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We proposed a passenger control strategy and train operation plan collaborative optimization (PCS&TOP) model to schedule the
train operation that improves the efficiency of passengers’ travel and reduces the cost of train operation for a rail transit network.
)e model is an integer non linear programming model that aims to minimize the entrance and platform waiting time of
passengers and the operation cost of trains. )e timetable and variable train formation are integrated optimized, and the
turnaround of rolling stock is also considered by constructing the train operation constraints for the model. )e coordination of
timetables on different lines and the coordination of passenger control strategies at different stations are mentioned by con-
sidering the transfer passengers when constructing the passenger control constraints. To solve the model, a multi-operator
simulated annealing (MOSA) algorithm that includes three types of execution operators corresponding to three main decision
variables is proposed. A numerical case that includes 2 bidirectional crossed lines and a real-world case fromChina are introduced
to test the efficiency of the proposed method, which demonstrates better performance than the single and respective
optimization solutions.

1. Introduction

)e rail transit system is developing rapidly in recent years,
the passenger demand is increasing greatly, and the trans-
port service capacity is insufficient, especially in the central
areas of large cities. In the rail transit system, the congestion
problem during peak periods and the low train loading rate
problem during off-peak periods have been widely noticed
by rail transit operators and transportation researchers [1].
How to deal with the oversaturated demand during peak
periods and the excessed service during off-peak periods are
urgent problems to be solved. )e core of that is the mis-
match between supply (service capacity from train opera-
tion) and demand (travel demand from passengers). )e
mismatch problem may have a great effect on the com-
petitiveness of rail transit, which is a serious challenge for
rail transit operators.

To solve the mismatch problem, there are two main
approaches: adjust serving capacity and control passenger
demand [2].

)e most direct way to satisfy the various demand is to
adjust the serving capacity based on the time-varying pas-
senger demand [3]. Demand-driven timetabling increase the
serving capacity by dispatching more vehicles during peak
hours, which can reduce the passenger waiting time effec-
tively [4]. Meanwhile, the service frequency can be declined
during the off-peak hours to reduce operation costs [5].
What’s more, to increase the flexibility of train operation, the
variable train formation plan is also considered when op-
timizing the operation plan [6–8]. By doing so, the large
formation trains can be used during peak hours to serve
more passengers and the small formation trains can be used
during off-peak hours to save operation costs. When the
double-track line is considered in the research scenario, the
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connection of trains at the terminal stations or the re-
striction of available vehicles should be noticed. With the
limited number of rolling stocks, the feasibility of the
timetable can be guaranteed [9, 10]. However, due to the
limitation of the infrastructure, the improvement in service
capacity during peak hours is limited [11], andmore demand
is induced with increasing supply which may result in the
“Downs–)omson paradox” [12]. )erefore, the mismatch
problem cannot be completely solved by just optimizing the
train operation plan.

Another way to match supply with demand is to control
the passenger demand, especially for the peak periods when
the serving capacity reaches its limit. )e passenger control
strategy with physical barriers (e.g., stockades) is a widely
used measure that can provide significant improvements for
the congested traffic states [11]. For example, in the Beijing
subway (2019), passenger control strategies are applied on
more than 90 busy stations (in total 459 stations) during
peak hours. A couple of researches focused on the passenger
control problem. At the beginning, the scenario is confined
to a single station, where the impact on the downstream
stations was overlooked [13]. It is noteworthy that the
passenger control strategy on different stations should be
optimized coordinatively so that the limited serving capacity
can be used sufficiently [14]. )erefore, several researchers
focus on the coordinative passenger control on multiple
stations in the network to minimize passengers’ waiting time
[15–17].

To further solve the mismatch problem, improve the
efficiency of passengers’ travel, and decrease the train op-
eration cost, several researchers focus on the joint optimi-
zation of the passenger control plan and the schedule of
operation. Li et al. [18] proposed a joint optimization model
considering the train reschedule and passenger control
strategy, and the model is formulated as several quadratic
programming problems to be solved efficiently and tested on
a metro line numerical case. Liu et al. [19] proposed a
timetable and passenger control strategy joint optimization
model. )e trains’ utilization and the number of passengers
waiting at platforms are balanced by the model, and tested
on a metro line numerical case. Zhang [20] proposed a
simulation method to match supply with demand by using a
multi-agent dynamic interaction technique. )e result
showed good performance on matching, but the application
scenario is quite small due to the complex simulation
process.

From the overview of the recent related research (as
shown in Table 1), to the best of our knowledge, there is still
no efficient model to solve the mismatch problem by col-
laborative optimizing the passenger control strategy and the
train operation plan with the consideration of variable
formations, rolling stock turnaround feasibility, timetable
coordination, and passenger control coordination.

)erefore, the motivation of this study is to collabora-
tively schedule the train operation and plan the passenger
control strategy for a rail transit network, in which the
efficiency of passengers’ travel can be improved and the cost
of train operation can be saved. Demand-driven timetable,
variable train formation plan, feasible turnaround of rolling

stock, coordination of timetables on different lines, and the
coordination of passenger control strategies at different
stations are considered to construct the passenger control
strategy and train operation plan collaborative optimization
(PCS&TOP) model. A multi-operator simulated annealing
(MOSA) algorithm is introduced to efficiently solve the
model. A numerical and a real-world rail transit network
case are introduced to test the performance of the proposed
method.

)e contributions of this study are as follows:

(1) A PCS&TOP model is proposed to collaboratively
optimize the passenger control and train operation
plan of the rail transit network, which has better
performance than the single and respective opti-
mization models. )e entrance and platform waiting
time of passengers and operation cost of trains are
considered as the objective of the model to trade off
the efficiency of passengers and the cost of operation.

(2) )e variable train formation plan that includes
multiple types of formations is considered in the
model. By doing so, the large formation trains can be
used during peak hours to servemore passengers and
the small formation trains can be used during off-
peak hours to save operation costs. Meanwhile, when
optimizing the train operation plan, the timetable
and train formation are integrated optimized, in
which the turnaround of rolling stock is considered
to improve the feasibility of the optimized operation
plan.

(3) When optimizing the passenger control strategy, the
coordination of passenger control strategies of dif-
ferent stations in the network is considered to in-
crease the utilization of limited transport capacity.
Meanwhile, the coordination of timetables between
different lines is mentioned by considering the
transfer passengers, which can increase the efficiency
of passengers further.

(4) A MOSA algorithm that includes three types of
execution operators corresponding to the three main
decision variables is proposed to solve the PCS&TOP
model. A numerical case and a real-world case are
introduced to test the efficiency of the proposed
method.

)e structure of this article is as follows: Section 2 describes
the research scenario, proposes the necessary assumptions, and
defines the related parameters. Section 3 introduces the
PCS&TOP model that includes the constitution of objective
function and constraints. Section 4 proposes the framework of
the MOSA algorithm and the three types of execution oper-
ators. Section 5 illustrates a numerical case and a real-world
case to test the efficiency of the proposed method. Section 6
summarizes the main conclusions of the article.

2. Problem Statement

2.1. Scenario Description. In this study, we engage in col-
laboratively solving the passenger control problem and train
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operation planning problem in a rail transit network. �e
integration of timetabling and train formation planning and
the coordination of network passenger control strategy are
all considered to construct the optimization model; the
scenario and related variables are de�ned as follows:

We focus on a rail transit network with several lines that
cross but do not overlap in spatial. As shown in Figure 1,
each line is bidirectional, and vehicles are independently
operating on each line.�e lines are denoted as l ∈ Γ, and the
indexes are di�erent if the directions of them are di�erent
even on the same line. Only passengers can transfer from one
line to another at transfer stations, while trains are not.

�e stations are denoted as i ∈ Θl from the origin station
to the terminal station. Speci�cally, Θl can be classi�ed as
original stations set ΘO, terminal stations set Θ D, and
transfer stations set ΘT. To distinguish the same transfer
station on di�erent lines, the stations are denoted as
i, i′, i″, i′′′ ∈ ΘT, respectively.

�e train k ∈ Φl stops at each station, crossing and
overtaking are banned at any place. �e formation of trains
is a variable that includes several types m ∈ Ω with di�erent
rolling stocks TRm. �e trains can and only can turnover,
couple, and decouple at the terminal station on each line,
and the number of available rolling stock is considered to
guarantee the feasibility of the optimized operation plan.

Passenger demand is known in the planning stage which
is obtained by some prediction methods based on the his-
torical passenger demand from the automatic fare collection
(AFC) system. �e passenger demand on each station is
time-varying, and the values of them are counted by each
time slice. �e time slices t ∈ Π are separated from the total
time horizon with a �xed time interval. As the time slice
being small enough (1 minute in this study), the variation of
passenger demand can be described. �e time-varying dy-
namic passenger demand can be explained as the number of
arrival passengers PASi(t), passenger alighting ratio
PRAi(t), and transferring ratio PRTi,i′(t).

To control the passengers during congested periods, the
passenger control strategy is classi�ed as several levels u ∈ Ψ
and several time slices Δt in spatial and temporal, respec-
tively. By doing so, the passenger control strategy is more

executable. RAu represents the speci�c �ow control ratio
corresponding to the related level u, which is the value of
controlled passengers divided by waiting passengers. �e
study time slice is so small that the strategy cannot be timely
adjusted following the optimized solution in reality, and the
complexity of the model may greatly increase. �erefore, the
passenger control strategy is de�ned as a large granularity
with a four-time slice (Δt � 4t). Based on that, the number of
passengers in each place is de�ned and the relationship
between them is restricted by the passenger control con-
straints that will be discussed in Section 3.

In summary, the collaborative optimization problem is
formally stated as follows: based on the known parameters,
the PCS&TOP model aims to minimize the passenger
waiting time at the platform ptf, passenger waiting time at
the entrance pte, and train operation cost toc. By doing so, a
train operation plan with variable formation plan, available
rolling stock, and demand-driven timetables on di�erent
lines and a collaborative network passenger control strategy
can be obtained.

2.2. Assumption and Parameter De�nition. Four assump-
tions are proposed to simplify the research scenario and
describe the model.

(1) �e order of passengers at any place during the same
time slice in the rail transit system is viewed as
random. Based on that, we just focus on the number

Table 1: An overview of recent related research.

Authors (year) Scenario Problem Objective VF RST TC PCC
Mo et al. 2021 [8] Line TT & RSP & OS Min PWT at platform & PTT & TOC √ √ × ×
Wang et al. 2017 [9] Line TT & RSP Min PWT at platform & TOC × √ × ×
Wang et al. 2022
[10] Network TT & RSP Min TOC × √ × ×

Meng et al. 2020 [14] Line PCS Min PWT at platform × × × √
Xu et al. 2019 [15] Network PCS Min PWT at platform × × × √
Li et al. 2021 [17] Network PCS Min PWT at platform × × × √
Li et al. 2017 [18] Line PCS & TR Min timetable deviations × × × √

Liu et al. 2018 [19] Line PCS & TT Min trains’ utilization, passenger control intensities, waiting
passengers × √ × √

Zhang 2021 [20] Line PCS & TT Max matching supply with demand × × × √
�is study Network PCS & TOP Min PWT at entrance and platform, & TOC √ √ √ √
TT: train timetable; RSP: rolling stock plan; OS: operation strategy; PCS: passenger control strategy; TR: train reschedule; TOP: train operation plan; Max:
maximum; Min: minimum; PWT: passenger waiting time; PTT: passenger travel time; TOC: train operation cost; VF: variable formations; RST: rolling stock
turnaround; TC: timetable coordination; PCC: passenger control coordination.
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Figure 1: Illustration of a rail transit network.
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of passengers on each place during each time, and the
destination can be ignored. )e passenger distri-
bution has been counted and only has a small de-
viation [21].

(2) )e influence of crowded passengers is ignored, so
the trains’ running time in each section and dwelling
time in each station are fixed on each line. All trains
stop at each station, crossing and overtaking are
banned at any position.)e number of rolling stocks
and the formation type are limited [22].

(3) To guarantee the passenger control strategy is more
operable and reduce the complexity of the optimi-
zation model, the strength of passenger control
strategy is restricted to several levels, and the
granularity of passenger control strategy is restricted
asΔt time duration. Specifically, the strategies are the
same at the same level during Δt time slices. With the
increase of the levels’ number and decreasing the
duration of time slices, the strategy is more accurate,
but the efficiency of optimization process and the
difficulty of strategy execution are increasing [23].
Besides, the number of separated levels and the
granularity can be changed to fit the application of
the specific scenario.

(4) )e transfer timeTTi,i′ is viewed as a fixed value based
on the average walk speed that can greatly simplify the
model but only has a small influence [24].

)e indexes, sets, parameters, and variables used in this
article are introduced in Table 2, and the decision variables
are separately explained in detail as follows:

)ere are three decision variables and seven interme-
diate variables which are further explained in detail as
follows:

(1) Train Departure Time Variable. As shown in the
following expression, the train departure time tdi

k(t)

represents whether the train departs from the station at
the current time.

td
i
k(t) �

1, if train k departs from station i at time t on line l,

0, otherwise,
􏼨

for∀i ∈ Θl, ∀t ∈ Π, ∀k ∈ Φl, ∀l ∈ Γ.

(1)

(2) Train Formation Variable. As shown in the fol-
lowing expression , the train formation tym

k represents
whether the train k used the formation m.

ty
m
k �

1, if train k used formationm,

0, otherwise,
􏼨

for∀m ∈ Ω, ∀k ∈ Φl, ∀l ∈ Γ.
(2)

(3) Passenger Control Level Variable. As shown in (3),
the passenger control level pci

u(t) represents whether
the strength of passenger control is u level at the station
i in time t. As shown in Figure 2, the passenger control
strength is divided into several levels (11 levels in this

study) corresponding to different control strengths.
RAu is the alternative flow control ratio, which is the
value of the controlled passengers divided by the
waiting passengers. 􏽐u∈Ψpci

u(t) × Rau is the executive
flow control ratio at the station i in time t. Level 1 is a
strategy without control (all passengers can enter the
station), and level 11 is a strategy with total control (no
passengers can enter the station). Meanwhile, the
strategy can also be separated as more levels or fewer
levels that depend on the intricacy of the passenger
control. By doing so, the number of the passenger
control decision variable and the complexity of the
model is greatly decreased so that the model can be
solved efficiently (Jiang et al., 2018).)erefore, pci

u(t) is
a Boolean variable.

pc
i
u(t) �

1, if passenger flow control level is u at station i at time t,

0, otherwise,
􏼨

for∀u ∈ Ψ, ∀i ∈ Θl, ∀l ∈ Γ, ∀t ∈ Π.

(3)

(4) Number of Passengers in Different Space Variables.
)e number of passengers in different space variables
including pwi(t), pei(t), pfi(t), pbi

k(t), pai
k(t), plik(t),

and pti
k(t) are nonnegative integer intermediate vari-

ables. )ey depend on the optimized timetable, and the
relationships of them are also have an influence on the
value of them; the specific calculation process will be
introduced in Section 3.

pw
i
(t), pe

i
(t), pf

i
(t) ∈ N, for∀i ∈ Θl,∀l ∈ Γ,∀t ∈ Π,

pb
i
k(t), pa

i
k(t), pl

i
k(t), pt

i
k(t)

∈ N, for∀i ∈ Θl,∀k ∈ Φl,∀l ∈ Γ,∀t ∈ Π.

(4)

3. Passenger Control Strategy and Train
Operation Plan Collaborative
Optimization Model

)e PCS&TOP model that includes the objective function
and related constraints are introduced in this section.

3.1. Objective Function of the PCS&TOP Model. )ree as-
pects that include passenger waiting time at the platform
ptf, passenger waiting time at the entrance pte, and train
operation cost toc are considered in the objective function of
the PCS&TOP model that are shown as follows:

min obj � α1 × ptf + α2 × pte + α3 × toc. (5)

)e passenger travel cost depends on the efficiency of
passengers, and the delay in travel is one of the most direct
indicators to explain passengers’ efficiency. In a crowded rail
transit system, due to the oversaturated passenger demand
and limited train loading capacity, passengers may be
remaining at the platform which leads to a delay for pas-
sengers called left-behind delay. To analyze the passenger

4 Journal of Advanced Transportation



left-behind delay, the passenger waiting time at the platform
ptf is calculated. As shown in the following equation, the
number of passengers at the platform pfi(t) of each station
on each line at each time slice is counted and multiplied by
the length of a time slice TS (1 minute in this study) to
calculate ptf.

ptf � TS × 􏽘
l∈Γ

􏽘
i∈Θl

􏽘
t∈Π

pf
i
(t).

(6)

)e passenger left-behind delay and the crowding
condition at the platform can be eased by carrying out the
passenger control strategy at the entrance. However, the

passenger control may lead to to another delay for pas-
sengers called passenger control delay. To analyze the
passenger control delay, the passenger waiting time at the
entrance pte is calculated. As shown in the following
equation, the number of waiting passengers at the entrance
pwi(t) of each station on each line at each time is counted
and multiplied by a time slice TS to calculate pte.

pte � TS × 􏽘
l∈Γ

􏽘
i∈Θl

􏽘
t∈Π

pw
i
(t). (7)

Train operation cost is proportional to the operation
time of a unit formation and the number of used formations

Level u 1 2 3 4 5 6 7 8 9 10 11
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%Ratio RAu

Figure 2: )e diagram of passenger control level.

Table 2: )e explanation of sets, indexes, parameters, and variables.

Indexes and sets
Π Set of time Π � t|t � 1, 2, . . . , T{ }, t is time index
Γ Set of lines, line index l ∈ Γ
Ω Set of train formations, in which train formation index m ∈ Ω
Ψ Set of passenger control level, in which flow control level index u ∈ Ψ

Θl

Set of stations on line l, in which station index i, i′, i″, i‴ ∈ Θl. Θl can be classified as original stations set: ΘO, terminal stations
set: Θ D, transfer stations set: ΘT

Φl Set of trains on line l, in which train index k, k′ ∈ Φl

Parameters and variables
obj Objective function value
ptf Total passenger waiting time at platform
pte Total passenger waiting time at entrance due to control strategy
toc Total train operation cost
TRTl Train operation time of a train with a unit formation on line l

TRm Number of rolling stocks for train formation m

TS Time slice, which is set as 1 minute in this study
TWi

l Train dwell time at station i on line l

TRi
l Train running time from station i to station i + 1 on line l

TTRi
l Train turnover time at terminal station i on line l

THmin Minimum headway between two successive trains
THmax Maximum headway between two successive trains
NKl,max Maximum number of train services in total time on line l

PASi(t) Number of arrived passengers on station i at time t

PRAi(t) Ratio of alighting passengers on station i at time t

PRTi,i′(t) Ratio of transferring passengers from station i to i′ at time t, i, i′ ∈ ΘT

Capm Service capacity for train formation m

RAu Alternative passenger control ratio at level u

Δt Passenger control time slice
TTi,i′ Transfer time from station i to station i′
α1, α2, α3 Weight parameters of objective function
pwi(t) Number of waiting passengers at entrance on station i at time t

pei(t) Number of entering passengers on station i at time t

pfi(t) Number of waiting passengers at platform on station i at time t

pbi
k(t) Number of boarding passengers to train k on station i at time t

pai
k(t) Number of alighting passengers from train k on station i at time t

plik(t) Number of loading passengers in train k on station i at time t

pti
k(t) Number of transfer passengers in train k on station i at time t

Decision variables
tdi

k(t) Train departure time variable
tym

k Train formation variable
pci

u(t) Passenger control level variable

Journal of Advanced Transportation 5



[25]. )e used formations are related to the selected train
type tym

k of service k and the formations TRm of the train
typem.)e operation time of a unit formation is represented
by TRTl that is different on different lines. )erefore, the
total train operation time can be calculated as follows:

toc � 􏽘
l∈Γ

􏽘
k∈Φl

􏽘
m∈Ω

TRT
l
× TR

m
× ty

m
k . (8)

3.2. Constraints of the PCS&TOP Model. )e constraints of
the PCS&TOP model that include train operation con-
straints, passenger control constraints, and variable range
constraints are introduced as follows:

3.2.1. Train Operation Constraints. To guarantee the train
operation safety and provide efficient service, the timetable-
related decision variables are restricted. To guarantee the
optimized timetable is feasible, the number of available
formations and the usage of rolling stock are considered, and
the formation-related decision variables are restricted.

(1) Train Departure Time Constraints. Train departure time
is one of the most important decision variables in this study,

and the departure times of a train at successive stations have
a relationship. Specifically, as shown in the following ex-
pression, the departure time of a train on the current station
tdi

k(t) is related to the departure times of the train on the
previous station tdi− 1

k (t), the train running time between the
stations TRi

l, and the train dwelling time on the current
station TWi

l:

􏽘
t∈Π

td
i
k t + TR

i
l + TW

i
l􏼐 􏼑 × t � 􏽘

t∈Π
td

i− 1
k (t) × t,

for∀i ∈ Θl/ ΘO􏼈 􏼉,∀k ∈ Φl,∀l ∈ Γ,
(9)

(2) Headway of Operation Train Constraints. To guarantee
the train operation safety, the minimum headways of trains
are restricted. As shown in (10), the number of train services
has at most one during a minimum safety headway time
horizon. Meanwhile, to guarantee the train service efficiency,
the maximum headway of trains should be restricted. As
shown in (11), the number of train services has at least one
during a maximum headway time horizon.

􏽘
k∈Φl

􏽘

t′+THmin− 1

t�t′

td
i
k(t) × 􏽘

m∈Ω
ty

m
k

⎛⎝ ⎞⎠≤ 1, for∀i ∈ Θl,∀l ∈ Γ,∀t′ ∈ 1, T − THmin + 1􏼂 􏼃, (10)

􏽘
k∈Φl

􏽘

t′+THmax

t�t′

td
i
k,n(t) × 􏽘

m∈Ω
ty

m
k

⎛⎝ ⎞⎠≥ 1, for∀i ∈ Θl,∀l ∈ Γ,∀t′ ∈ 1, T − THmax􏼂 􏼃. (11)

(3) Order of Operation Train Constraints. As the train de-
parture time tdi

k(t) and train formation tym
k are Boolean

decision variables, the order of trains should be restricted.
Specifically, as shown in (12), when the train k and train k′
are all used, the equation will work.)en, the departure time
of the former train should be earlier than the departure time
of the later train.

k − k′( 􏼁 × 􏽘
t∈Π

td
i
k(t) × t − 􏽘

t′∈Π

td
i
k′ t′( 􏼁 × t′⎛⎝ ⎞⎠

+ 􏽘
m∈Ω

ty
m
k + 􏽘

m∈Ω
ty

m
k′ − 2⎛⎝ ⎞⎠ × M≥ 0,

for∀k, k′ ∈ Φl,∀i ∈ Θl,∀l ∈ Γ.

(12)

(4) Maximum Number of Operating Train Constraints. (13)
restricts the type of train formation to that at most one. If the

train is operated, one formation is selected; otherwise, no
formation will be selected. (14) restricts the total number of
train services on line l in the study time horizon.

􏽘
m∈Ω

ty
m
k ≤ 1, for ∀k ∈ Φl,∀l ∈ Γ. (13)

􏽘
k∈Φl

􏽘
m∈Ω

ty
m
k ≤NTl,max, for∀l ∈ Γ. (14)

(5) Rolling Stock Turnaround Constraints. To guarantee the
optimized timetable and formation plan are feasible, the
turnaround of rolling stock and the available number of
vehicles are considered. (15) is to guarantee the number of
remaining vehicles is not less than 0. Specifically, the number
of remaining vehicles on a line is related to the total number
of vehicles RSl (first part in the constraint), the number of
departed vehicles (second part in the constraint), and the
number of arrival vehicles (third part in the constraint).
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RSl − 􏽘
k∈Φl

􏽘

t′⊆[1,t]

td
i
k t′ − TW

i
l􏼐 􏼑 × 􏽘

m∈Ω
ty

m
k + 􏽘

k′∈Φ
l′

􏽘

t′⊆[1,t]

td
i′
k′ t′ + TTR

i′
l′􏼒 􏼓 × 􏽘

m′∈Ω

ty
m′
k′ ≥ 0,

for∀i ∈ Θl ∩ΘO,∀i′ ∈ Θl′ ∩ Θ D,∀l, l′ ∈ Γ,∀t ∈ 1 + TW
i
l, T − TTR

i′
l′ + 1􏼔 􏼕.

(15)

3.2.2. Passenger Control Constraints. )e process of pas-
sengers’ travel in the rail transit system can be broken up
into several steps: arriving at the entrance, entering the
entrance, arriving at the platform, waiting on the platform,
boarding the train, taking the train, alighting the train,
transferring to the platform of another line (if the transfer is
needed, then following the previous step: arriving at the
platform and continue), and exiting the station. )e number
of passengers in each place has a close relationship, so the
process can be explained by just a few variables to reduce the
complexity of the model. )erefore, we introduce the var-
iables one by one based on the process of passengers’ travel,
and then some intermediate variables are reduced and the

constraints are simplified. Finally, the variables pwi(t),
pfi(t), and pai

k(t) are replaced, and all constraints are
explained by the variables pei(t), pbi

k(t), plik(t), and pti
k(t).

(1);eNumber ofWaiting Passengers at the Entrance. Due to
the passenger control strategy, passengers may be controlled
at the entrance and waiting at the entrance. )erefore, the
number of passengers waiting at the entrance is related to the
number of arrival passengers PASi(t) and the passenger
control level pci

u(t) (as shown in (16)). As time goes on, it is
also related to the number of passengers waiting at the
entrance during previous time slice pwi(t − 1) (as shown in
(17)).

pw
i
(t) � PAS

i
(t) × 􏽘

u∈Ψ
pc

i
u(t) × RAu, for∀i ∈ Θl,∀l ∈ Γ,∀t � 1, (16)

pw
i
(t) � pw

i
(t − 1) + PAS

i
(t)􏼐 􏼑 × 􏽘

u∈Ψ
pc

i
u(t) × RAu, for∀i ∈ Θl,∀l ∈ Γ,∀t ∈ Π\ 1{ }. (17)

)en, accumulating the (18) in the successive time slice
to replace pwi(t − 1), the relationship between flow control
level pci

u(t) and number of passenger waiting at the entrance
pwi(t) can be constructed as (22).

pw
i
(t) � 􏽘

t′⊆[1,t]

PAS
i

t′( 􏼁 × 􏽙

t″⊆ t′,t[ ]

􏽘
u∈Ψ

pc
i
u t″( 􏼁 × RAu

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

for∀i ∈ Θl,∀l ∈ Γ,∀t ∈ Π.

(18)

)erefore, in the objective function, the passenger
waiting time at the entrance pte can be explained by the
passenger control level pci

u(t). Set equation (19) into
equation (8) to obtain equation (20).

pte � TS × 􏽘
l∈Γ

􏽘
i∈Θl

􏽘
t∈Π

􏽘

t′⊆[1,t]

PAS
i

t′( 􏼁􏽨

× 􏽙

t″⊆ t′ ,t[ ]

􏽘
u∈Ψ

pc
i
u t″( 􏼁 × RAu

⎛⎝ ⎞⎠⎤⎥⎥⎥⎥⎥⎥⎦.

(19)

(2) ;e Number of Entering Passengers. As shown in (20) and
(21),pei(t) is thenumberofpassengers entering the station i at
the entranceduring time slice t, which is related to thenumber
of arrival passengers PASi(t) and the number of waiting
passengers at the entrancepwi(t).Meanwhile, it is also related

to the number of passengerswaiting at the entrance during the
previous time slice pwi(t − 1) as time goes on.

pe
i
(t) � PAS

i
(t) − pw

i
(t), for∀i ∈ Θl,∀l ∈ Γ,∀t � 1,

(20)

pe
i
(t) � pw

i
(t − 1) + PAS

i
(t) − pw

i
(t),

for∀i ∈ Θl,∀l ∈ Γ,∀t ∈ Π\ 1{ }.
(21)

To replace pwi(t) and pwi(t − 1), set (18) into (20) to
obtain (22), set (18) into (21) to obtain (23).

pe
i
(t) � PAS

i
(t) × 1 − 􏽘

u∈Ψ
pc

i
u(t) × RAu

⎛⎝ ⎞⎠,

for∀i ∈Θl,∀l ∈ Γ,∀t � 1,

(22)

pe
i
(t) � 􏽘

t′⊆[1,t− 1]

PAS
i

t′( 􏼁 × 􏽙

t″⊆ t′,t[ ]

􏽘
u∈Ψ

pc
i
u t″( 􏼁 × RAu

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

+ PAS
i
(t)

− 􏽘

t′⊆[1,t]

PAS
i

t′( 􏼁 × 􏽙

t″⊆ t′,t[ ]

􏽘
u∈Ψ

pc
i
u t″( 􏼁 × RAu

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

for∀i ∈Θl,∀l ∈ Γ,∀t ∈Π\ 1{ }.

(23)

Simplify equation (23), and (24) can be obtained as
follows:
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pe
i
(t) � 􏽘

t′⊆[1,t− 1]

PAS
i

t′( 􏼁 × 􏽙

t″⊆ t′,t[ ]

􏽘
u∈Ψ

pc
i
u t″( 􏼁 × RAu

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ + PAS

i
(t)

− 􏽘

t′⊆[1,t− 1]

PAS
i

t′( 􏼁 × 􏽙

t″⊆ t′ ,t− 1[ ]

􏽘
u∈Ψ

pc
i
u t″( 􏼁 × RAu

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ + PAS

i
(t)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
× 􏽘

u∈Ψ
pc

i
u(t) × RAu

⎛⎝ ⎞⎠

� 􏽘

t′⊆[1,t− 1]

PAS
i

t′( 􏼁 × 􏽙

t″⊆ t′ ,t− 1[ ]

􏽘
u∈Ψ

pc
i
u t″( 􏼁 × RAu

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ + PAS

i
(t)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
× 1 − 􏽘

u∈Ψ
pc

i
u(t) × RAu

⎛⎝ ⎞⎠

for ∀i ∈ Θl,∀l ∈ Γ,∀t ∈ Π\ 1{ }.

(24)

(3) ;e Number of Passengers on the Platform. After the
passengers enter the station, they will wait the trains on the
platform. As shown in (25) and (26), the number of pas-
sengers on the platform pfi(t) is related to the number of
passengers entering the station pei(t), the number of
transfer passengers pti

k(t), and the number of passengers
boarding the train pbi

k(t). As time goes on, it is also related
to the number of passengers on the platform at the previous
time slice pfi(t − 1).

pf
i
(t) � pe

i
(t) + 􏽘

k∈Φl

pt
i
k(t) − pb

i
k(t)􏼐 􏼑,

for∀i ∈ Θl,∀l ∈ Γ,∀t � 1,

(25)

pf
i
(t) � pf

i
(t − 1) + pe

i
(t) + 􏽘

k∈Φl

pt
i
k(t) − pb

i
k(t)􏼐 􏼑,

for∀i ∈ Θl,∀l ∈ Γ,∀t ∈ Π\ 1{ }.

(26)

Accumulate (26) in successive time slice to replace
pfi(t − 1):

pf
i
(t) � 􏽘

t′⊆[1,t]

pe
i

t′( 􏼁 + 􏽘
k∈Φl

pt
i
k t′( 􏼁 − pb

i
k t′( 􏼁􏼐 􏼑⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

for∀i ∈ Θl,∀l ∈ Γ,∀t ∈ Π.

(27)

In the objective function, the passenger waiting time at
the platform ptf can be explained by pei(t), pti

k(t), and
pbi

k(t). Set (27) into (6) to obtain

ptf�TS×􏽘
l∈Γ

􏽘
i∈Θl

􏽘
t∈Π

􏽘

t′⊆[1,t]

pe
i

t′( 􏼁+ 􏽘
k∈Φl

pt
i
k t′( 􏼁 − pb

i
k t′( 􏼁􏼐 􏼑⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(28)

(4) ;e Number of Passengers Boarding the Train. )e
passengers will board the train when the trains arrive at the
station. )e number of passengers boarding the train pbi

k(t)

should not be over the number of passengers waiting at the
platform during the current time slice. )erefore, as shown
in (29) and (30), the number of boarding passengers is
related to the entered passengers pei(t) and transferred
passengers during the current time slice pti

k(t), and the
waiting passengers on the platform during the previous time

slice pfi(t − 1), and whether the train arrives. Only when
the train arrives (tdi

k(t) × 􏽐m∈Ωty
m
k � 1), the number of

boarding passengers is possibly larger than 0; otherwise, no
passengers board the train and the value must be 0.

pb
i
k(t)≤ pe

i
(t) + pt

i
k(t)􏼐 􏼑 × td

i
k(t) × 􏽘

m∈Ω
ty

m
k ,

for ∀k ∈ Φl,∀i ∈ Θl,∀l ∈ Γ,∀t � 1.

(29)

pb
i
k(t)≤ pf

i
(t − 1) + pe

i
(t) + pt

i
k(t)􏼐 􏼑 × td

i
k(t) × 􏽘

m∈Ω
ty

m
k ,

for∀k ∈ Φl,∀i ∈ Θl,∀l ∈ Γ,∀t ∈ Π\ 1{ }.

(30)

To replace pfi(t), set (27) into (30) to obtain

pb
i
k(t)≤ 􏽘

t′⊆[1,t− 1]

pe
i

t′( 􏼁 + 􏽘
k∈Φl

pt
i
k t′( 􏼁 − pb

i
k t′( 􏼁􏼐 􏼑⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

+pe
i
(t) + pt

i
k(t)􏽯 × td

i
k(t) × 􏽘

m∈Ω
ty

m
k ,

for∀k ∈ Φl,∀i ∈ Θl,∀l ∈ Γ,∀t ∈ Π\ 1{ }.

(31)

Simplify (31) and combine with (29)to get the following
expression:

pb
i
k(t)≤ 􏽘

t′⊆[1,t]

pe
i

t′( 􏼁 + 􏽘
k∈Φl

pt
i
k t′( 􏼁⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎣

+ 􏽘

t′⊆[1,t− 1]

􏽘
k∈Φl

pb
i
k t′( 􏼁⎤⎥⎥⎥⎥⎦ × td

i
k(t) × 􏽘

m∈Ω
ty

m
k ,

for∀k ∈ Φl,∀i ∈ Θl,∀l ∈ Γ,∀t ∈ Π.

(32)

(5) ;e Number of Passengers Alighting the Train. As shown
in (33) and (34), the number of alighting passengers pai

k(t)

is related to the number of passengers on the train
pli− 1k (t − 1), and the passenger alighting ratio PRAi(t), and
whether the train arrives. As there are no passengers who
will alight at the first station or during the first time slice,
pai

k(t) is 0. Only when the train arrives (tdi
k(t)×

􏽐m∈Ωty
m
k � 1), the number of alighting passengers is pos-

sible larger than 0; otherwise, no passengers alight the train
and the value must be 0. Meanwhile, the passenger alighting
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ratio PRAi(t) is a time-varying parameter that is calculated
by the historical passenger distribution and widely used in
previous research [21].

pa
i
k(t) � 0, for ∀i ∈ ΘO,∀t ∈ Π( 􏼁∪ ∀i � Θl,∀t � 1( 􏼁,

∀k ∈ Φl,∀l ∈ Γ,
(33)

pa
i
k(t) � pl

i− 1
k (t − 1) × PRA

i
(t) × td

i
k(t) × 􏽘

m∈Ω
ty

m
k ,

for∀i � Θl\ ΘO􏼈 􏼉,∀k ∈ Φl,∀l ∈ Γ,∀t ∈ Π\ 1{ }.

(34)

(6) ;e Number of Passengers Transferring between Different
Lines. )e number of transferring passengers pti

k(t) is re-
lated to the alighting passengers, the transferring ratio
PRTi′,i(t), and whether the train arrives. As shown in (35),
there are no passengers who will transfer at intermediate
stations during any time slice. Only when the train arrives
(tdi

k(t) × 􏽐m∈Ωty
m
k � 1), the number of transferring pas-

sengers is possible larger than 0; otherwise, no passengers
transfer to other trains and the value must be 0. Meanwhile,
the passenger transferring ratio PRTi′ ,i(t) is also a time-
varying parameter and depends on the historical passenger
distribution [21].

pt
i
k(t) � 0, for ∀k ∈ Φl,∀i ∈ Θl\ ΘT􏼈 􏼉,∀l ∈ Γ,∀t ∈ Π. (35)

pt
i
k t + TS

i′ ,i
􏼒 􏼓 � 􏽘

i′∈ΘT/ i{ }

pa
i′
k (t) × PRT

i′,i
(t)􏼒 􏼓 × td

i
k(t) × 􏽘

m∈Ω
ty

m
k ,

for∀k ∈ Φl,∀i, i′ ∈ ΘT,∀l ∈ Γ,∀t ∈ 1, T − TS
i′ ,i

􏼔 􏼕.

(36)

Set (34) into (36), and pai
k(t) can be replaced and ob-

tained as follows:

pt
i
k t + TS

i′ ,i
􏼒 􏼓 � 􏽘

i′∈ΘT/ i{ }

pl
i− 1
k (t − 1) × PRA

i
(t) × PRT

i′ ,i
(t)􏼒 􏼓 × td

i
k(t) × 􏽘

m∈Ω
ty

m
k ,

for∀k ∈ Φl,∀i, i′ ∈ ΘT,∀l ∈ Γ,∀t ∈ 1, T − TS
i′,i

􏼔 􏼕.

(37)

(7) ;e Number of Passengers on the Train. )e number of
passengers on the train plik(t) is related to the boarding
passengers pbi

k(t), loading passengers during the previous
time slice plik(t − 1), alighting passengers pai

k(t), and
whether the train arrives. )e scenarios during the first time
slice or not and on the first station or not are separately

discussed, and the equations (38)–(40) are constructed. Only
when the train arrives (tdi

k(t) × 􏽐m∈Ωty
m
k � 1), the number

of passengers on the train plik(t) is changed; otherwise, it
equals the loading passengers during the previous time slice
plik(t − 1).

pl
i
k(t) � pb

i
k(t) × td

i
k(t) × 􏽘

m∈Ω
ty

m
k , for∀i � ΘO,∀k ∈ Φl,∀l ∈ Γ,∀t � 1, (38)

pl
i
k(t) � pl

i
k(t − 1) × 1 − td

i
k(t) × 􏽘

m∈Ω
ty

m
k

⎛⎝ ⎞⎠ + pb
i
k(t) × td

i
k(t) × 􏽘

m∈Ω
ty

m
k ,

for∀i � ΘO,∀k ∈ Φl,∀l ∈ Γ,∀t ∈ Π\ 1{ },

(39)

pl
i
k(t) � pl

i
k(t − 1) × 1 − td

i
k(t) × 􏽘

m∈Ω
ty

m
k

⎛⎝ ⎞⎠

+ pl
i− 1
k (t − 1) + pb

i
k(t) − pa

i
k(t)􏼐 􏼑 × td

i
k(t) × 􏽘

m∈Ω
ty

m
k

for∀i � Θl\ ΘO􏼈 􏼉,∀k ∈ Φl,∀l ∈ Γ,∀t ∈ Π\ 1{ }.

(40)
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Set (34) into (40), and pai
k(t) can be replaced and ob-

tained as follows:

pl
i
k(t) � pl

i
k(t − 1) × 1 − td

i
k(t) × 􏽘

m∈Ω
ty

m
k

⎛⎝ ⎞⎠

+ pl
i− 1
k (t − 1) × 1 − PRA

i
(t)􏼐 􏼑 + pb

i
k(t)􏽨 􏽩

× td
i
k(t) × 􏽘

m∈Ω
ty

m
k ,

for∀i � Θl\ ΘO􏼈 􏼉,∀k ∈ Φl,∀l ∈ Γ,∀t ∈ Π\ 1{ }.

(41)

(8) ;e Train Capacity Constraints. Due to the limitation
of train loading capacity, the number of passengers on the
train has an upper bound. As shown in (42), it depends on
the train formation and the capacity of different
formations.

pl
i
k(t)≤ 􏽘

m∈Ω
ty

m
k ×Cap

m
, for∀i �Θl,∀k∈Φl,∀l∈Γ,∀t∈Π.

(42)

(9) ;e Passenger Control Level Constraints. As shown in
(43), the strategy at each station during each time slice selects
one and only one level to execute the passenger control
measure.

􏽘
u∈Ψ

pc
i
u(t) � 1, for∀i � Θl,∀l ∈ Γ,∀t ∈ Π. (43)

(10) ;e Passenger Control Strategy’s Granularity Con-
straints. )e total study time horizon is separated as many
time slices with a 1-minute length, and the time slice is so
small that the flow control strategy cannot be timely adjusted
following the optimized solution in reality. Meanwhile, such
a small granularity strategy may greatly increase the com-
plexity of the model.)erefore, we proposed (44) to increase
the granularity of the passenger control strategy that
guarantees the strategies are the same during Δt time slices.

pc
i
u(t + Δt) − pc

i
u(t) � 0, for∀u ∈ Ψ,∀i � Θl,

∀l ∈ Γ,∀Δt⊆ 1, THmin − 1􏼂 􏼃,∀t ∈ Π,∀t/THmin ∈ Z
+
.

(44)

3.2.3. Variable Range Constraints. As intermediate variables
pwi(t), pfi(t), and pai

k(t) are replaced by other variables,
the model includes three Boolean decision variables tdi

k(t),

tym
k , and pci

u(t) and four integer intermediate variables
pei(t), pbi

k(t), plik(t), and pti
k(t). )e range of each variable

is shown in equations (45)–(48).

td
i
k(t) � 0 or 1,

for∀i ∈ Θl,∀k ∈ Φl,∀l ∈ Γ,∀t ∈ Π,
(45)

ty
m
k � 0 or 1,

for∀m ∈ Ω,∀k ∈ Φl,∀l ∈ Γ,
(46)

pc
i
u(t) � 0 or 1,

for∀u ∈ Ψ,∀i ∈ Θl,∀l ∈ Γ,∀t ∈ Π,
(47)

pe
i
(t), pb

i
k(t), pl

i
k(t), pt

i
k(t) ∈ N,

for∀i ∈ Θl,∀k ∈ Φl,∀l ∈ Γ,∀t ∈ Π.
(48)

In summary, the PCS&TOP model is proposed as
follows:

PCS&TOPmodel

Objectivefunction:(5),(8),(19),(28),

Constitutions:,

Trainoperation(9) − (15),

Passengerflowcontrol,

(22),(24),(32),(35),(37) − (39),(41) − (44),

Variablerange(45) − (48).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

3.3. Complexity Analysis of the PCS&TOP Model. )e
complexity of the PCS&TOP model depends on the scale of
decision variables. )e scale of decision variables includes
the number of time slices |Π|, the number of lines |Γ|, the
number of stations |Θl|, the number of trains |Φl|, the
number of train formations |Ω|, and the number of pas-
senger control levels |Ψ|. To count conveniently, the sce-
narios on different lines are the same, and the numbers of
constraints in the model are listed in Table 3. Most of the
constraints are related to the number of time slices |Π|; the
number of constraints is so large that may greatly affect the
solving efficiency even though the model can be linearized
and solved by commercial solvers. Besides, the optimality of
the result is not necessary and the optimized result is what
we pursued because there will be deviations in the manual
execution process in reality. )erefore, a heuristic algorithm
is proposed to solve the PCS&TOPmodel in the next section
to trade off the solving efficiency and optimality.

4. Multi-Operator Simulated Annealing
Algorithm to Solve the PCS&TOP Model

As the proposed PCS&TOP model is an integer non linear
programming model that includes many non linear con-
straints, an intelligent heuristic algorithm is proposed to
solve the model.
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)e optimization process of passenger control strategy
and train operation plan needs to adjust slightly because
the optimized strategies are similar, and so do the time-
tables. Meanwhile, we should also avoid falling into the
local optimality with several similar solutions. )e archi-
tecture of the simulated annealing (SA) algorithm can
respond to solving the problems because it has the local
search strategy and the random accepted suboptimal so-
lution strategy [26]. To be suitable for the PCS&TOP
model, a multi-operator simulated annealing (MOSA)
algorithm is proposed, which includes three types of ex-
ecution operators corresponding to the three main decision
variables tdi

k(t), tym
k , and pci

u(t).

4.1. Algorithm Framework. Based on the architecture of the
SA algorithm, the framework of the MOSA algorithm is
constructed, and the pseudocode of the MOSA algorithm is
shown in Algorithm 1. )e algorithm-related parameters
and the suggested value of them are listed in Appendix A.

In step 1, the algorithm is initialized by setting the initial
value of the algorithm-related parameters, namely iteration
times iter, initial temperature τiter, execution times ol,m,
scores μl,m, and weights θl,m.

In step 2, an initial feasible solution sinit that includes
the train timetable, formation plan, and passenger con-
trol strategy is randomly generated, and the initial result
objinit is calculated by (5), (8), (19), (28). )en, set the best
solution sbest and iteration solution siter as the initial
solution sinit.

In step 3, first, a line l is selected randomly to adjust;
based on the roulette wheel mechanism with weights θl,m, an
operator m is selected to adjust the solution (the specific
operator adjustment process will be introduced in the next

section); the execution times ρl,m are calculated based on the
current iteration times. Second, operator m (ρl,m times) is
executed to adjust the current solution siter; the current
iteration result objiter is calculated by (28). )ird, compared
with the best result, the better result will be accepted as the
best result, and the worse result will also be accepted as the
current result with a probability. Fourth, the algorithm
parameters that include iteration times iter, initial tem-
perature τiter, execution times ol,m, scores μl,m, and weights
θl,m will be updated based on the above process. Specifically,
execution times ol,m, scores μl,m, and weights θl,m will be reset
as the initial value per φ iterations to avoid the same operator
being selected too many times that trapped in the local
search. )en, the current temperature τiter will reheat to the
start temperature τstart, and the algorithm parameters will be
reset when the current temperature τiter is smaller than the
end temperature τend and the reheat times c is smaller than
the maximum reheat times cmax. Finally, the optimal process
will be stopped and jumped to step 4 when the iteration
times iter is larger than the maximum iteration times itermax
or the reheat times c is larger than the maximum reheat
times cmax.

In step 4, the best result objbest and the best solution sbest
are returned that includes the train timetable, formation
plan, and passenger control strategy.

4.2. Execution Operators. As the model includes three types
of decision variables, three types of execution operators are
proposed that can adjust the solution and guarantee the
feasibility of the solution [27]. Specifically, the execution
operators are classified as train timetable (TT) operators,
train formation (TF) operators, and passenger control (PC)
operators. )e specific selection and update process of the
execution operators is shown in Figure 3, which corresponds
to Steps 3.1–3.4 in the MOSA algorithm.

4.2.1. Train Timetable Operators. TToperators are proposed
to adjust the train timetable (decision variable tdi

k(t)), which
include four destroy operators that change the timetable
based on different features and two repair operators that
make the adjusted solution feasible based on the constraints
of the model.

(i) TT_D_1: randomly increase train headway
Randomly select a train: k;
)e train’s timetable moves backward 1-time

slice: tdi
k(t + 1)←tdi

k(t);
Execute train timetable repair operator TT_R_1.

(ii) TT_D_2: randomly decrease train headway
Randomly select a train: k;
)e train’s timetable moves forward 1-time slice:

tdi
k(t − 1)←tdi

k(t);
Execute train timetable repair operator TT_R_2.

(iii) TT_D_3: increase headway on low loading rate train

Table 3: )e number of constraints in the PCS&TOP model.

Constraints Number of constraints
Constraint (9) (|Θl| − 1) × |Φl| × |Γ|
Constraints
(10) and (11) |Θl| × |Γ| × 2 × |Π|

Constraint
(12) |Θl| × (|Φl| − 1) × |Φl| × |Γ|

Constraints
(13) and (14) (|Φl| + 1) × |Γ|

Constraint
(15) 4 × |Θl| × |Π|

Constraints
(22) and (24) |Θl| × |Γ| × |Π|

Constraint
(32) |Θl| × |Φl| × |Γ| × |Π|

Constraints
(35) and (37) |Θl| × |Φl| × |Γ| × |Π|

Constraints
(38), (39) and
(41)

|Θl| × |Φl| × |Γ| × |Π|

Constraints
(42)–(44) |Θl| × |Γ| × |Ψ| × |Π|/THmin

Constraints
(45)–(48) [(4 × |Φl| + |Ψ| + 1) × |Θl| × |Π| + |Ω| × |Φl|] × |Γ|
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Calculate train loading passengers, and build a
low loading rate train set: Φlow,l;
Select a train from the low loading rate trains set: k;
)e train’s timetable moves backward 1-time

slice: tdi
k(t + 1)←tdi

k(t);
Execute train timetable repair operator TT_R_1.

(iv) TT_D_4: decrease headway on high loading rate
train
Calculate train loading passengers, consider the

adjustable headway of trains, and build a high
loading rate trains set: Φhigh,l;
Select a train from the low loading rate train set: k;

)e train’s timetable moves forward 1-time slice:
tdi

k(t − 1)←tdi
k(t);

Execute train timetable repair operator TT_R_2.
(v) TT_R_1: repair headway increasing broken

If headway constraint (11) of trains k − 1 and k is
broken, roll back;

If headway constraint (10) of trains k and k + 1 is
broken, the timetable of all following trains (except
for last train Kl) move backward 1-time slice
tdi

k′(t + 1)←tdi
k′(t)(∀k′⊆[k + 1, Kl − 1]);

If headway constraint (10) of trains Kl − 1 and Kl

is broken, cancel train Kl− 1;

Input:
Passenger demand parameters: PASi(t), PRAi(t), PRTi,i′(t)

Passenger control parameters: RAu, Δt
Train operation parameters: TRTl, TRm, TS, TWi

l, TRi
l, THmin, THmax, NKl,max, Capm, TTi,i′

Other model parameters: α1, α2, α3
Other algorithm parameters: τstart, τend, ϕ, cmax, iter

per
max, itermax, φ, λ1, λ2.

Output:
Best solution sbest; best objective value objbest.

(1) Step 1: Initialize
(2) iter←1, τiter←τstart, citer←0, ol,m←0, μl,m←0, θl,m←1, for l ∈ Γ, m ∈ Μ;
(3) Step 2: Calculate initial result
(4) Randomly generate an initial solution sinit and make it feasible
(5) Calculate the initial result objinit by equations (5), (8), (19), (28)
(6) Set sbest←siter←sinit, objbest←objiter←objinit
(7) Step 3: Optimize passenger control strategy and train operation plan
(8) while (citer ≤ cmax) do
(9) while (τiter ≥ τend) do
(10) Set siter′←siter, objiter′←objiter;
(11) Step 3.1: Select operators
(12) Randomly select a line l;
(13) Based on roulette wheel mechanism with weights θl,m, select an operator m;
(14) Calculate the execution times ρl,m based on iteration times;
(15) Step 3.2: Perform operators
(16) Execute operator m on siter by ρl,m times;
(17) Calculate the current result objiter by (5), (8), (19), (28);
(18) Step 3.3: Update best solution
(19) Accept better result or accept suboptimal result with a probability, and store
(20) best solution sbest←siter, objbest←objiter;
(21) Step 3.4: Update algorithm parameters
(22) Update iteration times iter←iter + 1, and temperature τiter←τiter × ϕ;
(23) Update execution times ol,m, scores μl,m, and weights θl,m;
(24) Reset ol,m←0, μl,m←0, θl,m←1 for l ∈ Γ, m ∈ Μ per φ iterations;
(25) Step 3.5: Decide stopping conditions
(26) If τiter < τend, jump to Step 3.6; else, continue;
(27) If iter> itermax, jump to Step 4; else continue;
(28) end while
(29) Step 3.6: Reheat process
(30) Reheat temperature τiter←τstart, citer←citer + 1;
(31) Reset algorithm parameters ol,m←0, μl,m←0, θl,m←1 for l ∈ Γ, m ∈ Μ.
(32) If citer > cmax, jump to Step 4; else continue;
(33) end while
(34) Step 4: Return best result
(35) Return sbest, objbest.

ALGORITHM 1: MOSA algorithm.
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If rolling stock turnaround constraints (14) and
(15) are broken, roll back.

(vi) TT_R_2: repair headway decreasing broken
If headway constraint (10) of trains k − 1 and k is

broken, roll back;
If headway constraint (11) of trains k and k + 1 is

broken, the timetable of all following trains (except
for last train Kl) move forward 1-time slice
tdi

k′(t − 1)←tdi
k′(t)(∀k′⊆[k + 1, Kl − 1]);

If headway constraint (11) of trains Kl − 1 and Kl

is broken, add a new train with a random formation
in the middle of the two trains.
If rolling stock turnaround constraints (14) and

(15) are broken, roll back.

4.2.2. Train Formation Operators. TF operators are pro-
posed to adjust the train formation (decision variable tym

k ),
which includes three destroy operators that change the
formation based on different features and a repair operator
that makes the adjusted solution feasible based on the
constraints of the model.

(i) TF_D_1: randomly change train formation
Randomly select a train: k;
Randomly change the train’s formation:

tym′
k ←tym

k ;
Execute train formation repair operator TF_R_1.

(ii) TF_D_2: decrease formation on low loading rate
train
Calculate train loading passengers, consider the

adjustable formation of trains, and build a low
loading rate trains set: Φlow,l;
Select a train from the low loading rate train set:

k;
Decrease the train’s formation: tym− 1

k ←tym
k ;

Execute train formation repair operator TF_R_1.
(iii) TF_D_3: increase formation on high loading rate

train
Calculate train loading passengers, consider the

adjustable formation of trains, and build a high
loading rate trains set: Φhigh,l;

Select a train from the high loading rate train set:
k;

Increase the train’s formation: tym+1
k ←tym

k ;
Execute train formation repair operator TF_R_1.

(iv) TF_R_1: repair formation changing broken
If rolling stock turnaround constraints (14) and

(15) are broken, roll back.

4.2.3. Passenger Control Operators. PC operators are pro-
posed to adjust the passenger control strategy (decision
variable pci

u(t)), which includes three destroy operators that
change the passenger control level based on different fea-
tures and a repair operator that makes the adjusted solution
feasible based on the constraints of the model.

(i) PC_D_1: randomly change passenger control level
Randomly select a time slice: Δt;
Randomly increase/decrease a control level:

pci
u(t)←pci

u(t) ± 1 for t⊆[1,Δt];
Execute passenger control strategy repair oper-

ator PC_R_1.
(ii) PC_D_2: increase passenger control level during

time slice with a high left-behind rate
Calculate the number of passengers on the

platform pfi(t), consider the adjustable strategy
level, and build a high left-behind rate time slices
set: Πleft− behind;

Select a time slice from the high left-behind rate
time slices set: Δt;

Train timetable operators
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Figure 3: )e selection and update process of execution operators.
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Increase a passenger control level:
pci

u(t)←pci
u(t) + 1 for t⊆[1,Δt];

Execute passenger control strategy repair oper-
ator PC_R_1.

(iii) PC_D_3: decrease passenger control level during
time slice with a high control rate
Calculate the number of passengers on the

platform pfi(t), consider the adjustable strategy
level, and build a high control rate time slices set:
Πcontrol;
Select a time slice from the high control rate time

slices set: Δt;
Decrease a passenger control level:

pci
u(t)←pci

u(t) − 1 for t⊆[1,Δt];
Execute passenger control strategy repair oper-

ator PC_R_1.
(iv) PC_R_1: repair passenger control level changing

broken
If passenger control constraints (42)–(44) are

broken, roll back.

5. Case Study

A numerical case and a real-world case are introduced to test
the efficiency of the proposed the PCS&TOP model and the
MOSA algorithm in this section.

5.1. Numerical Case Study

5.1.1. Case Description. As shown in Figure 4, a numerical case
that includes 2 bidirectional crossed lines is illustrated. Every
line has 5 stations that include an origin station (Station 1), a
terminal station (Station 5), and a transfer station (Station 3).
)e related parameters that include the train operation pa-
rameters and passenger demand are listed in Appendix
B. During the 60-minute study time horizon, we pursue the
optimal train operation plan and passenger control strategy plan
by calculating the PCS&TOP model and MOSA algorithm.

)e computation process is performed on aWindows 11
(64-bit) workstation with an AMDRyzen 7–4800UCPU and
16 GB RAM. )e MOSA algorithm is programmed in
MATLAB 2021a.

5.1.2. Result Analysis. To avoid the randomness of the MOSA
algorithm, we test the experiment 50 times with the same
parameters (α1 � 1, α2 � 100, α3 � 0.7). )e average com-
putation time is 260.47 seconds (4.34minutes).)e values of the
objective function in the 50 experiments are shown in Figure 5,
the minimum result is 125,282 obtained 26 times. )ree other
different solutions are obtained and all results are within a 0.5%
gap compared with the minimum one. )erefore, the MOSA
algorithm performs well in terms of convergence.

In the minimum result, the passenger waiting time at the
platform is 33,748 minutes, the passenger waiting time at the
entrance is 7,048 minutes, and the train operation cost is 866
corresponding to 62 train service that includes 34 1-unit

formation trains and 28 2-unit formation trains. )e specific

results are shown in the next section and compared with the
results in other conditions.

5.1.3. Result Comparison. To show the efficiency of the
proposed model and algorithm, the optimized result is
compared with the results in different conditions.

)e origin solution is proposed as the original scenario.
)e timetables operating with minimum headways on each
line are the same, and all trains are 2-unit formation.
Meanwhile, there are no passenger control strategies at any
station at any time. )e PCS result is the solution that
optimizes the passenger control strategy with the original
train operation plan. )e TOP result is the solution that
optimized the train operation plan without any passenger
control strategy. )e PCS&TOP result is the collaborative

Table 4: Comparison of the objective function and each part in
different results.

Results obj ptf pte toc Trains
Origin 171,232 43,232 0 1,280 64 (0, 64)
PCS 169,668 36,152 7,880 1,280 64 (0, 64)
TOP 125,520 38,920 0 866 62 (34, 28)
PCS&TOP 125,282 33,748 7,048 866 62 (34, 28)
Notes: tr (tr1, tr2) in “Trains”—tr represents the total number of trains, and
tr1 and tr2 represent the number of trains in type 1 and type 2, respectively.

solution 3 solution 4solution 2solution 1
Experiments

125,000
125,200
125,400
125,600
125,800
126,000
126,200
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Figure 5: )e results of 50 experiments with the same parameters.
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Figure 4: Illustration of the numerical case rail transit network.
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Line 1 216 344 344 344 344 812 1166 1318 1470 1622 1116 552 344 344 344 128
Line 2 216 344 344 344 344 812 1166 1318 1470 1622 1116 552 344 344 344 128
Line 3 216 344 344 344 344 812 1166 1318 1470 1622 1116 552 344 344 344 128
Line 4 216 344 344 344 344 812 1166 1318 1470 1622 1116 552 344 344 344 128

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Line 1 216 344 344 344 344 718 952 910 925 1027 1165 573 360 344 344 128
Line 2 216 344 344 344 344 718 952 910 925 1027 1165 573 360 344 344 128
Line 3 216 344 344 344 344 718 952 910 925 1027 1165 573 360 344 344 128
Line 4 216 344 344 344 344 718 952 910 925 1027 1165 573 360 344 344 128

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Line 1 216 280 280 280 280 748 998 1150 1302 1454 948 410 358 280 280 64
Line 2 558 358 288 280 352 812 998 1150 1302 1262 695 685 506 370 0 516
Line 3 216 280 280 280 280 748 998 1150 1302 1454 948 410 358 280 280 64
Line 4 558 358 288 280 352 812 998 1150 1302 1262 695 685 506 370 0 516

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Line 1 216 280 280 280 280 654 784 815 803 1099 859 454 374 295 280 64
Line 2 558 358 288 280 335 746 830 845 892 1017 674 710 559 418 0 551
Line 3 216 280 280 280 280 654 784 815 803 1099 905 421 362 286 280 64
Line 4 558 358 288 280 335 746 830 845 892 1017 674 710 559 418 0 551
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Figure 6: )e platform waiting time of passengers in different solutions.
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Figure 7: )e number of left-behind passengers in different solutions. (a) Origin solution; (b) PCS solution; (c) TOP solution; and (d)
PCS&TOP solution.
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optimization solution of passenger control strategy and train
operation plan by the proposed model and algorithm.

)e values of the objective function and each part are
compared and shown in Table 4. Compared with the origin
result, the passenger waiting time at the platform is

decreased in PCS, because the passengers are controlled at
the entrance; the train operation cost is decreased in TOP
because the timetables of different lines and train formation
are integrated optimized; both are decreased in PCS&TOP.
Whereas, the passenger waiting time at the entrance is
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Figure 9: Pareto curve of results with different values of α2. (a) Range from 0.01 to 1000; and (b) Range from 0.1 to 2.0.
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Figure 10: Pareto curve of results with different values of α3. (a) Range from 0.01 to 10000; (b) range from 1 to 1000.
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Figure 8: )e entrance waiting time of passengers in different solutions.
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increasing in PCS and PCS&TOP. )erefore, the proposed
model and algorithm can collaboratively optimize the
passenger control strategy and train operation plan.

)e platform waiting time of passengers ptf in each
train on each line in each solution is shown in Figure 6. )e
number of passengers is larger, the color on the bar is nearer
the red; the number is smaller, the color on the bar is nearer
the green; if there are no passengers, the color is white. We
find that the total platform waiting time on each train de-
creased during peak hours (trains 6–11) in PCS&TOP even
though it used fewer trains.

)e number of left-behind passengers on each line after the
trains depart from the station in different solutions is shown in
Figure 7. We find that, compared with the solution without
passenger control (origin solution and TOP solution), fewer

passengers are left behind at the platform in the solution with
passenger control (PCS solution and PCS&TOP solution),
which shows the benefits of the passenger control strategy.
)ere still have passengers left behind at the platform, because
the excessive passenger control strategymay lead to extra delays
at the entrance. Meanwhile, the passenger control strategy is
discretized as several levels corresponding to several control
rates, and the specific control level is selected at each station.

As the passenger control strategy is not considered in the
origin and TOP solutions, the entrance waiting time of
passengers in the two solutions are 0. )e entrance waiting
time of passengers in the PCS and PCS&TOP solutions is
shown in Figure 8. Compared with the PCS solution, the
peak value of entrance passenger waiting time is decreased
and the range of them is increased in the PCS&TOP
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solution, which implies that the passengers are controlled
with weaker strength and wider time horizon.

In summary, the proposed model and algorithm can
collaboratively optimize the passenger control strategy and
train operation plan to reduce the train operation cost and
increase the efficiency of passengers.

5.1.4. Sensitive Analysis of the Model’s Parameters. (1)
Weight Parameter of Passenger Entrance Waiting Time α2.
As the passenger entrance waiting time is directly related to
the passenger platform waiting time (if the train operation
plan is fixed) that all depends on the passenger control level
(as shown in Equations (18), (23), and (28)), the weights of
ptf and pte should be discussed to analyze their
relationship.

We set the value of α1 (weight of ptf ) and α3 (weight of
toc) as 1, and test the values of α2 (weight of pte ) in a range
as wide as possible. Each set of parameters is tested 10 times
and selected as the minimum one.)en, the values [0.01, 0.1,
1.0, 10, 100, 1000] are selected and shown in Figure 9(a), the
Pareto curve of α2 is constructed. We find that the result
almost no longer changes when α2 ≤ 0.1 or α2 ≥ 10, which
represents the range of α2 can be obtained. Meanwhile, the
α2 is sensitive near the value 1.0, so the values of α2 in [0.1,
2.0] with a 0.1 step length are also tested to describe the
Pareto curve accurately and shown in Figure 9(b). We find
that ptf is reduced a few but may lead to a large increase on

pte when the value of α2 in [0.1, 0.6]. )e variation of ptf

and pte is nearly similar when the value of α2 in [1.0, 1.5],
and the result almost no longer changes when α2 ≥ 1.5.
When the value of α2 in [0.7, 1.0], the results are relatively
stabilized and guarantee the control of oversaturated
passengers.

In summary, the passenger control strategy depends
on the value of α2, and the operators can adopt different
strategies by selecting different values. [0.7, 1.0] is selected
as the range of α2 to optimize the passenger control
strategy in this study, because it is the inflection point on
the Pareto curve. Specifically, during that range, the
oversaturated passengers can be controlled and may not
lead to much unnecessary delay. [1.0, 1.5] can be selected
if the operators do not focus on the congestion of pas-
sengers on the platform. [0.1, 0.6] can be selected if the
operators greatly focus on the safety of passengers on the
platform, but it may lead to unnecessary delays for
passengers.

(2) Weight Parameter of Train Operation Cost α3. )e
efficiency of passengers (ptf and pte) is inversely propor-
tional to the train operation cost (toc), so the weights of toc

should be discussed to analyze their relationship.
We set the value of α1 (weight of ptf ) and α2 (weight of

pte) as 1, and test the values of α3 (weight of toc ) in a range
as wide as possible. Each set of parameters is tested 10 times
and selected as the minimum one.)en, the values [0.01, 0.1,
1.0, 10, 100, 1000, 10000] are selected and shown in
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Figure 12: Train operation plan and passenger distribution of 4 lines. (a) Headway of trains at origin stations on each line and (b) the
formation of trains on each line.
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Figure 10(a), the Pareto curve of α3 is constructed. )e α3 is
sensitive near the value 100, so the values of α3 in [100, 1000]
with a 100 step length are tested to describe the Pareto curve
accurately (Figure 10(b)). We find that the passenger delay
(ptf and pte) is reduced a lot that only needs a few increase
on toc when the value of α3 in [100, 1000]; the result almost
no longer changes when α3 ≥ 1000; the passenger delay (ptf

and pte) is reduced a few but may lead to a large increase on
toc when the value of α3 in [0.01, 100].

In summary, the train operation cost depends on the
value of α3. 100 is selected as the value of α3 to optimize the
passenger control strategy in this study because it is the
inflection point on the Pareto curve. In the range of [100,
1000], the passenger delay can be reduced a lot, but only
leads to a few increases on train operation cost when the
value of α3 is reducing. Meanwhile, the different strategies
that are optimized with different values of the weight can be
adopted by operators in different scenarios.

5.2. Real-World Case Study

5.2.1. Case Description. A real-world large-scale case from
Shenyang Metro (2016) in China is proposed to test the
performance of the PCS&TOP model and MOSA algorithm.
Two bidirectional lines in Shenyang Metro are considered
and the illustration of them is shown in Figure 11.

)e two independent operation lines are from east to
west (line 1) and from south to north (line 2), and crossed at
the transfer station (Qingnian Avenue Station). Only the
passengers can transfer at the transfer station while trains
cannot crossover the line. Line 1 has 22 stations and includes
an up-direction line (from Shisanhao Street station to
Liming Square station) denoted as Line 1 and a down-di-
rection line (from Liming Square station to Shisanhao Street
station) denoted as Line 2. Line 2 has 22 stations and in-
cludes an up-direction line (from Quanyun Road station to
Shenyang Aerospace University station) denoted as Line 3
and a down-direction line (from Shenyang Aerospace
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Figure 13: Passenger control strategy of each line. (a) Passenger control strategy of Line 1 and (b) passenger control strategy of Line 4.
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University station to Quanyun Road station) denoted as Line
4. )e operation time of the network is from 5:30 a.m. to 23:
30 p.m., covering a 1080-minute time horizon with a 1-
minute time slice.

)e passenger demand is obtained from the automatic
fare collection (AFC) system, and a working day (December
6, 2016, Tuesday) demand data is selected as the input of this
study.)e distribution of passengers (PASi(t), PRAi(t), and
PRTi, i″(t)) can be obtained from the demand data that
include the entering and exiting station and time [21], and
the distributions of them are shown in Appendix C.

Other related parameters are explained and listed in
Appendix C.)e algorithm parameters and the computation
environment are the same as those in the numerical case,
and the train operation plan and passenger control strategy
plan are optimized by the proposed PCS&TOP model and
MOSA algorithm.

5.2.2. Result Analysis. )e value of the best objective
function is 13,348,194 (in α1 � 1, α2 � 100, α3 � 0.7). Spe-
cifically, 660 trains include 579 3-unit formation trains and
81 6-unit formation trains are used on 4 lines in total and
create 117,819 train operation cost. 623,293 passengers are
served and create 1,537,732 minutes of platform waiting
time and 40,803 minutes of entrance waiting time. )e
optimized train operation plan is shown in Figure 12 In
Figure 12(a), the chain lines represent the headways of the
trains at the origin stations, and the translucent broken lines
represent the number of arrival passengers on each line. )e
tendency of arrival passengers and train operation are the
same. Specifically, the headway is small during peak hours
and it is large during off-peak periods. )e same

characteristic is shown in the usage of train formation in
Figure 12(b). )e optimized passenger control strategies on
Lines 1 and 4 are shown in Figures 13(a) and 13(b), because
the passenger demand is so small that we do not need control
on Lines 2 and 3. )e computation process used 4647
seconds (77.46 minutes) of computation time. As shown in
Figure 14, the thin blue line represents the obtained value of
the objective function in each iteration, and the thick yellow
line represents the best value of them.)e best result rapidly
decreased to a small value within 200,000 iterations. As the
iteration goes on, the best result is still updating and de-
creasing, but the variation of results in each iteration grows
smaller. )at represents the search area is tapering off and
convergent to a stable value.

5.2.3. Result Comparison. To explain the efficiency of the
proposed model and algorithm, the optimized result is
compared with different solutions from different sce-
narios. As shown in Table 5, 5 different scenarios are
introduced.

Origin: it represents the original operation plan without
any passenger control strategy, which can be obtained
from the real-world plan.
PCS: it represents that the passenger control strategy is
optimized only, which can be obtained from MOSA
algorithm without TT and TF operators based on the
origin solution.
TOP: it represents that the train operation plan is
optimized only, which can be obtained from the MOSA
algorithm without PC operators based on the origin
solution.

Table 5: )e explanation of comparison experiments.

Solutions Optimize TOP Optimize PCS Obtained from
Origin No No Real-world scenario
PCS No Yes MOSA algorithm without TT and TF operators
TOP Yes No MOSA algorithm without PC operators
TOP-PCS Firstly Secondly MOSA algorithm
PCS&TOP Collaboratively PCS&TOP model and MOSA algorithm
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Figure 14: )e variation of the objective function in each iteration.

20 Journal of Advanced Transportation



6:
30

6:
34

6:
38

6:
42

6:
46

6:
50

6:
54

6:
58

7:
02

7:
06

7:
10

7:
14

7:
18

7:
22

7:
26

7:
30

7:
34

7:
38

7:
42

7:
46

7:
50

7:
54

7:
58

8:
02

8:
06

8:
10

8:
14

8:
18

8:
22

8:
26

8:
30

Time

0

500

1000

1500

2000

2500

N
um

be
r o

f l
e�

-b
eh

in
d

pa
ss

en
ge

rs

Origin
PCS

TOP
TOP-PCS

PCS&TOP

Figure 17: Number of left-behind passengers on Line 4 in different solutions.
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Figure 15: Platform waiting time of passengers at each train on Line 4 in different solutions.
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Figure 16: Number of loading passengers at each train on Line 4 in different solutions.

Table 6: Result comparison of different solutions.

Results obj ptf pte toc Trains
Origin 22,408,097 1,801,697 0 206,064 648 (0, 648)
PCS 22,392,307 1,739,710 65,995 206,064 648 (0, 648)
TOP 13,425,586 1,595,986 0 118,296 668 (592, 76)
TOP-PCS 13,418,168 1,558,679 42,699 118,296 668 (592, 76)
PCS&TOP 13,348,194 1,537,732 40,803 117,819 660 (579, 81)
Notes: tr(tr1, tr2) in “Trains”—tr represents the total number of trains, and tr1 and tr2 represent the number of trains in type 1 and type 2, respectively.
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TOP-PCS: it represents that the train operation plan
and passenger control strategy are optimized, respec-
tively, which can be obtained by optimizing the train
operation plan firstly and then optimizing the pas-
senger control strategy.
PCS&TOP: it represents the train operation plan and
passenger control strategy are collaboratively opti-
mized, which can be obtained from the proposed
PCS&TOP model and MOSA algorithm.

)e results that include the objective function and each
part of it are shown in Table 6. Compared with the origin
result, the values of the objective function are reduced by
0.07% in PCS, 40.09% in TOP, 40.12% in TOP-PCS, and
40.43% in PCS&TOP. )e TOP can reduce the passenger
platform waiting time, but the reduction is limited in the
solution that only adjusts the train operation plan. )ere-
fore, the TOP-PCS and PCS&TOP can reduce the passenger
platform waiting time further by controlling the entering
passengers. However, in the TOP-PCS solution, the pas-
senger control strategy is optimized based on the TOP
solution, in which the train operation plan may not coor-
dinate with that.)erefore, the collaborative optimization in
the PCS&TOP has a more significant effect than others.
Compared with TOP-PCS solution, the objective function is
reduced by 0.52% that includes 1.34% ptf, 4.44% pte, and
0.40% toc.

Due to the original train operation plan of Line 4
showing bad performance and resulting in a large number of
passengers are left behind the platform, the solutions of that
are worth further analysis. To explain the effect of the
PCS&TOP solution, the platformwaiting time of passengers,
the number of loading passengers, and the number of left-
behind passengers on Line 4 in different solutions are
compared in detail.

As shown in Figure 15, the platform waiting time of
passengers is counted in the same train on Line 4. Due to the
original train operation plan is not optimized, the waiting
time is very large during the morning peak hours (60–180,
corresponding to 6:30–8:30) in the origin solution. )rough
the control of passengers in the PCS solution, the waiting
time is reduced to some extent, but it is still too large. Due to
the optimization of the train operation plan, the waiting time
of passengers has a great reduction in the TOP solution.
Based on that, the waiting time can reduce again in the TOP-
PCS solution by controlling passengers at the entrance.
Owing to the collaborative optimization, the PCS&TOP can
further reduce the platform waiting time of passengers
during peak hours.

As shown in Figure 16, the number of loading passengers
of Line 4 is counted and compared. )e different thick chain
lines represent the number of loading passengers on each
train, which shows that the number of loading passengers in
the PCS&TOP solution is smaller than other solutions on
most trains. )e thin points with the same tendency rep-
resent the cumulative number of served passengers on each
train, which shows that the cumulative number of served
passengers in the PCS&TOP is similar to other solutions. It

can be explained as that the passengers are served by more
trains so that the loading passengers are small and the
cumulative passengers are same. Due to the relative low
loading rate, the passengers may have better experiences in
the PCS&TOP solution than in other solutions.

As shown in Figure 17, the number of left-behind
passengers on the platform of Line 4 during the morning
peak hours (6:30–8:30) are counted and compared. )e PCS
solution has greatly reduced the number of left-behind
passengers by controlling passengers at the entrance, but the

Table 7: )e explanation of MOSA algorithm-related variables.

Variables Explanation
objinit Initial result
objiter Current result after executed
objiter′ Current result before executed
objbest Best result
sinit Initial solution
siter Current solution after executed
siter′ Current solution executed
sbest Best solution
τiter Current temperature
citer Current temperature reheat times
iter Current iteration times
m Execution operator, m ∈ Μ
ρl,m Execution times of operator m for line l

ol,m Total execution times of operator m for line l

μl,m Score of operator m for line l

θl,m Weight of operator m for line l

Table 9: Dwell time and running time of the trains in the numerical
case.

Station Dwell time
TWi

l

Running time TRi
l

Upward
direction

Downward
direction

1 1 1 —
2 1 1 1
3 1 1 1
4 1 1 1
5 1 - 1

Table 10: )e train formation parameters.

Type
(m)

Formation
(TRm)

Cost
(TRTl × TRm)

Capacity
(Capm)

1 1 unit 9 minutes 150 passengers
2 2 units 18 minutes 300 passengers

Table 8: )e explanation of MOSA algorithm-related parameters.

Parameters Explanation Value
τstart Start temperature 60,000
τend End temperature 0.01
ϕ Cooling down rate 0.9969
cmax Maximum reheat times 10

iter
per
max

Maximum number of iterations in each
reheat process 5,000

itermax Maximum total number of iterations 50,000
φ Reset iteration times 100
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delay of passengers is still inescapable. )e TOP solution
reduces the crowding on the platform by using more trains
in the peak period, but the effect is limited due to the re-
striction of infrastructure. )e TOP-PCS solution reduced
the number of left-behind passengers again by adding the
passenger control strategy. Owing to the collaborative op-
timization, the number of left-behind passengers can be

further reduced to smaller than 200 in the PCS&TOP
solution.

In summary, the PCS&TOP solution optimized by the
PCS&TOP model and MOSA algorithm has better perfor-
mance on the efficiency of train operation plan and pas-
senger control strategy than single optimization result and
respective optimization result.

Table 11: )e values of numerical case train operation parameters.

Parameters Value Unit
TS 1 Minute
THmin 4 Minute
THmax 10 Minute
TTRi

l 5 Minute
TRTl 9 Minute
NKl,max 15 Train
RSl 5 Vehicle
TTi,i′ 2 Minute
α1 1 —
α2 100 —
α3 0.7 —
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Figure 18: )e passenger demand distribution in numerical case. (a) PASi(t), (b) PRAi(t), and (c) PRTi,i′(t).
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Table 12: Dwell time and running time of the trains on line 1 in Shenyang Metro.

Stations
Line 1 (upward direction) Line 2 (downward direction)

No TWi
l TRi

l No TWi
l TRi

l

Shisanhao Street 1 1 1 22 1 —
Zhongyang Avenue 2 1 1 21 1 1
Qihao Street 3 1 2 20 1 1
Sihao Street 4 1 2 19 1 2
Zhangshi 5 1 2 18 1 2
Kaifa Boulevard 6 1 1 17 1 2
Yuhong Square 7 1 1 16 1 1
Yingbin Road 8 1 2 15 1 1
Zhonggong Street 9 1 1 14 1 2
Qigong Street 10 1 1 13 1 1
Baogong Street 11 1 1 12 1 1
Tiexi Square 12 1 2 11 1 1
Yunfengbei Street 13 1 2 10 1 2
Shenyang Railway Station 14 1 1 9 1 2
Taiyuanjie 15 1 2 8 1 1
Nanshichang 16 1 1 7 1 2
Qingnian Avenue 17 1 2 6 1 1
Huaiyuanmen 18 1 2 5 1 2
Zhongjie 19 1 1 4 1 2
Zhongjie East 20 1 2 3 1 1
Bangjiang Street 21 1 1 2 1 2
Liming Square 22 1 - 1 1 1

Table 13: Dwell time and running time of the trains on line 2 in Shenyang Metro.

Stations
Line 3 (upward direction) Line 4 (downward direction)

No TWi
l TRi

l No TWi
l TRi

l

Quanyun Road 1 1 1 22 1 —
Baitahe Road 2 1 2 21 1 1
21st Century Mansion 3 1 2 20 1 2
Yingpan Street 4 1 2 19 1 2
Olympic Sports Center 5 1 2 18 1 2
Wuli River 6 1 1 17 1 2
Shenyang Library 7 1 2 16 1 1
Liaoning Industrial Exhibition Hall 8 1 2 15 1 2
Qingnian Park 9 1 1 14 1 2
Qingnian Avenue 10 1 2 13 1 1
Municipal Government Square 11 1 1 12 1 2
Financial Center 12 1 1 11 1 1
Shenyangbei Railway Station 13 1 1 10 1 1
Qishan Road 14 1 1 9 1 1
Liaoning University of Traditional Chinese Medicine 15 1 1 8 1 1
Beiling Park 16 1 1 7 1 1
Xinle Ancient Ruins Museum 17 1 1 6 1 1
Beiling West 18 1 1 5 1 1
Santaizi 19 1 2 4 1 1
Shenyang Medical College 20 1 2 3 1 2
Shenyang Normal University 21 1 2 2 1 2
Shenyang Aerospace University 22 1 — 1 1 2

Table 14: )e train formation parameters.

Type (m) Formation (TRm) Cost (TRTl × TRm) Capacity (Capm)
1 3 unit 159 minutes 720 passengers
2 6 units 318 minutes 1,440 passengers
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Figure 19: Continued.

Table 15: )e values of real-world case train operation parameters.

Parameters Value Unit
TS 1 Minute
THmin 4 Minute
THmax 10 Minute
TTRi

l 10 Minute
TRTl 53 Minute
NKl,max 220 Train
RSl 30 Vehicle
TTi,i′ 2 Minute
α1 1 —
α2 100 —
α3 0.7 —
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6. Conclusion

To solve the mismatch problem between supply and demand
including the oversaturated demand during peak periods
and the excessed service during off-peak periods in the rail
transit system, a passenger control strategy and train op-
eration plan collaborative optimization method is proposed
in this article. Specifically, the PCS&TOP model is con-
structed to minimize the entrance and platform waiting time
of passengers and the operation cost of trains. )e variable
train formation plan is viewed as a decision variable to
improve the flexibility of the operation plan.)e turnaround
of rolling stock is considered in the constraints to improve
the feasibility of the optimized operation plan. )e coor-
dination of timetables on different lines is considered to
improve the convenience of transfer passengers. )e co-
ordination of passenger control strategies at different sta-
tions is considered to improve the utilization of limited
transport capacity. )e MOSA algorithm is proposed to
solve the model. To collaboratively optimize the three main
decision variables, three types of corresponding execution
operators are designed in the algorithm.

A numerical case that includes 2 bidirectional crossed
lines is illustrated, and the stability and astringency of the
model and algorithm are tested by 50 times experiments
with the same parameter. )e sensitivity of weight param-
eters in the objective function is analyzed respectively. Based
on the analysis of the Pareto curve of them, the suggested
range of each weight is given.)e tendency of solutions with
different range of weights are also analyzed to provide a
reference for operators to decide.

A real-world large-scale rail transit network in China is
introduced to test the performance of the proposed model
and algorithm compared with the single and respective
optimization solutions. Compared with the original train
operation plan without passenger control, the single and
respective optimization solutions have smaller objective
value, but it is smallest in the collaboratively optimized
solution Compared with the single and respective optimi-
zation solutions, the collaboratively optimized solution
shows good performance in each aspect including the
platform waiting time of passengers, number of loading
passengers on the train, and number of left-behind pas-
sengers on the platform.
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Figure 19: )e passenger demand distribution in the real-world case. (a) PASi(t) in Line 1, (b) PASi(t) in Line 2, (c) PASi(t) in Line 3,
(d) PASi(t) in Line 4, (e) PRAi(t) in Line 1, (f ) PRAi(t) in Line 2, (g) PRAi(t) in Line 3, (h) PRAi(t) in Line 4, and (i) PRTi,i′(t).
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In future research, the method can be extended from 3
aspects: (i) )e complex rail transit network with several
lines and transfer stations can be applied to test the efficiency
of the proposed model and algorithm; (ii) the rolling stock
plan can be integrated optimized with the train timetable
and train formation plan that can improve the integrity of
train operation plan; and (iii) the reinforced learning ap-
proaches can be used to improve or replace the meta-
heuristic algorithms to increase the efficiency of them.

Appendix

A. The Statement of the MOSA Algorithm-
Related Parameters

)e related variables and parameters of theMOSA algorithm
are listed in Tables 7 and 8, the explanation and the suggested
value of the parameters are also listed.

B. The Statement of the Numerical Case-
Related Parameters

)e values of train operation-related parameters in the
numerical case are listed as follows. Table 9 shows the train
dwell time at each station and the running time in each
section. Table 10 shows the train formation parameters.
Table 11 shows other train operation-related parameters.

)e passenger demand distributions on each line are the
same and are shown in Figure 18, which includes the
number of arrived passengers PASi(t) in Figure 18(a),
passenger alighting ratio PRAi(t) in Figure 18(b), and
passenger transferring ratio PRTi,i′(t) in Figure 18(c).

C. The Statement of the Real-World Case-
Related Parameters

)e values of train operation-related parameters in real-
world case are listed as follows. Tables 12 and 13 show the
train dwell time at each station and the running time in each
section of the 4 lines. Table 14 shows the train formation
parameters. Table 15 shows other train operation-related
parameters in the real-world case.

)e passenger demand distributions are shown in Fig-
ure 19, which includes the number of arrived passengers
PASi(t) on each line in Figures 19(a)–19(d), passenger
alighting ratio PRAi(t) on each line in Figures 19(e)–19(h),
and passenger transferring ratio PRTi,i′(t) in Figure 19(i).
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