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Short-term traffic flow prediction is an important component of intelligent transportation systems, which can support traffic trip
planning and traffic management. Although existing predicting methods have been applied in the field of traffic flow prediction,
they cannot capture the complex multifeatures of traffic flows resulting in unsatisfactory short-term traffic flow prediction results.
In this paper, a multifeature fusionmodel based on deep learningmethods is proposed, which consists of three modules, namely, a
CNN-Bidirectional GRU module with an attention mechanism (CNN-BiGRU-attention) and two Bidirectional GRU modules
with an attention mechanism (BiGRU-attention). &e CNN-BiGRU-attention module is used to extract local trend features and
long-term dependent features of the traffic flow, and the two BiGRU-attention modules are used to extract daily and weekly
periodic features of the traffic flow. Moreover, a feature fusion layer in the model is used to fuse the features extracted by each
module. And then, the number of neurons in the model, the loss function, and other parameters such as the optimization
algorithm are discussed and set up through simulation experiments. Finally, the multifeature fusion model is trained and tested
based on the training and test sets from the data collected from the field. And the results indicate that the proposed model can
better achieve traffic flow prediction and has good robustness. Furthermore, the multifeature fusion model is compared and
analyzed against the baseline models with the same dataset, and the experimental results show that the multifeature fusion model
has superior predictive performance compared to the baseline models.

1. Introduction

With the development of urbanization, the number of
population and motor vehicles in cities is increasing. While
the demand for travel, especially in the morning and evening
rush hours, often makes the road utilization rate saturated,
resulting in urban “traffic diseases.” In this case, in order to
solve the urban “traffic disease,” intelligent transportation
system (ITS) was developing [1–4]. And with the develop-
ment of big data technology, ITS has started to change into
data-driven ITS [5]. Among them, short-term traffic flow
prediction is one of the core components of ITS, which
provides the basis for traffic management, traffic control,
and traffic guidance, as well as support for travel decision of

travelers. However, short-term traffic flow has complex
stochastic and nonlinear characteristics, which brings great
challenges to traffic flow prediction. And how to accurately
predict short-term traffic flow has been a hot topic of
concern for scholars in the field of traffic engineering.

&e methods proposed in the early studies on short-
term traffic flow forecasting mainly consist of three main
methods, parametric methods, nonparametric methods,
and combined methods, which include both parametric
and nonparametric methods. Parametric methods include
the autoregressive integrated moving average model
(ARIMA) and its variants [6, 7]. Nonparametric methods
include K-nearest neighbor nonparametric regression
methods (KNN) [8], Kalman filters (KF) [9], support vector
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machines (SVR) [10], and artificial neural networks (ANN)
[11]. Combined methods are a combination of two or more
methods [12–14].

However, due to the development of data-driven ITS,
especially the development and widespread use of traffic
information collection technologies, such as induction de-
tectors, geomagnetic detectors, radio frequency identifica-
tion technology, radar detection, video detection, and
floating vehicle detection [15–19], provide a large amount of
data for traffic flow prediction. In this case, there are dif-
ficulties for parametric and nonparametric methods to deal
with big traffic data. &erefore, deep learning methods
[20–22], which have powerful data feature mining and
nonlinear data fitting capabilities, have been applied to
traffic flow prediction and achieved some results [23–26].
However, existing deep learning-based methods for traffic
flow prediction mainly consider the spatial and temporal
correlation of traffic flow, without fully considering the
complex characteristics of traffic flow such as daily and
weekly periodicity. In addition, although some combined
deep learning methods use several different single models to
extract multiple features of traffic flow, such as spatiotem-
poral correlation and periodicity, in fact, the spatiotemporal
correlation and periodicity of traffic flow are a whole and
should be considered comprehensively in prediction model.
Based on this, this paper designs a multifeature fusion model
based on deep learning methods that considers the periodic
features of traffic flow for traffic flow prediction, and the
main contributions are summarized as follows:

(1) A fusion feature model considering the periodic
features of traffic flow is proposed, namely, multi-
feature fusionmodel. In the model, the CNN-BiGRU
module is designed, which treats the spatiotemporal
features of traffic flow as a whole, where 1DCNN and
BiGRU are used to extract the local trend features
and long temporal dependencies trend features of
traffic flow, respectively.

(2) In multifeature fusion model, two two-layer BiGRU
modules are designed to extracting the daily and
weekly periodicity features of traffic flow, respectively.

(3) In order to improve the prediction performance of
the multifeature fusion model, an attention mech-
anism is designed for the CNN-BiGRU and the two-
layer BiGRU modules to adaptively make each
module pay attention to the importance of the
temporal and periodic features at different times.

(4) &e multifeature fusion model is validated by sim-
ulating the traffic flow collected in the field, and the
experiments’ results show that the prediction per-
formance of the multifeature fusion model is better
than that of the baseline model.

2. Literature Review

In general, existing traffic flow prediction methods can be
classified into parametric methods, nonparametric methods,
deep learning methods, and combined methods.

2.1. Parametric Methods. &e parametric method is a
modelling approach where the structure of the model is
predetermined based on theory, and the parameters of the
model can be calibrated by realistic traffic flow data. Levin
and Tsao [27] applied a time series analysis method to
predict the morning peak period traffic on a motorway and
found that the ARIMA (0,1,1) model was statistically sig-
nificant. Zhang et al. [28] developed a hybrid model, where
spectral analysis techniques are invoked to extract the daily
and weekly periodicity of traffic flows, and the ARIMA
model is used to extract the general time trend character-
istics of traffic flows. Subsequently, a number of ARIMA
variants were applied in traffic flow prediction. For instance,
Kohonen self-organizing ARIMA, an autoregressive sliding
average model with seasonality, and spatiotemporal autor-
egressive sliding averagemodel were also used for traffic flow
forecasting and achieved good results [29–31].

2.2. Nonparametric Methods. Due to the strong randomness
and nonlinearity of the state changes in traffic flow, the traffic
flow prediction results using parametricmethods have a certain
degree of deviation from the actual traffic flow.&erefore, some
nonparametric methods gradually replace parametric methods
in traffic flow prediction. Specifically, Ryu et al. [32] proposed a
traffic flow prediction model that considering the spatiotem-
poral information associated with the predicted road section.
&e spatiotemporal information with the highest correlation to
the predicted road section is first selected using a greedy al-
gorithm, and then the traffic flow is predicted using KNN. Yan
and Lv [33] proposed a hybrid classification and regression tree
k-nearest neighbor model to predict short-term taxi demand.
Okutani and Stephanedes [34] proposed two predictionmodels
based on Kalman filter theory to predict traffic flow on streets
within Nagoya. Guo et al. [35] proposed a hierarchical Kalman
filter-based autoregressive moving average and generalized
autoregressive conditional heteroskedasticity model for traffic
flow velocity prediction. Hu et al. [36] proposed a hybridmodel
to forecast the short-term traffic flow based on particle swarm
optimization (PSO) and support vector regression (SVR), in
which PSO is used to find the optimal parameters of the SVR
model. Lu and Zhou [37] proposed a Kalman filter traffic flow
prediction model that takes into account structural deviations,
where a polynomial is used to describe the evolutionary trend
of structural deviations in traffic flow, and a Kalman filter
model is used to describe the historical trend of traffic flow.
Jiang et al. [38] proposed a support vector machine model with
radial basis functions as kernel functions to predict traffic flow
speed, and the experiment results showed that the prediction
accuracy of the model was better than that of the traditional
model. Wang and Shi [39] proposed a chaotic wavelet analysis-
support vector machine model (C-WSVM), and the results
showed that the C-WSVM model has better prediction per-
formance and practicality. Feng et al. [40] proposed a new
short-term traffic flow prediction model based on adaptive
multicore support vector machine with spatiotemporal cor-
relation. Wang et al. [41] proposed a combined support vector
machine model to forecast short-term metro ridership, which
includes a vector machine overall online model (SVMOOL)
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and a vector machine partial online model (SVMPOL). &e
SVMOOL model obtains the periodic characteristics of pas-
senger flow, and SVMPOLobtains the nonlinear characteristics
of traffic flow.

ANN [42] was regarded as another popular method for
traffic flow prediction due to its ability to handle large
amounts of multidimensional data, flexibility of model
structure, and learning and generalization capabilities. And
ANN combined with error backpropagation algorithm, i.e.,
Backpropagation Neural Network (BPNN) [43], was grad-
ually applied to traffic flow prediction, and subsequently, a
short-time traffic flow prediction model incorporating
wavelet analysis and BP neural network approach [44] was
applied to short-time traffic flow prediction. &en, an
adaptive differential evolution algorithm optimized BPNN
[45] was applied to short-time traffic flow prediction models.
All these methods have achieved good results.

2.3. Deep Learning Methods. With the development of data
collection and processing technology, traffic big data has
emerged. However, the traditional nonparametric methods
have difficulties in processing multisource data [46], and the
short-term traffic flow prediction methods have started to
shift from nonparametric methods to deep learning methods
[24, 26, 47, 48]. For instance, Huang et al. [49] designed a
combined prediction model including a deep belief network
with unsupervised learning at the bottom and a multitask
learning (MTL) layer for supervised prediction, in which the
top multitask learning layer can leverage the weight sharing
in the DBN to provide better results in support of prediction.
Lv et al. [50] proposed a stacked autoencoder model that is
trained in a greedy hierarchical approach for training to
learn traffic flow features.

One of the difficulties in short-term traffic flow pre-
diction is to obtain spatiotemporal correlation between
traffic flow data. In terms of temporal characteristics, re-
current neural networks (RNNs) are a deep learning
structure mainly applied to process time series data. RNNs
have the function of temporal memory and can be applied to
the field of correlation prediction of time series data [51].
However, traditional RNNs cannot tap the long-term de-
pendence properties among traffic flow data due to the
gradient disappearance and gradient explosion problems, so
Ma et al. [52] applied long- and short-termmemory (LSTM)
to the traffic flow prediction. Subsequently, Zhao et al. [53]
proposed a two-dimensional LSTM network consisting of
many memory units with considered spatiotemporal cor-
relations, and the experimental results showed that the
proposed network had better prediction performance
compared with traditional prediction methods. Wang et al.
[54] proposed a deep learning framework based on paths. In
the framework, the road network is divided into critical
paths, and then the bidirectional long and short-term
memory network is used to model the traffic flow of each
critical path. Cui et al. [55] proposed a stacked bidirectional
and unidirectional LSTM network structure for predicting
road network traffic with missing values. Zheng and Huang
[56] proposed a traffic flow predictionmodel based on LSTM,

and experimental results showed that the prediction per-
formance of the proposed model outperformed the classical
model. GRU, which is a well-known variant structure of the
LSTM, has also been applied to traffic flow prediction [57].

In terms of spatial properties, CNN is also a typical
structure in deep learning. It is a feedforward neural network
for solving problems with grid-like structured data, which
not only can reduce the complexity of the model while
accurately extracting data features, but also can better extract
spatial correlations between traffic flow data [58]. Zhang
et al. [59] proposed a CNN model for short-term traffic flow
prediction, where the optimal input to the model is a spatial-
temporal feature selection algorithm, and experimental re-
sults showed that the model outperformed the baseline
model. An et al. [60] used a fuzzy convolutional neural
network based traffic flow prediction method, which for the
first time applied CNN to uncertain traffic incident infor-
mation and used a fuzzy approach to generalize traffic in-
cident characteristics. Tian et al. [61] proposed a hybrid lane
occupancy prediction model called 2LayersCapsNet, which
combines an improved capsule network and CNN.

2.4. CombinedMethods. Combined models should be useful
when a single specifiedmodel fails to exhibit good predicting
performance, which is a common situation in complex data
forecasting [46]. It is difficult for a single forecasting model
to capture both the strong complexity and the strong var-
iability of traffic flow, so the proposal of a combined pre-
dicting model is necessary. Specifically, to exploit the good
linear fitting capability of ARIMA models and the powerful
nonlinear relational mapping capability of artificial neural
network models, Li et al. [62] proposed a combined ARIMA
and radial basis function artificial neural network model to
predict short-term traffic flows. Yao et al. [63] proposed a
linear hybrid method and a nonlinear hybrid method to
predict short-term traffic flows and classified the traffic flow
data into similar, unstable, and irregular components.
Among them, autoregressive integrated moving average and
generalized autoregressive conditional heteroskedasticity
models were used to predict the similar and fluctuating
components, and Markov models with state membership
and wavelet neural networks were used to predict the ir-
regular component. Li et al. [64] analyzed the correlation
between the predicted and historical time windows based on
the grey correlation coefficient method and used the rank
index method to establish a combined prediction model
based on ARIMA, BPNN, and SVR developed. A neural
network training algorithm combining exponential
smoothing and the Levenberg-Marquardt algorithm was
proposed to improve the neural networks generalization
previously used for short-term traffic predicting [65]. Liu
et al. [13] proposed a hybrid forecasting model based on a
combination of neural network and KNN methods for
short-term traffic predicting. Gu et al. [66] proposed a model
incorporating deep learning to predict lane level speeds. In
the model, firstly use entropy-based grey correlation analysis
to select the lanes with the highest correlation with the
predicted lanes to extract spatial features, and secondly,
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combine LSTM and GRU to build a two-layer deep learning
framework to extract temporal features of traffic flow. &e
experiments results showed that the model outperformed
the baseline model in prediction. Ma et al. [67] proposed a
novel deep learning-based approach to daily traffic flow
prediction incorporating contextual factors. Firstly, a spe-
cific CNN is used to extract daytime and intraday traffic flow
features, secondly, the extracted features are used as input to
an LSTM to learn the temporal features of the traffic flow,
and finally, the traffic flow is predicted by combining the
contextual information of historical days. Experiments re-
sults showed that the robustness and prediction perfor-
mance of the model outperformed the benchmark model.

With the development of deep learning, especially the
proposed and successful application of attention mechanism
[68], it has received attention from scholars in the field of
traffic, and some results of applying it in combination with
CNN or variant RNN (LSTM and GRU) for short-term
traffic flow prediction have emerged. For example, Liu et al.
[69] proposed a CNN model based on an attention mech-
anism to predict traffic flow speed, where the input to the
model is a three-dimensional data matrix consisting of traffic
flow speed, flow rate, and time occupation, and the ex-
traction of spatiotemporal features is done by convolutional
units, and the proposed model has better prediction per-
formance when compared with existing models for simu-
lation experiments. Wu et al. [70] proposed a traffic flow
prediction model including a data preprocessing module
and a traffic flow prediction module, where the data pre-
processing module is to repair missing values in the dataset,
and the traffic flow prediction module is a model of a
combined LSTM deep learning method based on an at-
tention mechanism, and experimental results show that the
prediction performance of the model outperforms other
deep learning methods (RNN and CNN). Ma et al. [71]
proposed a fuzzy logic-based hybrid model based on the
complementary advantages of nonparametric and deep
learning methods. Firstly, the model uses two submodels,
KNN and LSTM, to extract features on the spatiotemporal
correlation of traffic flow and the influence of specific
contextual factors on traffic flow, and secondly, dynamic
weights based on the fusion mechanism are used to optimize
the hybrid model, and simulation experiments show that the
model has better prediction and robustness than other state-
of-the-art models. Ren et al. [72] proposed a combined deep
learning prediction (CDLP) model, which consists of two
parallel single deep learning models, that is, a CNN-LSTM-
attention model and a CNN-GRU-attention model. In ad-
dition, a dynamic optimal weighting combination algorithm
was proposed to combine the outputs of the two single
models, and experimental results showed that this model has
better prediction performance and robustness than the state-
of-the-art prediction models.

In summary, as the research on short-term traffic flow
prediction continues to grow, combined prediction models
have received more andmore attention, and in particular, the
application of combined deep learning models has achieved
greater success. However, most of the researches are based on
the fusion of multiple single combination methods or just

obtaining a fusion model of simple spatiotemporal charac-
teristics of traffic flow, which cannot reflect the unified whole
of spatiotemporal correlation and periodicity of traffic flow.
In this paper, we analyze the complex characteristics of traffic
flow, including the relationship between spatiotemporal and
periodic features, and apply CNN, Bidirectional GRU, and
Attention mechanism to build a multifeature fusion model
for short-time traffic flow prediction.

3. Method

3.1. CNN. CNN is a deep feed-forward neural network,
which mainly consists of a convolutional layer, a pooling
layer, and a fully connected layer [73]. &e convolutional
layer is the most important part of the CNN, where the local
features of the input data are obtained in the form of sliding
filters, and the number of convolutional kernels in the
convolutional layer corresponds to the number of output
features in the convolutional layer. Typically, CNN models
contain multiple convolutional layers, and the network can
generate an excessive number of parameters. To reduce the
number of parameters, the pooling layer usually performs a
downsampling operation with the output features of the
convolutional layer while keeping the overall features un-
changed, in order to extract important features and prevent
overfitting of the model. &e fully connected layer is usually
at the end of the CNN, and its main role is to spread the
features obtained by convolution and pooling into a feature
vector for classification and regression.

3.2. Bidirectional GRU. In order to address the shortcom-
ings of traditional RNNs, which ignore the long-term de-
pendence of time series, LSTM and GRU have been
proposed one after another. GRU and LSTM networks have
not only the function of short-term memory, but also the
function of long-term memory. In particular, the GRU is a
further simplification of the LSTM [74], from the three
gating units of the LSTM to two gate structures (update gate
and reset gate), which further improves the operational
efficiency of the network due to the simplified number of
gates. &e structure of the GRU unit is shown in Figure 1,
where the purple line indicates the update gate, and the red
line indicates the reset gate, defined as zt and rt respectively.

&e role of the update gate in the GRU is to determine
whether the hidden layer state ht-1 is updated to a new hidden
layer state ht, and the role of the reset gate is to control the
extent to which the hidden layer state ht-1 is discarded at
moment t-1. Equation (1) represent the computation process
for each state within each time step in the GRU.

zt � σ WzXt + Uzht−1 + bz( ,

rt � σ WrXt + Urht−1 + br( ,

gt � tanh WgXt + Ug rt ∘ ht−1(  + bg ,

ht � 1 − zt(  ∘ ht−1 + zt ∘gt,

(1)

Where ○ represents the Hadamard product, Xt represents
the input at moment t, Wz, Wh andWg represent the weight
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matrix associated with the input, Uz,Uh andUg represent
the weight matrix associated with ht - 1, and bz, br, bh and bg
represent the bias.

Based on GRU network, bidirectional GRU network has
been further developed [75]. �e structure of a bidirectional
GRU network is made up of two GRU layers stacked in
di�erent directions, which is shown in Figure 2. In the �gure,
xt is the input to the GRU, hf is the output of the forward
GRU layer, and hb is the output of the reverse GRU layer.
�e input to the BiGRU network contains two time series
from the past and the future, and in each moment, the input
time series is fed into the two opposite GRU layers, and the
outputs [h1, h2, h3, h4] are obtained by the joint determi-
nation of these two reverse GRU layers.

At each time node xt, this network has two hidden layers
containing opposite order. �e neurons in one hidden layer
are ordered from left to right, and the other hidden layer is
ordered from right to left. To ensure that there are two
hidden layers at any moment t, the network consumes twice
the amount of storage to store parameters such as weights
and o�sets. �e �nal output of the network is the fusion of
the outputs of the two hidden layers to produce the �nal
output. In addition, there is no information interaction
between the two opposite hidden layers, and they are
computed independently, but the state output vectors of
both are combined at the �nal output to ensure that the
unfolding graph is acyclic.

3.3. Attention Mechanism. �e attention mechanism uses a
method of assigning di�erent weights to the input features of
a model in order to highlight the important factors that
in�uence the model. �e function of the attention mecha-
nism can be understood as the process of �ltering important
information from multiple pieces of information, focusing
on the important information and ignoring the unimportant
information. �e process of focusing on the important in-
formation is also the process of calculating the weight co-
e�cients, and the more important the information, the

larger the weight coe�cient assigned. �e process of cal-
culating the context vectors and weights for the application
of the attention mechanism to a deep learning model is as
follows:

Assuming that the output state of the hidden layer of the
deep learning model is h1, h2, . . ., hi, . . ., ht, the context
vector can be calculated as Ct:

Ct �∑
t

i�1
αt,ihi, (2)

where αt,i denotes the attention parameter, the corre-
sponding weight of hi, and the sum of the weights is 1. �e
attention parameter can be calculated as

αt,i �
exp et,i( )

∑Ti�1 exp et,i( )
, (3)

where et,i is the alignment model, which scores the input at
moment i and the output at moment t. It is calculated as
follows:

et,i � tanh Wast−1 + Uahi + ba( ), (4)

where Wa, Ua, and ba are the parameters of the feedforward
neural network, and st− 1 can be calculated as follows:

st−1 � g st−2, yt−2, ct−1( ), (5)

where g(·) denotes the deep learning network.
Based on (5), the output of the attention mechanism can

be calculated as

yt � softmax st( ), (6)

where softmax is the activation function.

4. Model

Realistic short-term tra�c �ow often exhibits complexity
and randomness, which requires tra�c �ow prediction
models that can tap into multiple features of tra�c �ow.
CNNs can extract local trend features of tra�c �ows, while
bidirectional GRU networks can obtain long-term depen-
dent features of tra�c �ows not only in the past, but also in
the future and can achieve temporal feature extraction by
fusing past and future features. By fusing past and future
features, temporal feature extraction can be achieved. At the
same time, the attention mechanism enables the model to
focus on important features. Based on this, this paper
proposes a short-term tra�c �ow model based on a deep
learning method of multifeature fusion, which consists of a
CNN-BiGRU-attention module and two BiGRU-attention
modules, and the model structure is shown in Figure 3. �e
CNN-BiGRU-attention module is composed of CNN,
BiGRU network, and attention sequentially connected,
where the CNN is composed of one convolutional layer. �e
CNN-BiGRU-attention module extracts tra�c �ow features

rt
Memory
Cell

Vr

tanh
Wg

Xt

ht

Xt Wr

Ug

Zt 1-Zt

Xt Wz

gt

Hadamard product
Sigmoid function

Figure 1: �e structure of GRU.
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by considering the local trend features extracted by CNN and
the time-dependent features extracted by BiGRU as a whole.
�e two BiGRU-attention modules are used to obtain the
weekly and daily features of the tra�c �ow data, respectively.

In addition, from a layer perspective, the model consists
of an input layer, a hidden layer, a feature fusion layer, and
an output layer. �e input layer contains a parallel com-
position of historical time series, daily and weekly series,
where the historical time series XT is a sequence of tra�c
�ows from time t−n to t and can be represented as

XT � xt− n, xt− n+1, . . . , xt( )T, (7)

where xt is the tra�c �ow at time t.
�e daily periodic tra�c sequence Xd

T can be expressed
as

Xd
T � xdt−n, x

d
t−n+1, . . . , x

d
t( )
T
, (8)

where xdt indicates the tra�c �ow xt corresponding to the
previous day.

�e weekly periodic tra�c �ow sequence can be
expressed as

Xw
T � xwt−n, x

w
t−n+1, . . . , x

w
t( )T, (9)

where xgt indicates the tra�c �ow xt corresponding to the
previous week.

�e hidden layer contains three parallel CNN-BiGRU-
attention layers with two BiGRU-attention layers. �e
1DCNN is chosen as the convolution layer of the model due
to the one-dimensional and periodic nature of the tra�c
�ow sequence. �e dropout layer is followed by the feature
fusion layer, where the features of the tra�c �ow are fused
and output to the output layer for prediction.

5. Experiment

5.1. Data Processing and Dataset. �e collected cross-sec-
tional tra�c �ow at the intersection of Shandong Road and

Minjiang Road in Qingdao, China, is used as the data set,
containing 101 consecutive days of tra�c �ow data from
February 1 to May 12, 2019, and a total of 29,088 raw pieces
of data, and the interval for these data is 5minutes.�en, the
Lagrangian interpolation method is used to process the
missing data and abnormal data. �e data are then nor-
malized using the maximum-minimum normalization
method to obtain the dataset for themodel. A total of 87 days
of data from February 1 to April 28 in the dataset are used as
the training set, and a total of 14 days of data fromApril 29 to
May 12 are used as the test set.

5.2. Experimental Environment and Model Evaluation Index
Selection. �e software and hardware conditions of the
experimental environment in this paper are shown in Table 1.

In order to evaluate the performance of the fused feature
model, three evaluation metrics were chosen, namely,
MAPE, MAE, and RMSE, which are calculated as follows:

MAPE �
1
n
∑
n

i�1

yi − ŷi
yi

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ × 100,

MAE �
1
n
∑
n

i�1
yi − ŷi
∣∣∣∣

∣∣∣∣,

RMSE � ∑
n

i�1

yi − ŷi( )2

n
 

1/2

,

(10)

where n is the total number of samples in the test set, yi is the
actual value of the ith sample, and ŷi is the predicted value of
the ith sample.

5.3. Model Parameter Settings

5.3.1. Loss Function Setting. �e loss function quanti�es
how close a given neural network is to the ideal situation it is
trained for. �e mean absolute error function and the mean

GRUGRU GRUGRU

Concatenate

GRU GRUGRUGRU hf

h1 h3 h4h2

x1 x4x3x2

hb

Figure 2: �e structure of bidirectional GRU network.
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square error function are generally used. Due to the con-
venience of calculating, the mean square error function is
chosen as the loss function in the fusion feature model, and
the calculation formula is as follows:

L(y, ŷ) �
1
n
∑
n

i�1
yi − ŷi( )2, (11)

where yi is the actual value of the ith sample, ŷi is the predicted
value of the ith sample, and n is the number of samples.

5.3.2. Setting the Number of Neurons in the Model.
Before the model is trained, the number of neurons in the
input and hidden layers of themodel should be set (themodel
in the paper is based on a sequence of historical tra�c �ows to
predict the tra�c �ow value at the next moment, so the
number of neurons in the output layer of themodel is set to 1;
refer to Section 4 for details). �e following is the process of
setting the number of neurons in the input and hidden layers.

Table 1: Experimental environment.

Software and hardware con�guration Con�guration parameter
CPU Intel i5-8250U @1.60GHz
RAM 8G
Programming language Python 3.7.0
Deep learning framework TensorFlow 1.14
Deep learning library Keras 2.3.1
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Figure 3: Structure of the multi-feature fusion model.
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Toobtain the appropriate number of neurons for the input
layer, we select 6, 12, 18, and 24 as the number of neurons for
the input layer to train the model and obtain the optimal
number of neurons for the input layer by error analysis of the
test set. Similarly, for the setting of the number of neurons in
the BiGRU layer, four neuron numbers of 16, 32, 64, and 128
are chosen to train themodel.�eoptimal number of neurons
in each input and hidden layer of the neural network is de-
termined by error analysis of the test set. Meanwhile, in the
1DCNN layer, the convolutional operation to extract features
is implemented through convolutional kernels, and the size of
kernel is set 2∗1, i.e. �lters� 64 and kernel_size� 2.�eReLu
function was chosen as the activation function for the con-
volutional layer. It is calculated as follows:

Relu(x) �
x, x> 0,

0, x≤ 0,
{ (12)

where x is the input to the activation function.
In the Dropout layer, the neuron loss rate is set to 20%.

In addition, epoch is set to 300 rounds, and the batch size is
set to 256.

For the error analysis of the test set, MAPE is selected as
the main evaluation metric, and MAE and RMSE are se-
lected as auxiliary evaluation metrics. �e results of the
evaluation metrics for the test set with di�erent numbers of
neurons in the model input layer and the bidirectional GRU
network, including MAPE, MAE, and RMSE, were obtained,
as shown in Table 2.

From Table 2, it can be found that the model has the
strongest generalization ability when the number of neurons
in the input layer is 12, and the number of neurons in the
BiGRU network is 128, so we choose 12 and 128 as the
numbers of neurons in the input layer of the model and the
BiGRU network.

5.3.3. Optimization Algorithm Setup. In the training process
of deep learningmodels, optimization algorithms are used to
iteratively optimize the parameters generated in the training
model in order to reduce the value of the loss function, so
that the training process of the model becomes stable as the
number of iterations increases. �e mainstream optimiza-
tion algorithms include RMSProp and Adam, both of which
are applied to train the fused feature model, and the opti-
mization algorithm is selected based on the generalization
capability of the model as an indicator. �e RMSProp al-
gorithm and Adam algorithm are used to train the fusion
feature model, respectively, and the results of the three
evaluation metrics are obtained, as shown in Table 3.

As can be seen in Table 3, MAPE, MAE, and RMSE are
all smaller than the RMSProp algorithm when the CDLP
model is trained using the Adam algorithm. �e results
indicate that the Adam algorithm is more e�cient than the
RMSProp algorithm and is selected as the optimization
algorithm for multifeature fusion model.

5.4. Results and Analysis. After determining the parameters
of the model, the designed training and test sets are used to

validate the predictive performance of the multifeature fu-
sion model. �e loss function curves generated by the model
during the training process are shown in Figure 4. From
Figure 4, it can be found that as the epoch increases, the loss
function curves of the training and test sets decrease rapidly
and steadily and �nally converge to a constant 0, indicating
that the design of themultifeature fusionmodel is reasonable.

Figure 5 shows the prediction results of the multifeature
fusion model in the test set. It can be found that the mul-
tifeature fusion model can �t the actual tra�c �ow in the test
set very well; speci�cally, the absolute error of the model at
each moment is found to be between [−60,60] from the error
curve graph.

In addition, to further verify the robustness of the
multifeature fusion model, Figure 6 shows the MAPE plot of

Table 2: Evaluation indicator results under di�erent neuron
numbers of BiGRU network.

Neuron number in BiGRU network MAPE (%) MAE RMSE
(6,16) 7.69 12.80 17.80
(6,32) 6.27 11.30 15.86
(6,64) 5.98 11.01 15.59
(6,128) 5.89 11.03 15.59
(12,16) 7.61 12.85 17.73
(12,32) 6.19 11.08 15.64
(12,64) 5.53 10.79 15.36
(12,128) 5.52 10.46 14.82
(18,16) 6.43 11.40 15.83
(18,32) 6.34 11.33 17.99
(18,64) 6.04 10.81 15.26
(18,128) 5.87 10.59 15.08
(24,16) 8.01 12.39 16.82
(24,32) 6.22 11.33 15.89
(24,64) 5.52 10.41 14.96
(24,128) 5.85 10.56 14.96

Table 3: Comparison of three evaluation indicators between
RMSProp and Adam.

Optimization algorithm MAPE (%) MAE RMSE
Adam 5.52 10.46 14.82
RMSProp 6.37 11.63 16.22
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Figure 4: Loss function curves for the training and test sets of
multifeature fusion model.
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the model in the test set. As can be seen from the graph, the
trend of the MAPE curve gradually decreases from the
maximum value to the in�ection point and then slowly
increases and gradually converges to 5.52%, which indicates
that the fused feature model has good robustness and low
error, further indicating that the multifeature fusion model
can better achieve tra�c �ow prediction.

To further validate the feasibility of the multifeature
fusion model, the ability of the multifeature fusion model in
extracting long-term dependent features and local features
of the tra�c �ow is �rst observed.�e Conv-BiGRUmodule
(includes other modules) is selected as the comparison
model. �e structure of the module consists of a parallel
layer of a convolutional layer and a BiGRU network, and the
function of the module is to extract local trend features and
long-term dependent features of the tra�c �ow individually.
�e model �nally fuses the long-term dependent features,
local trend features, and periodicity (including daily and
weekly periodicity) of the tra�c �ow through the feature
fusion layer and then predicts them. Second, the impact of
periodic features on the multifeature fusion model is veri-
�ed. Short-term tra�c �ows usually exhibit strong peri-
odicity, and the advantage of the model is that it takes into
account the periodicity of tra�c �ows by using two BiGRU-
attention modules to extract the daily and weekly periodicity
of tra�c �ows, respectively. �e model containing only one

module of CNN-BiGRU-attention is used as a comparison
model for validation. �ird, the periodicity usually includes
daily and weekly periodicity, and the models considering
only daily and weekly periodicity, respectively, are used as
comparison models for validation. Fourthly, a model that
does not contain attention mechanisms in each module is
considered as a comparison model for validation. Based on
these comparison models and the multifeature fusion
models mentioned above, the corresponding MAPE results
were obtained by training and testing, as shown in Figure 7.

From Figure 7, it can be found that the maximum,
minimum, and median values of the multifeature fusion
model containing the CNN-BiGRUmodule are smaller than
those containing the Conv-BiGRU module, indicating that
the feature extraction capability of the CNN-BiGRUmodule
is better than that of the Conv-BiGRU module. �is is
because the local trend features and long-term dependent
features of the tra�c �ow are intertwined and interact with
each other. Furthermore, the maximum, minimum, and
median values of the multifeature fusion model are smaller
than those of the CNN-BiGRU-attention model with only
one module, because the periodic features play an important
role in the prediction of tra�c �ow in the short-term tra�c
�ow. In addition, from Figure 7, it also can be found that the
MAPE of the multifeature fusion model is smaller than that
of the feature fusion model without the attention mecha-
nism. �is indicates that the attention mechanism in mul-
tifeature fusion model improves the prediction accuracy by
focusing on the important features extracted from each
module.

Finally, the proposed multifeature fusion model is
compared with existing baseline models. �e baseline
models include the LSTMmodel, GRUmodel, CNN-LSTM-
attention model, CNN-GRU-attention model, and CDLP
model [72].�e LSTMmodel and GRUmodel are composed
of one input layer, two hidden layers (LSTM layer and GRU
layer), and one output layer. �e CNN-LSTM-attention
model is composed of an input layer, a hidden layer, and an
output layer, where the hidden layer is composed of a
convolutional layer, two LSTM layers, and an attention
mechanism layer connected sequentially, and the structure
of the CNN-GRU-attention model is the same as that of the
CNN-LSTM-attention. �e parameters of the �ve bench-
mark models are set as in the multifeature fusion model.

�e prediction errors in terms of prediction performance
metrics for the di�erent models are shown in Table 4, from
which it can be found that the multifeature fusion model has
the lowest prediction error. �is is because the LSTM and
GRU models mainly consider the temporal characteristics of
tra�c �ow, that is, the long-short time dependence, while the
CNN-GRU-attention model and the CNN-LSTM-attention
model mainly consider the spatial and temporal character-
istics of tra�c �ow, which is better than the LSTM and GRU
models in terms of prediction error. �e prediction per-
formance of the CNN-GRU-attention model and the CNN-
LSTM-attention model is better than that of the LSTM and
GRU models, because the CNN-GRU-attention model and
the CNN-LSTM-attention model mainly consider the spatial
and temporal characteristics of tra�c �ow and consider the
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spatial characteristics of the model more than that of the
LSTM and GRU models. �e CDLP model is a combined
prediction model based on the CNN-LSTM-attention model
and the CNN-GRU-attention model, which also considers
only the spatiotemporal characteristics of the tra�c �ow.�e
multifeature fusion model extracts the spatiotemporal,
weekly, and daily characteristics of the tra�c �ow by using
three di�erent modules of the combined deep learning
method, so the prediction performance of the multifeature
fusion model is better than that of the baseline model.

In addition, the training time of the di�erent models are
shown in Table 5. It can be found that the training time of the

multifeature fusion model is the same as that of the CNN-
GRU-attention model in the combined model with higher
prediction accuracy, but the MAPE, RMSE, and MAE of the
model are reduced by 0.19%, 0.71, and 0.35, respectively,
which are better than those of the CNN-GRU-attention
model. Furthermore, the training time of the multifeature
fusion model is smaller than that of the CNN-LSTM-at-
tention model and the CDLP model, while the prediction
accuracy is improved in both cases, which can be re�ected in
Table 4. �is is because the model uses the CNN-BiGRU-
attention module, in which GRU is a simpli�cation of the
LSTM, so the training time for the multifeature fusionmodel
is less than that of the CNN-LSTM-attention model and the
CDLP model (which uses the CNN-LSTM-attention mod-
ule). �erefore, the multifeature fusion model has superior
prediction performance.

6. Conclusion and Future Work

Short-term tra�c �ow prediction is one of the core com-
ponents in intelligent transportation systems. In order to
solve the problem of not extracting multiple features of
tra�c �ow in tra�c �ow prediction, in this paper, a mul-
tifeature fusion model consisting of a CNN-BiGRU module
with an attention mechanism and two BiGRU modules with
an attention mechanism is proposed. Moreover, the pa-
rameters in the multifeature fusion model including the
number of neurons, the optimization algorithm, and other
parameters are obtained by experimental calibration.

�rough experiments, it is found that the CNN-BiGRU-
attention module can e�ectively capture the local trend
features and long-term dependent features of the tra�c �ow,
and the two BiGRU-attention modules can e�ectively
capture the daily and weekly cycle features of the tra�c �ow.
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Figure 7: Comparison of MAPE results for di�erent models.

Table 4: Comparison of three evaluation indexes of the multi-
feature fusion model and baseline models.

Model MAPE (%) RMSE MAE
LSTM 13.32 20.35 15.26
GRU 12.27 19.70 14.73
CNN-LSTM-attention 6.34 15.32 10.93
CNN-GRU-attention 5.71 15.53 10.81
CDLP 5.62 15.17 10.63
Multi-feature fusion model 5.52 14.82 10.46

Table 5: Comparison of model training time of the multifeature
fusion model and baseline models.

Model Training time (min)
LSTM 32
GRU 38
CNN-LSTM-attention 47
CNN-GRU-attention 45
CDLP 47
Multi-feature fusion model 45
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At the same time, the attention mechanism improves the
prediction accuracy of the model by focusing on the im-
portance of the features acquired in each module, and the
feature fusion layer of the model allows the features
extracted from each module to be fused to predict future
traffic flow trends.

Finally, extensive experimental results have shown that
the predictive performance of the multifeature fusion model
is superior to that of the baseline models for the same
dataset.

In this work, we investigate traffic flow prediction using
only cross-sectional traffic flows as the object of study.
However, in real life, road network traffic flows usually
exhibit extremely complex characteristics, and it is difficult
for traditional CNN and BiGRU networks to fetch short-
time traffic flow features under complex road networks.
&erefore, similar graph neural network examples, such as
spatiotemporal synchronous graph convolutional neural
networks [76], provide a solution to the problem of short-
term traffic flow prediction in complex and large road
networks, which is difficult to be solved by traditional
combined CNN-GRU models; therefore, it will be reserved
for our future work and offers a new alternative approach for
traffic prediction. In addition, the prediction of short-term
traffic flows is often influenced by weather, traffic accidents,
and major events, so the study of short-term traffic flow
prediction considering special events will be left as another
study for our future research.

Data Availability
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