem, the posterior probability distributionf(Θ | Y, M) of
parameter Θ in model M can be expressed as follows:

f(Θ | Y, M) �
f(Y,Θ | M)

f(Y | M)

�
f(Y |Θ, M)π(Θ | M)

 f(Y,Θ | M)dΘ
∝f(Y |Θ, M)π(Θ | M).

(2)

Formula (2) shows that the posterior probability dis-
tribution of parameter Θ takes into account both the in-
formation contained in the training data Y and the known
information of parameter Θ. f(Θ | Y, M) is the posterior
distribution of parameter Θ in model M under given
training data Y. f(Y,Θ | M) is the joint probability distri-
bution of Y and Θ in model M. f(Y | M) represents the
marginal probability distribution of model M, that is, the
probability distribution of training data Y under given
conditions. π(Θ | M) represents the prior probability dis-
tribution of parameter Θ in model M before obtaining the
training data Y. f(Y |Θ, M) is the likelihood function of
model M.

3.2. Bayesian Updating Method. Based on the Bayesian
updating method, the Bayesian Logistic regression model is
established to transmigrate the real-time crash of freeways
[32]. +e Bayesian method can obtain the posterior prob-
ability distribution of each parameter in the model so that
the prior probability distribution can be reset during model
transplantation.

+at is, when low precision data set Y1 is used to es-
tablish a real-time crash risk model, the Bayesian method
can be used to obtain the posterior probability distribution
of each risk factor. When high precision data set Y2 needs to
establish the Logistic regression model and transplant it to
low precision data set, the posterior probability distribution
of the risk factors in the previous model can be used as the
prior probability distribution of the risk factors in the new
model, as shown in the following formula:

π β | Y1, Y2( ∝f Y1, Y2 | β( π(β)

� f Y2 | Y1, β( f Y1 | β( π(β)∝f Y2 | β( π β | Y1( .
(3)

Schematic diagram of the Bayesian updating method is
shown in Figure 7.

π(β | Y1, Y2) is the posterior distribution of parameter β
under given data sets Y1 and Y2; f(Y1, Y2 | β) is the like-
lihood function; π(β) is the prior probability distribution of
parameter β; f(Y2 | Y1, β) is the likelihood function given
data set Y1 and parameter β; f(Y1 | β) and f(Y2 | β) are the
likelihood functions; π(β | Y1) is the posterior distribution of
parameter β under given data set Y1.

3.3. Support Vector Machine. Support vector machine
(SVM) is a machine learning classification algorithm based
on statistical theory [26, 27]. It can obtain the optimal so-
lution through existing information and can deal with small
samples or limited samples well. In the sample space, the
linear SVM divides the hyperplane by ωTx + b � 0 to dis-
tinguish the labeled data set, where ω is the normal vector
and b is the displacement term.

+e distance between any point x in the sample space
and the hyperplane can be written as

r �
ωT

(x + b)




‖ω‖
. (4)
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Figure 5: Low precision data set sample.

Traffic flow direction

High density loops

Low density loops

Artificial processing

Detector

Figure 6: Schematic diagram of freeways with different loop densities.

Data set Y1

Data set Y2

A posterior distribution
of risk factors

As a prior distribution
of risk factors

New model

Bayesian Logistic

Bayesian Logistic

Model 1

update

Figure 7: Schematic diagram of Bayesian updating method.
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For labeled sample data sets Y � (y1, y2, . . . , yn, ), +1 is
accident data, and −1 is nonaccident data. If it can be
correctly classified, it can be

ωTxi+b≥+1,yi�+1,

ωTxi+b≤−1,yi�−1.
 (5)

When the sample dimension is high, it may lead to linear
inseparability of sample data. +e processing method of
SVM for this situation is to raise the dimension of the sample
data, convert the linear nonfraction data in the low di-
mensional space into linearly separable data in the high-
dimensional space, and then use the linear SVM to find the
optimal classification surface in the high-dimensional space.

3.4. $e Evaluation Index. In the data classification model,
accuracy can intuitively display the overall classification
performance of the model, which is expressed as the pro-
portion of the correctly classified sample results in the total
sample among all samples as shown in the following
formula:

Accuracy �
TP + TN

TP + TN + FP + FN
, (6)

where TP represents the number of samples predicted to be
positive; TN represents the number of samples that pre-
dicted negative classes as negative classes; FP represents the
number of samples that predicted the negative category as
the positive category; FN represents the number of samples
that predicted positive classes as negative classes.

+e confounding matrix shown in Table 2 can directly
display the classification results of the model and calculate
the corresponding true positive rate (TPR) and false-positive
rate (FPR) indexes.

TPR �
TP

TP + FN
,

FPR �
FP

FP + TN
.

(7)

+e receiver operating characteristic (ROC) curve can be
drawn by using TPR and FPR.+e ROC represents the curve
of the prediction accuracy of the data set under different
probability thresholds. +e AUC value of the area under the
ROC curve can be calculated to measure the quality of the
model. +e closer the AUC value is to 1, the better the
performance of the model.

4. Results and Discussion

4.1. Analysis of the Results from Small Sample Data Sets.
In order to study the influence of different sample size data
sets on the established crash risk model, Bayesian Logistic
regression is used to establish models for the extracted 5%,
10%, 20%, 30%, and 50% high precision data sets, respec-
tively. Table 3 shows the significant risk factors screened by
Logistic stepwise regression for each data set.

By comparing the significant risk factors of the models
with different sample size data sets, it is found that the

sample size does affect the real-time crash risk model.
Different models not only share the same (i.e., the same
impact factors) but also have their own characteristics. It
provides a basis for subsequent analysis.

As can be seen from Table 3, the speed of the upstream
loop (up_s) is a significant variable of each data set. It shows
that, for different data sets, upstream is a significant factor
affecting the occurrence of crashes, which plays an impor-
tant role in explaining the causes of crashes. At the same
time, there were differences in other risk factors among each
data set. Some risk factors were significant in one small
sample, but not in others. +is shows that each small sample
data set has different characteristics and has certain dif-
ferences for the establishment of the real-time crash risk
model.

Figure 8 is the ROC curve and AUC value diagram of the
real-time crash risk model established by the Bayesian Lo-
gistic regression method with different small sample data
sets.

As can be seen from Figure 8, the change of the AUC
value of the real-time crash risk model established by
Bayesian Logistic regression does not increase with the
increasing of sample size of the data set but is in a state of
fluctuation. However, the overall trend of AUC value is
decreasing.

For each collision, the traffic flow state is different.
When the sample size of the data set is different, the
structure of the data set is more complex. +e significant
risk factors screened by the Bayesian Logistic model
established for each set of data mainly explain the pre-
dictive classification effect of the data set. And the sig-
nificant risk factor of each data set is the optimal
combination screened by the model. +erefore, there will
be different results of collision precursors under different
data sets. As mentioned above, as the sample size increases,
the data set structure becomes more complex. Under the
given combination of significant risk factors in different
data sets, the probability of accidents is more complex, so
the AUC index of the model will be reduced.

With the increase of sample size, the number of traffic
crashes also increases. At this point, the diversity of traffic
flow states of traffic crashes increases. From the screening of
risk factors, it can be seen that the combination of risk
factors changes with different sample sizes. Both the com-
mon significance factors (such as up_s) and the unique
significance factors of each data set are included. Different
traffic flow states make the data structure diverse. +erefore,
the accuracy of models based on different data sets may be
reduced. At the same time, due to the increase of data
volume, the amount of traffic crash data increases. Although
the AUC value of the overall model decreases, it is still
around 0.7 or even a little higher, indicating that the number
of traffic crashes correctly classified increases, too. It also
indicates that while the sample size increases, though the
sample structure is diverse, the law of data can be extracted
as the sample size increases. +is is the improved classifi-
cation performance of the model.+e increase of sample size
can improve the prediction performance of the real-time
crash risk model.
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4.2. Reliability Verification of Model Transferability

4.2.1. Low Precision Data Set and High Precision Data Set
RiskModel Comparison. Stepwise Logistic regression is used
to screen the factors that had a significant impact on the risk
model, and the Bayesian method is used to estimate the
coefficients of the model. Table 4 shows the model com-
parison after the coefficient estimation of significant risk
factors.

As can be seen from Table 4, there are partially the
same explanatory variables with significant levels between
low precision and high precision data sets, such as
abs_dif_o and up_s. +ese two explanatory variables in-
dicate that, in the two data sets, both the speed of up-
stream loop and the absolute value of occupancy
difference between upstream and downstream loop can
effectively explain the causes of crashes. +e difference
between the two sets of data sets is that up_dif_o in the low

precision data set has a significant explanatory effect on
the model, while down_dif_v and up_dif_s in the high
precision data set have a stronger explanatory effect on the
model. In the coefficient estimation, it can be found that the
estimated 95% confidence interval of each coefficient does not
contain 0, indicating that the coefficient estimation is sig-
nificant. +e average upstream speed (up_s) coefficient of the
two models is negative, indicating that, within the specified
driving speed range of expressways, the decrease of average
upstream speed by one unit will lead to an increase in crash
risk.

Each piece of data is classified, and the accuracy of the
model established by the two sets of data sets is shown in
Table 5.

At the same time, the confusion matrix of two data sets
for model classification and prediction is shown in Tables 6
and 7.

+e ROC curve and AUC values of the model established
on the basis of the two data sets are shown in Figure 9.

+rough the comparison of the above indicators, it can
be found that when the data set established with relatively
sparse loop density is used to establish the Bayesian Logistic
regression model, the classification accuracy of the model is
70.68%, slightly lower than the classification accuracy of the
high precision data set with large loop density which is
73.30%. However, the model AUC value of low precision
data set is 0.656, which is much smaller than that of high
precision data set. +e reasons are as follows: there are few
explanatory factors in the low precision data set, and the data
information is lost, which affects the accuracy of the model
to some extent. In contrast, when the loop density is larger,
more traffic flow information can be collected, and traffic
variables that have a significant impact on traffic crashes can
be screened out, thus making the model more accurate.

4.2.2. $e Application of the Model of the High Precision
Data Set-Based Model Low Precision Data Set. Applying the
model of high precision data set to low precision data set, the
classification accuracy is 69.3%, and the confusion matrix is
shown in Table 8.

+e ROC curve and AUC value obtained are shown in
Figure 10.

Directly applying the model established by high preci-
sion data sets to low precision data sets, the classification
results are worse than those established by previous low
precision data sets. When using Logistic regression to screen
variables, the optimal variable combinations of the two data
sets are different. In the process of parameter estimation, the
model obtained is the best fit of the best variables under each
set of data. +erefore, when applied to other data sets, there

Table 2: Confusion matrix.

Predict
Total

Positive Negative

Actual Positive TP FN TP+FN
Negative FP TN FP+TN

Total TP + FP FN+TN TP+FN+FP+TN

Table 3: Significant variables in small sample data sets.

Data sets Risk factors
5% small sample up_s
10% small sample up_s, down_v, abs_dif_s, and up_dif_v
20% small sample up_s, down_s, up_o, and down_v
30% small sample up_s and down_dif_v
50% small sample up_s, down_dif_v, up_dif_s, and abs_dif_o
At the level of significance of 0.05.

tp
r

0.0

0.0

0.5

0.4

0.6

0.8

1.0

0.2 0.4
fpr

0.6 0.8 1.0

20% Sample size: AUC= 0.695

30% Sample size: AUC= 0.745

50% Sample size: AUC= 0.702

5% Sample size: AUC= 0.789

10% Sample size: AUC= 0.777

Figure 8: +e ROC curve and AUC value of the model were
established with a small sample data set.
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will be inapplicable situations. It can be seen that direct
transplantation of the model cannot achieve a better pre-
diction classification effect.

4.2.3. Bayesian Updating towards High Precision Data Set
Model and Low Precision Data Set Model. (a) +e Bayesian
updating method was used to update and transplant the
model established by the original high precision data set.+e
posterior distribution of parameter estimation of the low
precision data set model variables was regarded as the prior
distribution of parameter estimation of the high precision
data set model and then updated it. +e results obtained are
shown in Table 9.

+e classification accuracy of the updated high precision
data model is 68.94%, and the confusion matrix is shown in
Table 10. ROC curve and AUC value obtained are shown in
Figure 11.

(b) +e Bayesian updating method was used to update
and transplant the model established by the original low
precision data set. +e posterior distribution of parameter
estimation of the high precision data set model variables was
regarded as the prior distribution of parameter estimation of
the low precision data set model and then updated it. +e
results obtained are shown in Table 11.

+e classification accuracy of the updated low precision
data set model is 70.83%, and the confusion matrix is shown

in Table 12. ROC curve and AUC value obtained are shown
in Figure 12.

By updating the model established by the high precision
data set, it can be found that the prediction accuracy of the
model cannot be effectively improved when the model is
applied to the low precision data set before and after
updating.+e prediction accuracy is 69.3% before the update
and 68.94% after the update, which decreases by 0.36%, and
the AUC value decreases by 0.002.

By updating the model established by the low precision
data set, it can be found that the prediction accuracy of the
model is 70.68% and 70.83%, respectively, before and after
the model is applied to the low precision data set, and the
classification accuracy is improved by 0.15%. In addition, the
AUC value increases from 0.656 to 0.657.

+e classification accuracy of the model is 70.68% in
the low precision data set. Based on the evaluation index
of the model, the classification accuracy of the model
transplant results is improved to a certain extent.
+erefore, 69.3% could not meet the requirements, while
the result of another model transplantation reached the
requirements of 70.83%. In comparison, the improvement
of the model is smaller, only 0.15%. However, in the field
of traffic safety, it will have practical application signifi-
cance to improve certain accuracy. In the follow-up re-
search, better models or methods can be further proposed
to make the results of model transplantation better. It can
be seen from the above that the Bayesian updating method
can improve the model transplantation effect to a certain
extent, but the overall effect is limited, indicating that this
method can indeed carry out model transplantation. +e
reason for the limited improvement may be that the most
significant factor with explanatory effect has been
screened out during the stepwise regression, and the
difference between the parameters estimated by the
Bayesian method and the parameters estimated by max-
imum likelihood estimation is small. At this time, the
parameters of the model have become an excellent
combination of parameter values. In the process of
Bayesian update, the prior information of the model has
little influence on it, so the overall improvement effect of
the model is small.

In addition, it is necessary to determine the updated
model object. +rough the above study and comparison, it
can be concluded that updating models with low precision
data sets will obtain models with higher prediction
performance.

Table 4: Significant risk factors and parameter estimates for the two data sets models.

Variable
Low precision data set High precision data set

Mean Confidence interval Mean Confidence interval
Constant −1.477 (−1.657, −1.294) −1.5734 (−1.755, −1.391)
abs_dif_o 0.183 (0.008, 0.358) 0.276 (0.102, 0.456)
up_s −0.299 (−0.507, −0.095) −0.608 (−0.784, −0.427)
down_dif_v — — −0.209 (−0.387, −0.037)
up_dif_s — — 0.250 (0.087, 0.405)
up_dif_o 0.257 (0.060, 0.454) — —

Table 5: Classification accuracy of Bayesian Logistic regression.

Data sets Low precision data set (%) High precision data set (%)
Accuracy 70.68 73.30

Table 6: Low precision data set confusion matrix.

Positive (predict) Negative (predict)
Positive (actual) 74 87
Negative (actual) 149 495

Table 7: High precision data set confusion matrix.

Positive (predict) Negative (predict)
Positive (actual) 116 75
Negative (actual) 180 584

Journal of Advanced Transportation 9



4.3. Classification Prediction Model Based on SVM. In order
to be consistent with previous research methods, data sets
were not divided into training data sets and test data sets.
Classification prediction models for high precision and low

precision data sets are established based on SVM, and the
classification accuracy and confusion matrix are obtained as
in Tables 13–15.

ROC curve and AUC values are shown in Figure 13.
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Figure 9: ROC curve and AUC values of the model were established for the two sets of data.

Table 8: +e high precision data set model is applied to the low precision data set.

Positive (predict) Negative (predict)
Positive (actual) 79 82
Negative (actual) 165 479

AUC= 0.643
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Figure 10: +e high precision data set model is applied to the low precision data set.

Table 9: Results of the updated high precision data set model.

Variable
Before After

Mean Confidence interval Mean Confidence interval
Constant −1.573 (−1.391, 2.474) −1.540 (−1.715, −1.365)
abs_dif_o 0.276 (0.102, 0.456) 0.267 (0.148, 0.385)
up_s −0.608 (−0.784, −0.427) −0.0.494 (−0.624, −0.364)
down_dif_v −0.209 (−0.387, −0.037) −0.212 (−0.387, −0.038)
up_dif_s 0.250 (0.087, 0.405) 0.236 (−1.715, −1.365)
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By analyzing these two groups of data sets with SVM
model, this paper finds that when the loop density is rela-
tively sparse, the precision of the model does have some
influence, low accuracy of the data set to establish the SVM
model accuracy is 76.9%, the AUC value is 0.8, high pre-
cision data set to establish accuracy of SVM is 78.7%, and the
AUC value is 0.82. +e comparison between the two models
shows that the high precision data set is better for modeling.
Compared to other machine learning models, Shen con-
sidered the weather variables when establishing the random
forest real-time accident risk model [33]. In this model, the
accuracy of the model reached 82.1%. In this study, the
authors screened the characteristics of the data and took the
weather into account. Compared with the support vector
machine model, the accuracy was improved by 3.4%. In

further researches, the data could be processed accordingly,
and the parameters of the support vector machine could be
adjusted to achieve higher prediction performance.

Compared with the Bayesian Logistic regression model,
in the case of the same low precision data set, the overall
prediction performance of the established SVM model is
better, with the classification accuracy improved by 6.22%,
and the AUC value is improved by 0.144. When loop density
is small and the loop data information is not rich, a real-time
crash risk model based on Bayesian Logistic regression can
be established, which can effectively filter out the significant
risk factors for crashes and can be explained in detail and
quantify the corresponding risk factors. However, strict and

Table 10: Confusion matrix of the updated high precision data set model.

Positive (predict) Negative (predict)
Positive (actual) 81 80
Negative (actual) 170 474
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Figure 11: ROC curve and AUC value of the updated high pre-
cision data set model.

Table 11: +e results of the updated low precision data set model.

Variable
Before After

Mean Confidence
interval Mean Confidence

interval
Constant −1.477 (−1.650, −1.283) −1.470 (−1.663, −1.290)
abs_dif_o 0.183 (0.012, 0.354) 0.189 (0.023, 0.352)
up_s −0.300 (−0.503, −0.098) −0.307 (−0.512, −0.110)
up_dif_o 0.252 (0.053, 0.451) 0.253 (0.052, 0.446)

Table 12: Confusion matrix of the updated low precision data set
model.

Positive (predict) Negative (predict)
Positive (actual) 75 86
Negative (actual) 151 493

Update the low precision dataset model
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Figure 12: ROC curve and AUC value of the updated low precision
data set model.

Table 15: Confusion matrix of the high precision data set.

Positive (predict) Negative (predict)
Positive (actual) 94 97
Negative (actual) 57 707

Table 13: SVM classification accuracy.

Low precision data set (%) High precision data set (%)
Accuracy 76.9 78.7

Table 14: Confusion matrix of the low precision data set.

Positive (predict) Negative (predict)
Positive (actual) 81 80
Negative (actual) 46 598
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mathematical relations limit the overall prediction effect of
the model. SVM is a black box machine learning algorithm,
which can effectively learn the effects of features on the
results and reflect them into the prediction results.

+erefore, when the data set is not accurate enough, it is
recommended to use the machine learning algorithm to
establish a model to classify and predict the crash risk. When
the data accuracy is good, the statistical Logistic regression
method can be used to screen out significant risk variables to
explain the model and classify the crash risk prediction.

5. Conclusions

Considering the influence of limited data conditions on the
real-time freeway traffic crash risk model, this paper con-
structed high precision data set, low precision data set, and
small sample data set. +ese data sets were modeled and
analyzed based on Bayesian Logistic regression, and the
reliability of real-time crash risk model transplantation
based on Bayesian update was verified. Finally, the advan-
tages and disadvantages of themodel established by Bayesian
Logistic and SVM were compared. +e main conclusions of
this paper are as follows:

(1) +e significant risk factors of Bayesian Logistic re-
gression established under various sample sizes are
different. With the increasing of sample size, the
evaluation index of the model decreases. However,
the overall performance of the model improves. +e
increase of sample size can effectively improve the
classification and prediction performance of the
model.

(2) When the loop detector density of the collected data
is small, the prediction performance of the Bayesian
Logistic regression model based on low precision
data set is weaker than that of the Bayesian Logistic
regression model based on high precision data set. In
addition, significant risk factors are significantly
different in the two models, indicating that Bayesian
Logistic regression is not suitable for low precision
data set.

(3) Based on the Bayesian updating method, the validity
of model migration is verified. Applying the poste-
rior distribution of significant variable parameters of
the Bayesian Logistic model based on high precision
data set to low precision data set, this approach can
improve the prediction performance of the Bayesian
Logistic model using low precision data set.

(4) Compared with Bayesian Logistic regression, the crash
risk model based on SVM has higher prediction per-
formance. Even under the condition of low precision
data set, its prediction performance is significantly
improved compared with that of Bayesian Logistic
regression, indicating that SVM is a better choice under
the condition of insufficient data precision. However,
SVMcannot effectively interpret the cause of crash risk.
When the data quality is high, Bayesian Logistic re-
gression can be used for modeling and prediction, and
the crash risk can be well explained.

In this paper, Bayesian Logistic regression and support
vector machine are applied to analyze the impact of various
data sets on the traffic crash risk model. Further, other
machine learning methods and the enhancement effect of
feature engineering on the establishment for the crash risk
model can be studied. Some new methods of crash risk
model transplantation should also be studied in the future.
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Figure 13: ROC curve and AUC value of low precision and high precision data sets.
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