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+e traditional A∗ algorithm, applied to the motion planning of autonomous vehicles, easily causes high computational costs and
excessive turning points generated in the planning path. In addition, the vehicle cannot track the path due to the unsmooth
inflection point. To overcome these potential limitations, an improved A∗ algorithm-based motion planning algorithm and a
tracking control strategy based on model predictive control theory were proposed in this work. +e method of expanding the
search neighborhood is adopted to improve the planning efficiency of A∗ algorithm. +e artificial potential field method is also
incorporated into the proposed A∗ algorithm. +e resultant force generated by each potential field is further introduced into the
evaluation function of A∗ algorithm to plan the driving path, which could be suitable for autonomous vehicles.+e sharp nodes in
the path are smoothed by cubic quasi-uniform B-spline curve.+e tracking control strategy is designed based on model predictive
control theory to realize the accurate tracking of the planned path. Typical obstacle avoidance conditions were selected for co-
simulation test verification. +e experimental results show that the proposed motion planning algorithm and tracking control
strategy can effectively plan the obstacle avoidance path and accurately track the path in different environments.

1. Introduction

With the rapid growth of car ownership, traffic safety, and
urban traffic congestion problems becoming more and more
serious, and research and development of safe and reliable
autonomous vehicles have become an inevitable develop-
ment trend. Motion planning and tracking control are two
key technologies of autonomous vehicles, which solve the
problem of how autonomous vehicles drive. Motion plan-
ning is to plan a drivable safe path for the autonomous
vehicle while tracking control is to track the planned path on
the premise of satisfying the vehicle kinematics and dy-
namics constraints.

For the motion planning and tracking control of the
autonomous vehicle, a large number of scholars have
conducted in-depth research. In terms of motion planning,
A∗ algorithm [1], artificial potential field method [2], genetic
algorithm [3], RRTalgorithm [4], etc, are commonly used in
the current research. Among them, A∗ algorithm is the most

widely used in the motion planning of autonomous vehicles
because of its simple working principle and strong ro-
bustness. However, with the increase of the map, A∗ al-
gorithm also presents problems such as high computational
cost and the inability to find the optimal path. In order to
solve this kind of problems, a large number of scholars have
carried out research on it. Fu et al. [5] proposed an improved
A∗ algorithm. When exploring the neighborhood, local
paths from the current node to the target point are selected
and planned according to the current environment, and the
drivable local paths are optimized as part of the global path,
improving the smoothness of the path planned by A∗ al-
gorithm. Tang et al. [6], aiming at the problem of large
storage space of A∗ algorithm, by using three methods:
bidirectional search, guideline, and key point list, the
amount of calculation of the algorithm is optimized and the
planning time of the algorithm is reduced. Erke et al. [7]
improved the obstacle avoidance performance of the A∗

algorithm by setting key points around the obstacle and
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designed a variable step size A∗ algorithm to reduce the
calculation time of the algorithm. Liu et al. [8] selected and
recorded the nodes in the Open List and Close List through
the method of jump point search, optimized the algorithm
planning time, and combined the dynamic window method
to select the optimal path. Zhong et al. [9] combined the
adaptive window method with the A∗ algorithm, which
simplified the calculation of the risk cost function and the
distance cost function, and realized the motion planning of
the mobile robot in a dynamic environment. Xiong et al. [10]
smoothed the planned path through the Bezier curve, which
improved the applicability of the A∗ algorithm.

In terms of tracking control, the commonly used
tracking control theories include pure tracking control [11],
fuzzy control [12], optimal control [13], sliding mode var-
iable structure control [14], model predictive control [15],
etc. Since model predictive control (MPC) has a good ability
to deal with multiple constraints and has a good control
effect on the path tracking of nonlinear systems, a large
number of scholars have applied MPC to the tracking
control of autonomous vehicles. Novi et al. [16] proposed a
hierarchical control method for nonlinear model predictive
control (NMPC), in which high-order MPC calculated the
curve of optimal speed and low-order NMPC constrained
motion curve, thus improving the real-time performance of
the control algorithm. Zhang et al. [17] proposed an adaptive
MPC control strategy based on the recursive least square
method, which can achieve better control effects under
different driving conditions. Xu et al. [18] proposed a
tracking control strategy based on the preview-follower
theory (PFT) and MPC theory, in which PFT updated the
reference quantity according to the preview-point and
controlled the vehicle movement through MPC, effectively
reducing the tracking error of the vehicle. Berntorp et al. [19]
proposed an adaptive nonlinear model predictive control
with variable tire model, which has a good control effect on
path tracking on different roads.

To sum up, scholars have conducted a lot of research on
the motion planning and tracking control of autonomous
vehicles, but the current research mainly focuses on the
optimization of the performance parameters of the algo-
rithm itself, the actual running environment of the vehicle
and whether the planned path can meet the requirements of
vehicle tracking are less considered. +erefore, this study
analyzed the motion planning and tracking control of au-
tonomous vehicles in actual obstacle avoidance conditions,
proposes a motion planning algorithm improved by A∗

algorithm, and shows a tracking control strategy based on
model predictive control theory. +e main contributions of
this study are as follows:

(i) In this study, the planning time of A∗ algorithm is
reduced by expanding the search neighborhood
method, and the traditional algorithm’s 3∗ 3 search
neighborhood is expanded to 9∗ 9 search neigh-
borhood, which reduces the included nodes in the
Close List and increases the searchable direction of
paths, effectively improving the planning efficiency
of the algorithm.

(ii) In this study, artificial potential field method is
combined with A∗ algorithm. In the process of
motion planning, the minimum safe distance be-
tween the planned path and the obstacle is con-
sidered. +e resultant force generated by each
potential field is introduced into the evaluation
function of A∗ algorithm for obstacle avoidance,
and the sharp nodes in the path are smoothed by a
cubic quasi-uniform B-spline curve.

(iii) +e tracking control strategy is designed based on
the model predictive control theory. +e vehicle
center of mass slip angle constraint is added to the
model predictive control to improve the vehicle
driving stability. +rough the path tracking test
under different vehicle speeds, the feasibility of the
improved A∗ algorithm for path planning and the
effectiveness of the tracking control performance
are separately verified.

+e rest of the study is organized as follows: In Section 2,
the improved motion planning algorithm is introduced,
which combines the improved A∗ algorithm by expanding
the search neighborhood with the artificial potential field
method, and uses a cubic quasi-uniform B-spline curve to
smooth the path. In Section 3, the path tracking controller is
designed based on model predictive control theory. In
Section 4, the planning algorithm and control strategy are
verified by co-simulation. Finally, the conclusions and future
research directions of this study are discussed in Section 5.

2. Motion Planning

A∗ algorithm was first applied to the motion planning of
mobile robots. Most mobile robots are capable of omnidi-
rectional movement, so the curvature of the planned path is
not strictly required. With the rapid development of au-
tonomous vehicles, A∗ algorithm has also been widely used
in the motion planning of autonomous vehicles. However,
due to the constraints of autonomous vehicles such as
minimum turning radius and maximum front-wheel Angle,
the path planned by the traditional A∗ algorithm is difficult
to meet the tracking requirements of autonomous vehicles.
+erefore, relevant improvements should be made to the A∗

algorithm to plan the path suitable for autonomous vehicles.
+is paper studies the obstacle avoidance conditions as
shown in Figure 1.

2.1. Environmental Map Modeling. In the motion planning
of autonomous vehicles, it is necessary to establish an ap-
propriate mapmodel to represent the current environmental
information, this study selects the commonly used grid map
to construct the environment map of obstacle avoidance
conditions. In the grid map, a series of squares of the same
size are used to represent the current environment, and the
binary method is used to assign values to each square to
divide the map into occupied and unoccupied areas. 0 means
that the current grid is not occupied, that is, the driving area
of the vehicle, which is shown in white in the grid map, 1
indicates that the current grid is occupied and vehicles
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cannot pass through this area, as shown in black on the map.
+e grid map established in this study according to obstacle
avoidance conditions is shown in Figure 2.

2.2. Traditional A∗ Algorithm. A∗ algorithm is one of the
graph search algorithms. First, add the starting point to
the Open List, search the grid of the surrounding 3 ∗ 3
neighborhood from the starting point, and traverse the
adjacent nodes. +en the direction to be included is se-
lected by calculating the evaluation function value of each
adjacent node, and the node with the smallest evaluation
function value is selected as the optimal node for inclu-
sion, and Add the current node to the Close List [20].
Continue to explore the 3 ∗ 3 neighborhood around the
optimal node, and repeat the above process to traverse the
map until the target point is included in the Close List.
Finally, find the parent node of each included node from
the target point to the starting point to form a path. Its
evaluation function is

f(n) � g(n) + h(n), (1)

where f(n) is the the evaluation function; g(n) is the real cost,
and h(n) is the estimated cost. Since autonomous vehicles
cannot achieve omnidirectional movement, Manhattan
distance is used to represent the estimated cost in order to
reduce the planning error, then the estimated cost is

h(n) � xn − xg􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + yn − yg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (2)

where (xn, yn) is the coordinate of the current node and
(xg, yg) is the coordinate of the target point.

It can be seen from the above formula that the traditional
A∗ algorithm is simple in principle, easy to implement, and
can effectively plan the path existing on the map. However,
with the expansion of the environmental map, there are also
some problems such as long planning time, inability to plan

the optimal path, and many sharp nodes in the planning
path, so it is necessary to improve the traditional algorithm
to plan the optimal path.

2.3. Improved A∗ Algorithm

2.3.1. Expand the Search Neighborhood. +e number of
nodes included in the Close List of A∗ algorithm is propor-
tional to the planning time of the algorithm. +e more nodes
included, the longer the planning time. +erefore, the algo-
rithm planning time can be reduced by reducing the nodes
included in the Close List. +e traditional A∗ algorithm
searches the grid of the surrounding 3∗ 3 neighborhood every
time, as shown in Figure 3. +en, one of the surrounding eight
adjacent nodes is selected as the optimal node for inclusion,
that is, one of every eight adjacent nodes will be included in the
Close List. In this way, only eight adjacent nodes can be ex-
plored at a time, and the planned path direction is limited to an
integer multiple of π/4. +e planned path has many turning
points and is not smooth enough. To solve this problem, this
study adopts the method of expanding search neighborhood to
improve the traditional A∗ algorithm. +e 3∗ 3 search
neighborhood of the traditional algorithm is extended to 5∗ 5
search neighborhood to reduce the nodes included in the Close
List and increase the searchable direction of the planned path to
improve the smoothness of the path, 5∗ 5 search neighbor-
hood is shown in Figure 4.

As can be seen from Figure 4, the number of adjacent
nodes searched for 5∗ 5 search neighborhood increases
from 8 to 24, that is, one of every 24 nodes is included in the
Close List. Compared with the traditional algorithm, it can
effectively reduce the nodes included in the Close List. At the
same time, the searchable directions of each traversal in-
crease from 8 to 16, and the turning angle of the path within
the search step becomes smaller. In order to verify the ef-
fectiveness of 5∗ 5 extended neighborhood A∗ algorithm,
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Figure 1: Schematic diagram of obstacle avoidance conditions.
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Figure 2: Grid map.
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MATLAB software was used to verify the algorithm on
30∗ 30 grid map, and the planned path is shown in the
Figures 5 and 6. +e result of 3∗ 3 search neighborhood
planning is shown in Figure 5, and the result of 5∗ 5 search
neighborhood planning is shown in Figure 6.

According to the planning results, the planned path
length of 3∗ 3 search neighborhood is 31.31m, and the
planning time is 3.32 s, while the planned path length of 5∗ 5
search neighborhood is 28.36m, and the planning time is
1.68 s. It can be concluded that the planning effect of 5∗ 5
search neighborhood is better, and the planning path of 5∗ 5
search neighborhood is smoother than that of 3∗ 3 search
neighborhood. +erefore, it can be concluded that the
method of expanding the search neighborhood can effec-
tively reduce the search time of the algorithm and improve
the smoothness of the path. Due to the large driving en-
vironment map of autonomous vehicles and the uniform
distribution of obstacles, a larger search neighborhood can
be expanded to plan the path to reduce the planning time.
Similarly, 7∗ 7 search neighborhood and 9∗ 9 search
neighborhood were used to conduct experiments respec-
tively. +e planned path is shown in Figure 7, and the ex-
perimental results are summarized in Table 1.

According to the simulation results, it can be seen that
the length and time of the path planned by the 9∗ 9 search
neighborhood A∗ algorithm are optimal, and the planned
path has fewer turning points and is smoother. +erefore,

this study adopts the method of expanding the 9∗ 9 search
neighborhood as an improved A∗ algorithm. +e improved
A∗ algorithm is applied to the obstacle avoidance condition
in this study, and the path planning is shown in Figure 8.

Figure 4: 5∗ 5 Search neighborhood.
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Figure 5: 3∗ 3 Search neighborhood planning result.
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Figure 6: 5∗ 5 Search neighborhood planning result.
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Figure 7: Comparison of paths planned in different search
neighborhoods.

Figure 3: 3∗ 3 Search neighborhood.
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2.3.2. Combined with Artificial Potential Field Method.
As can be seen from Figure 8, the improved A∗ algorithm of
9∗ 9 search neighborhood only considers the length of the
path, resulting in a small distance between the planned path
and the obstacle, which cannot meet the tracking require-
ments of vehicles under normal driving conditions. +e
normal planned path should consider the minimum safe
distance between the obstacle and the vehicle. +erefore, the
artificial potential field method is combined with A∗ algo-
rithm to construct a repulsive potential field around the
obstacle, so that the planned path is far away from the
obstacle. At the same time, to prevent the distance between
the planned path and the road boundary from being small or
beyond the road boundary, repulsive force potential field of
the road boundary is created on both sides of the road to
ensure that vehicles will not exceed the road boundary. Due
to the long road, the gravitational potential field is con-
structed around the target point in order to make the
planned path approach the target point more quickly.

In the traditional artificial potential field method, there is
a repulsive force field around the obstacle and a gravitational
field around the target point, and autonomous vehicles plan
the driving path under the combined action of the repulsive
force field and gravitational field [21]. +e traditional
gravitational potential field changes with the position of the
vehicle. In this study, the gravitational potential field of the
target point is established based on the traditional gravi-
tational potential field function, and the target point grav-
itational potential field function is

Uatt �
1
2
kattρ

2
q, qg􏼐 􏼑, (3)

where katt is the action coefficient of gravitational field;
ρ(q, qg) is the euclidean distance between the target point
and the vehicle.

+e gravitational function can be obtained from the
gravitational potential field function, which is the negative
derivative of the gravitational potential field with respect to
ρ(q, qg), that is the negative gradient of the gravitational
potential field:

Fatt � −∇Uatt � −
1
2
katt ∗∇ρ

2
q, qg􏼐 􏼑 � −kattρ q, qg􏼐 􏼑. (4)

+e repulsion potential field mainly repulses the vehicle.
When the autonomous driving vehicle enters the repulsive
potential field, the obstacle will generate repulsive force on
the vehicle. When the vehicle is outside the range of the
repulsive potential field, the repulsive potential field will not
work. +e repulsive field function is expressed as

Urep �
1
2
krep

1
ρ q, qo( 􏼁

−
1
ρl

􏼠 􏼡

2

, 0≤ ρ q, qo( 􏼁≤ ρl,

0, ρ q, qo( 􏼁≥ ρl,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

where krep is the action coefficient of repulsive field, ρ(q, qo)

is the distance between the obstacle and the vehicle, and ρl is
the influence distance of the potential field.

In the traditional artificial potential field method, the
repulsion and attraction may appear equal in magnitude and
opposite in direction, resulting in the autonomous vehicle
into local optimization, unable to continue to plan the path.
Also, when the vehicle is about to reach the target point, the
resultant force of the potential field at the target point is not
zero, resulting in the unreachable target point and other
problems. In this study, the repulsive field function is im-
proved, and the influence factor of distance between vehicle
and target point is added into the repulsive field function. At
the same time, the influence range of the traditional re-
pulsive field is improved, and the traditional repulsive force
field is circular, but for the autonomous vehicle, the length of
the lane is much larger than the width, and the longitudinal
speed of the vehicle is much larger than the lateral speed of
the vehicle. In order to plan a safer path, this study changes
the influence range of the repulsive force field to ellipse, the
influence range of the improved repulsion field is shown in
Figure 9.

In order to plan the path safely, the major axis A and the
minor axis B of the ellipse should be appropriately valued.
Where the value of A has an important relationship with the

Table 1: Different search neighborhood planning results.

Search neighborhood Adjacent node Search direction Path length/m Planning time/s
3∗ 3 8 8 31.31 3.32
5∗ 5 24 16 28.36 1.68
7∗ 7 48 32 27.35 1.51
9∗ 9 80 56 27.21 1.49
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Figure 8: Improved A∗ algorithm planning path.
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speed, meanwhile, there is a minimum safe distance between
the vehicle and the obstacle, so the value of the long axis of
the elliptic scope A is

A � Dmin + ηv, (6)

where Dmin is the minimum obstacle avoidance distance
between vehicle and obstacles, η is the speed correction
coefficient, and v is the speed of the vehicle.

According to the obstacle avoidance safety rules, the
value of the short axis B of the ellipse scope is set as

B �
ξL

2
, (7)

where ξ is the safety factor and L is the lane width.
+erefore, the improved repulsive field function is

Urep �
1
2
krep

1
ρ q, qo( 􏼁

−
1
ρl

􏼠 􏼡

2

ρm
q, qg􏼐 􏼑, q ∈

X
2

A
2 +

Y
2

B
2 � 1,

0, q ∉
X

2

A
2 +

Y
2

B
2 � 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where m is the distance regulating factor; X2/A2 + Y2/B2 � 1
is the elliptic region of action.

To prevent the vehicle from falling into the local opti-
mum, the repulsive force generated by the repulsive po-
tential field is decomposed, and the repulsive force of the
obstacle on the vehicle is decomposed into two directions.
+e schematic diagram of the decomposition repulsion force
is shown in Figure 10. +e repulsive force function after
decomposition is

Frep � −∇Urep �

Frep1 + Frep2, q ∈
X

2

A
2 +

Y
2

B
2 � 1,

0, q ∉
X

2

A
2 +

Y
2

B
2 � 1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Frep1 � krep

1
ρ q, qo( 􏼁

−
1
ρl

􏼠 􏼡
1

ρ2 q, qo( 􏼁
ρm

q, qg􏼐 􏼑,

Frep2 �
m

2
krep

1
ρ q, qo( 􏼁

−
1
ρl

􏼠 􏼡

2

ρm− 1
q, qg􏼐 􏼑,

(9)

where the direction of Frep1 is that the obstacle points to the
vehicle; the direction of Frep2 is that the vehicle points to the
target point.

To prevent the planned path from exceeding the road
boundary due to the large repulsive force of obstacles on
vehicles, the repulsive force potential field is created at the
road boundary. +e repulsive field function is as follows:

Ur �
1
2
kr

1
ρ q, qr( 􏼁

−
1
ρr

􏼠 􏼡

2

, ρ q, qr( 􏼁≤ ρr,

0, ρ q, qr( 􏼁≥ ρr,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

where kr is the boundary repulsive field action coefficient;
ρ(q, qr) is the distance between vehicles and the road
boundary; ρr is the influence distance.

+e repulsive force corresponding to the road boundary
is

Fr �

kr

1
ρ q, qr( 􏼁

−
1
ρr

􏼠 􏼡
1

ρ2 q, qr( 􏼁
, ρ q, qr( 􏼁≤ ρr,

0, ρ q, qr( 􏼁≥ ρr.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

+en the resultant force of the vehicle under the joint
action of the target gravitational potential field, the obstacle
repulsive potential field and the road boundary repulsive
potential field is

Figure 9: Improved potential field range.
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Figure 10: Decomposition repulsion diagram.
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F � Fatt + Frep + Fr, (12)

Combining the artificial potential field method with the
improved A∗ algorithm, the potential field force of each
artificial potential field is introduced into the evaluation
function of the A∗ algorithm. +e improved evaluation
function is

f(n) � g(n) + h(n) + F. (13)

+e improved A∗ algorithm integrated with the artificial
potential field method is applied to the obstacle avoidance
condition in this study, and the path planning is shown in
Figure 11.

2.3.3. Smoothing with B-Spline Curve. As can be seen from
Figure 11, the improved A∗ algorithm combined with the
artificial potential field method still has problems such as
sharp nodes and curvature discontinuity in motion plan-
ning.+erefore, a cubic quasi-uniform B-spline curve is used
to smooth the sharp nodes in the path to making the planned
path smoother.

Suppose there are n+ 1 control points in total, then
B-spline curve of order K can be defined as

P(u) � p0, p1, . . . , pn􏼂 􏼃

B0,k(u)

B1,k(u)

· · ·

Bn,k(u)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 􏽘
n

i�0
PiBi,k(u), (14)

where P is the control points and Bi,k(u) is the basis function
of the B-spline curve; +e B-spline curve basis function is
expressed by the deBoor − Cox recursive formula, and the
expression is as follows:

Bi,k(u) �

1, ui ≤ u< ui+1

0, Other

⎧⎪⎪⎨

⎪⎪⎩
k � 1,

u − ui

ui+k−1 − ui

Bi,k−1(u) +
ui+k − u

ui+k − ui+1
Bi+1,k−1(u), k≥ 2,

Define
0
0

� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

According to the basis function of B-spline curve, we
know that B-spline curve of higher order can be obtained by
two B-spline curves of lower order. +e cubic quasi-uniform
B-spline curve retains the properties of the Bessel curve at
two endpoints. +e tangent directions of the start and end
points are tangent to the first and last sides of the charac-
teristic polygon, respectively, and pass through the starting
and ending points, which is more suitable for the motion
planning of autonomous vehicles. In this study, cubic quasi-
uniform B-spline curve were selected to smooth the planned
path, and the repeatability of nodes at both ends was set as 3.
After derivation, the expression of the cubic quasi-uniform
B-spline curve is obtained as:

P0,3(t) �
1
6

t
1
t
2
t
3

􏽨 􏽩

1 4 1 0

−3 0 3 0

3 −6 3 0

−1 3 −3 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P0

P1

P2

P3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

where t is the position parameter, 0≤ t≤ 1; P0 − P3 are the
control points.

+e planned path after cubic quasi-uniform B-spline
curve processing is shown in Figure 12.

As shown in Figure 12, the path planned by the improved
A∗ algorithm has no sharp nodes and the path is smooth,
which effectively improves the shortcomings of the tradi-
tional algorithm. +e process of improving A∗ algorithm is
summarized in Figure 13.

3. Tracking Control

3.1. Vehicle DynamicsModel. In order to reduce the amount
of calculation in the process of solving the vehicle dynamics
model, a three-degree of freedom vehicle dynamics model
considering longitudinal, lateral, and yaw motion is estab-
lished, as shown in Figure 14. +e following simplifications
are made: the road surface is assumed to be smooth and the
vertical motion of the vehicle is ignored; the vehicle sus-
pension system and aerodynamics are ignored; the lateral
load transfer of the tires is ignored.where xoy is the vehicle
coordinate system, XOY is the geodetic coordinate system,
a, b is the distance from the center of mass to the front and
rear axes, _x and _y are the speed of the vehicle in the x and y
axis direction, _φ is the vehicle yaw rate, δf is the front wheel
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8

Figure 11: Planning path integrating artificial potential field method.
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angle, Flf and Flr is the longitudinal force of the front tire and
rear tire, Fcf and Fcr are the lateral force of the front tire and
rear tire, and αf and αr are the front and rear tire slip angle.

In this study, the simplified “magic formula” tire model
is selected to analyze the tire force, and the small angle
assumption is adopted. +e lateral force and longitudinal
force of the front and rear tires are expressed as

Flf � ClfSf,

Flr � ClrSr,

Fcf � Ccfαf � Ccf δf −
_y + a _φ

_x
􏼠 􏼡,

Fcr � Ccrαr � Ccr

b _φ − _y

_x
􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where Clf and Clr are the longitudinal stiffness of front and
rear tires, Ccf and Ccr is the lateral stiffness of the front and
rear tires, and Sf and Sr are the slip rate of the front and rear
tires.

According to Newton’s second law, the transformation
between vehicle coordinate system and geodetic coordinate
system, and the tire force analysis, the vehicle dynamics
equation is as follows:

€x �
2
m

ClfSf − Ccf δf −
_y + a _φ

_x
􏼠 􏼡δf + ClrSr􏼢 􏼣 + _y _φ,

€y �
2
m

Ccf δf −
_y + a _φ

_x
􏼠 􏼡 + Ccr

b _φ − _y

_x
􏼠 􏼡􏼢 􏼣 − _x _φ,

€φ �
2
Iz

a Ccf δf −
_y + a _φ

_x
􏼠 􏼡 − bCcr

b _φ − _y

_x
􏼠 􏼡􏼠 􏼡􏼢 􏼣,

_Y � _x sin φ + _y cos φ,

_X � _x cos φ − _y sin φ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where m is the mass of the vehicle, Iz is the moment of
inertia of a vehicle, and _X and _Y are the speed of the vehicle
in the X and Y axis directions of the inertial coordinate
system.

3.2. Model Predictive Control. +e tracking control strategy
is designed based on MPC theory. +e model predictive
control can predict the output of the system in the future
according to the prediction model, the current state quantity
of the system and the future control quantity, and can solve
problems with various constraints in a rolling manner [22].
+e tracking control strategy designed in this study is shown
in Figure 15. +e planned path and vehicle state are input
into the model predictive controller, and the front wheel
angle of the vehicle at the next time can be obtained through
rolling optimization. +e model predictive control flow is as
follows:

Convert the three-degree-of-freedom model of the ve-
hicle to a state-space representation:

_ξ � f(ξ, u),

λ � C · ξ.

⎧⎨

⎩ (19)

where ξ is the state quantity, ξ� [ _y, _x,φ, _φ, Y, X]T; u is the
control quantity, u � [δf]; λ is the output, λ � [φ, Y]T.

+e vehicle 3-DOF dynamics model is a nonlinear
model, which is linearized. (19) is expanded at point [ξ0, u0]

using Taylor’s formula, retaining the first-order term yields a
linear time-varying equation:

_ξ � f ξ0, u0( 􏼁 + A(t) ξ − ξ0( 􏼁 + B(t) u − u0( 􏼁, (20)

where A(t) is the f(ξ, u) Jacobian matrix for ξ; B(t) is the
f(ξ, u) Jacobian matrix for u.

Using the first-order quotient difference method to
process (19), the discrete state space equation can be
obtained:

ξ(k + 1) � A(k)ξ(k) + B(k)u(k), (21)

where A(k) � I + TA(t); B(k) � TB(t); T is the sampling
period; t is the sampling time; Np is the prediction time
domain; K � t, t + 1, . . . . . . , t + Np; I is the unit matrix.

In order to ensure that the vehicle can track the path
stably, use the increment of the front wheel angle as the
output of the MPC controller, and a new state space ex-
pression is obtained:

􏽥ξ(k + 1|t) � 􏽥Ak,t
􏽥ξ(k|t) + 􏽥Bk,tΔu(k|t),

􏽥λ(k|t) � 􏽥Ck,t
􏽥ξ(k|t),

⎧⎪⎨

⎪⎩
(22)
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Figure 12: Path after smoothing.
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where 􏽥ξ(k) is the state matrix of state quantity at k moment

and control quantity at k-1moment, 􏽥ξ(k|t) �
ξ(k|t)

u(k − 1|t)
􏼢 􏼣;

􏽥Ak,t �
Ak,t Bk,t

0 I
􏼢 􏼣, 􏽥Bk,t �

Bk,t

I
􏼢 􏼣; Δu(k|t) is the control

increment, Δu(k|t) � u(k|t) − u(k − 1|t); 􏽥λ(k|t) is the out-
put of the system at time k.

Assume that the prediction time domain of the MPC
controller is Np, and the control time domain is Nc. +e
predicted output of the system at time k is obtained as

Y(k|t) � ψk
􏽥ξ(k|t) + ΘkΔU(k|t), (23)

where Y(k|t) is the output matrix in the prediction time

domain, Y(k) �

􏽥λ(k + 1|t)
􏽥λ(k + 2|t)

⋮
􏽥λ(k + Np|t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; ΔU(k) is the control in-

crement in the control time domain Nc, ΔU(k) �

Δu(k|t)

Δu(k + 1|t)

⋮
Δu(k + Nc − 1|t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; ψk and Θk are coefficient matrices,

ψk �

􏽥Ck,t
􏽥Ak,t

􏽥Ck,t
􏽥A
2
k,t

⋮
􏽥Ck,t

􏽥A
Np

k,t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Θk �

􏽥Ck,t
􏽥Bk,t 0 · · · 0

􏽥Ck,t
􏽥Ak,t

􏽥Bk,t
􏽥Ck,t

􏽥Bk,t · · · 0
⋮ ⋮ ⋮ ⋮

􏽥Ck,t
􏽥A

Nc−1
k,t

􏽥Bk,t
􏽥Ck,t

􏽥A
Nc−2
k,t

􏽥Bk,t · · · 􏽥Ck,t
􏽥Bk,t

􏽥Ck,t
􏽥A

Nc

k,t
􏽥Bk,t

􏽥Ck,t
􏽥A

Nc−1
k,t

􏽥Bk,t · · · 􏽥Ck,t
􏽥Ak,t

􏽥Bk,t

⋮ ⋮ ⋱ ⋮
􏽥Ck,t

􏽥A
Np−1
k,t

􏽥Bk,t
􏽥Ck,t

􏽥A
Np−2
k,t

􏽥Bk,t · · · 􏽥Ck,t
􏽥A

Np−Nc−1
k,t

􏽥Bk,t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

+e objective function is to ensure that the vehicle tracks
the planned path with minimum error. +e objective
function of the controller is

J � 􏽘

Np

i�1
λ(k + i|t) − λref(k + i|t)

�����

�����
2

Q
+ 􏽘

Nc−1

i�1
‖Δu(k + i|t)‖

2

R
+ ρε2,

(24)

where λ(k + i|t) is the actual output, λref(k + i|t) is the
reference output,Q,R is the weight coefficient matrix, ρ is the
relaxation factor weight coefficient, and ε is the relaxation
factor.

In order to track the planned path more accurately, set
the center of mass slip angle constraint as −8∘ ≤ β≤ 8∘. Set the
tire sideslip Angle constraint as −3∘ ≤ α≤ 3∘. Set the front
wheel Angle range as −12∘ ≤ δf ≤ 12∘, +e angle change is
constrained as −0.8∘ ≤ Δδf ≤ 0.8∘. At the same time, the
attachment condition is constrained to

������
a2

x + a2
y

􏽱
≤ μg, in

order to prevent the constraint condition from being too
small to cause no solution, a relaxation factor can be in-
troduced to define the attachment condition constraint as a
soft constraint: ay,min − ε≤ ay ≤ ay,max + ε.

+e quadratic programming method is used to solve the
objective function, and the objective function is converted
into the standard type:

J �
1
2
[ΔU(k), ε]T

H[ΔU(k), ε] + G[ΔU(k), ε]T
, (25)

where H, G is the coefficient matrix,

H �
2(ΘT

k QΘK + R)0
0 2ρ

􏼢 􏼣, G � [2ET(k) QΘk0]; E(k) is the

output deviation matrix in the prediction time domain.
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Figure 14: +ree degrees of freedom vehicle dynamics model.
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Figure 15: Tracking control strategy.

Table 2: Vehicle parameter list.

Parameters/units Value
Vehicle mass/Kg 1270
Distance from the center of mass to the front axis/mm 1015
Moment of inertia/Kg·m2 2875
Front-wheel cornering stiffness/N/rad −56000
Wheelbase of the front axle/mm 1675
Height of the center of mass/mm 540
Distance from the center of mass to the rear axis/mm 1795
Effective radius of wheel/mm 350
Rear wheel cornering stiffness/N/rad −34000
Wheelbase of the rear axle/mm 1675
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+e optimal control increment of the system is obtained
by solving the following constrained problems:

min
Δu(k),ε

1
2
[ΔU(k), ε]T

H[ΔU(k), ε] + G[ΔU(k), ε]T
,

s.t.ΔUmin ≤ΔUt ≤ΔUmax,

Umin ≤Ut ≤Umax,

yhc,min ≤yhc ≤yhc,max,

ysc,min − ε≤ysc ≤ysc,max + ε.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

To solve (26), the optimal control increment of front
wheel rotation angle can be obtained as follows:

ΔU∗(k) � Δu∗(k),Δu∗(k + 1|t), . . . ,Δu∗ k + Nc − 1|t( 􏼁􏼂 􏼃
T
,

(27)

where Δu∗(k),Δu∗(k + 1|t), . . . ,Δu∗(k + Nc − 1|t) is the
system control input at time k, k + 1, . . . , k + Nc − 1.

+e first element of the control sequence is input as the
actual control increment to obtain the final control quantity:

u(k) � u(k − 1) + Δu∗(k). (28)

4. The Simulation Verification

CarSim and MATLAB/Simulink are used to conduct co-
simulation experiments to verify the effectiveness of the
planning algorithm and tracking control strategy proposed

in this study. +e main parameters of the vehicle are shown
in Table 2.

In order to verify the feasibility of the planned path and
the effectiveness of the tracking control strategy, part of the
planned path is selected for the path tracking test. Select the
path from the starting point to bypass the first obstacle for
the tracking test. +e adhesion coefficient of dry and good
asphalt pavement can reach 0.7–0.8, in this study, the road
surface adhesion coefficient is set as 0.75. +e tracking
control test of the planned path is carried out at high,
medium, and low speed respectively, and the simulation
results are shown in Figure 16.

+e simulation results show that the planned path can
meet the tracking requirements of autonomous vehicles
and achieve good tracking effects at different speeds. As
can be seen from Figures 16(a) and 16(b), as the vehicle
speed increases, the tracking error of the lateral position
also increases. When the vehicle speed is 90 Km/h, the
maximum lateral position error is 0.31 m. When the
vehicle speed is 60 Km/h, the maximum lateral position
error is 0.19 m. When the speed is 30 Km/h, the lateral
position error of the vehicle can be controlled within
0.11 m, and the errors are all within the allowable range.
As can be seen from Figures 16(c) and 16(d), the yaw
angle tracking error at different vehicle speeds can be
controlled within 0.02 rad and the difference is not large,
indicating that the tracking process of the vehicle is
relatively stable. When the vehicle speed is 30 Km/h, the
yaw angle tracking effect is the best, and the yaw angle
error is within 0.01 rad. As can be seen from Figures 16(e)
and 16(f ), the higher the vehicle speed, the greater the
change of the front wheel angle, but there is no step
change in the front wheel angle and lateral acceleration at
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Figure 16: Tracking control renderings. (a) Lateral position tracking comparison. (b) Lateral position tracking error. (c) Yaw angle tracking
comparison. (d) Yaw angle tracking error. (e) Front-wheel angle diagram. (f ) Lateral acceleration diagram. (g) Yaw rate diagram. (h) Center
of mass slip angle diagram.
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different vehicle speeds, indicating that the tracking
process is relatively stable. It can be seen from
Figure 16(g) that during the turning process of the ve-
hicle, the yaw rate changes greatly, when the vehicle
speed is 90 Km/h, the maximum yaw rate reaches 11°/s,
within the permissible limits. It can be seen from
Figure 16(h) that after adding the vehicle center of mass
slip angle constraint, the change of the center of mass slip
angle can be controlled within 1°, and the change is
smooth, indicating that the driving stability of the ve-
hicle tracking process is better.

5. Conclusions

To solve the problem of motion planning and tracking
control of autonomous vehicles in obstacle avoidance
conditions, this study proposes a motion planning algorithm
by improved A∗ algorithm and a tracking control strategy
based on model predictive control theory. Aiming at dealing
with the shortcomings of the traditional A∗ algorithm ap-
plied to the motion planning of autonomous vehicles, the
traditional A∗ algorithm is improved. By expanding the
search neighborhood method, the planning efficiency of the
algorithm is improved, and the improved artificial potential
field method is combined with the A∗ algorithm for obstacle
avoidance and improving the driving safety of the vehicle. At
the same time, the cubic quasi-uniform B-spline curve is
used to smooth the planned path. +e tracking control
strategy is designed based on the model predictive control
theory, and related constraints are considered to realize the
accurate tracking of the planned path. By analyzing the
simulation results, the following conclusions can be drawn
as follows:

(1) +e improved A∗ algorithm can effectively plan the
obstacle avoidance path under corresponding con-
ditions. Compared with the traditional A∗ algorithm,
the algorithm reduces the planning time and im-
proves the planning efficiency. +e planning path
considers the minimum safe distance between ob-
stacles and vehicles. +e planned paths are smoother
and more suitable for autonomous vehicles to track.

(2) +e designed tracking control strategy reflect a good
control effect on the path tracking at different vehicle
speeds. +e average lateral position tracking error
can be controlled within 0.2m, the yaw Angle
tracking error is controlled within 0.02 rad, and the
change of center of mass slip angle is controlled
within 1°, which verifies the feasibility of planning
path and effectiveness of tracking control strategy.

+e simulation results demonstrate great reference value
for the subsequent real vehicle test. In the future work, the
proposed motion planning algorithm and tracking control
strategy will be deployed into the real vehicle testing, and the
longitudinal speed of the vehicle will be adaptively adjusted
according to the paths, and the tracking error of the vehicle
would be reduced through the changeable longitudinal
speed.
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