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Pricing directly affects the sustainable development of the flexible bus service. -is study proposes a profit maximization model
and a social welfare maximization model for the flexible bus operator based on the cumulative prospect theory. Fares and
uncertain travel time due to unforeseen detours in serving passengers jointly affect passengers’ mode choice. On the other hand,
fares and passengers’ probabilistic choices over the flexible bus jointly determine the profits of the flexible bus company and social
welfare. -is study explores the relationship between the probability of passengers choosing the flexible bus, trip fares, and
uncertain travel time. Serving more passengers indicates more profits, which also results in longer detour time thus decreasing the
probability of passengers choosing the flexible bus. Considering the interactive influence among passengers, we further calculate
the detour time distribution. Finally, a pricing model is established to compensate for the side effects of the detour. -e results
show that heterogeneous fares can help the flexible bus company to obtain higher profits but have negligible influence on social
welfare. In addition, the development of long-distance services and regulations over the detour time can also help to obtain
more profits.

1. Introduction

-e flexible bus can be regarded as a bridging mode between
the conventional fixed-route transit and dial-a-ride services.
-e flexible bus typically uses small or medium-sized ve-
hicles to provide door-to-door travel services subject to
passenger demand [1]. Since taxies are way more expensive
despite their high level of service, the flexible bus service with
its high flexibility and customization capability is an at-
tractive alternative for high-to-medium income customers
[2]. It is critical for operators to seek an appropriate pricing
method for the flexible bus service. On the one hand, rea-
sonable pricing can affect the behavior of travelers, reduce
the demand for private cars/taxies, and transfer it to public
transit, thereby alleviating urban traffic congestion. On the
other hand, pricing also directly affects the financial sus-
tainability of the flexible bus company.

In recent years, a growing number of studies investigated
the pricing problem for many emerging travel modes such as

flexible bus and customized bus. Li et al. [3] formulated a
competitive game model in which the objective was to
maximize the profits of customized bus services and ride-
sharing based on passengers’ transport mode choices.
Sayarshad and Gao [4] developed a dynamic pricing scheme
that utilized a balking rule considering socially efficient
levels and revenue-maximizing price. An equilibrium-
joining threshold was obtained by imposing a toll on the
customers who joined the on-demand mobility system.
Kaddoura et al. [5] proposed an agent-based transport
simulation to investigate different design concepts for the
demand-responsive transit. -e simulation results show that
a small service area and low prices may result in an un-
wanted mode shift effect from walk and bicycle to Demand
Responsive Transit. Gong et al. [6] constructed a game
theory model between the customized city bus service and
the conventional urban bus transportation to maximize the
profits of the two transportation modes. Wang et al. [2]
integrated the disaggregated trip choice model with the

Hindawi
Journal of Advanced Transportation
Volume 2022, Article ID 1785199, 14 pages
https://doi.org/10.1155/2022/1785199

mailto:kunan@tongji.edu.cn
https://orcid.org/0000-0002-9403-3174
https://orcid.org/0000-0001-7882-6193
https://orcid.org/0000-0001-8724-2720
https://orcid.org/0000-0002-2387-8030
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1785199


vehicle routing model to determine incentive schemes. -ey
concluded that passengers’ sensitivity towards incentives is
decisive to the result.

In addition, there are many studies on the pricing for
other on-demand responsive travel modes, such as ride-
hailing and ride-pooling. Ozkan [7] studied the interrela-
tionship between pricing and matching decisions of a ride-
sharing firm.He formulated a stylized ride-sharingmodel that
captured customer and driver behaviors considering the
geospatial nature of the system. -e results showed that
optimizing the pricing decisions alone with fixed matching
rules did not increase the number of matchings in general.
Yan et al. [8] designed and implemented a matching and
pricing algorithm at scale to strike a balance between model
complexity and accurate description of the marketplace dy-
namics. Wang et al. [9] found that if the platform offers the
carpool service option, they can achieve a larger market
coverage and the riders can enjoy more affordable rides
without compromising on service quality. Bai et al. [10]
considered an on-demand service platform using earning-
sensitive independent providers with heterogeneous reser-
vation prices (for work participation) to serve its time and
price-sensitive customers with the heterogeneous valuation of
the service. Zhong et al. [11] examined how an on-demand
ride-hailing platform in competition with the traditional taxi
industry designs its pricing strategies under unregulated and
regulated pricing scenarios. -ey found that the monopolistic
on-demand ride-hailing platform’s price rate and profit under
the unregulated pricing scenario are relatively higher than
those under the regulated pricing scenario.

Detours are a problem faced by both the flexible bus and
carpooling companies. However, few studies considered how
the detour time would affect the pricing strategy of the flexible
bus. Ke et al. [12] innovatively established a set of nonlinear
equations to explore the relationships between the platform
decision variables (i.e., trip fare) and endogenous variables
(e.g., actual detour time) in ride-sourcing markets with and
without on-demand ride-pooling services. By considering the
extra detour time experienced by passengers and drivers, they
found that decrease in trip fare not only directly increases
passenger demand due to negative price elasticity, but also
reduces actual detour time, which in turn increases passenger
demand. Zhang andNie [13] established amarket equilibrium
based on a spatial driver–passenger matching model that
determines the passenger wait time for both solo and pooling
rides. -ey found the system’s benefit diminishes quickly as
the average en-route detour time increases.

Both ride pooling and flexible bus are travel demand-
responsive travel modes and how to pricing for both of
them considering the uncertainty of the detour time is a
challenging problem. However, a flexible bus can serve
more passengers at the same time, making possible detours
outcomes more complicated. -e uncertainty in detour
time affects passengers’ travel decisions to a greater extent,
thereby affecting demand. Only few pricing studies con-
sidered travel decisions under uncertain travel time con-
ditions. Choi et al. [14] applied the mean-risk theory to
analytically explore how the risk attitude of customers
affects the optimal service pricing decision of the on-

demand platform. Wu et al. [15] proposed a choice-based
framework for modeling the supply/demand interaction in
risky choice contexts. -e model allowed the system op-
erator to set an optimal pricing strategy regardless of
whether user risk preferences are risk-seeking or risk-
averse.

-ere are few studies on the relationship between
pricing, detours, and passenger decision-making under
uncertain conditions. Instead, most existing studies con-
sidered the relationship between price and demand from a
macro perspective. Flat and homogenous fare is provided to
all passengers [3, 6]. When passengers receive different
service levels in terms of detour level, their fares should be
different.

Cumulative prospect theory (CPT) is widely used to
solve travel decision-making problems and transportation
pricing problems. As a descriptive decision-making model
under uncertainty, the prospect theory was proposed by
Kahneman and Tversky [16] as a critique of the expected
utility theory. In 1992, Kahneman and Tversky [17] extended
their model to CPT. CPT is based on the assumption of
bounded rationality of decision-makers and can describe
decision-makers’ behavior under uncertain conditions more
accurately. Katsikopoulos et al. [18] found that drivers were
risk-averse when choosing among routes in the gain domain
and risk-seeking in the loss domain. It is consistent with the
view of CPT. Sepehr et al. [19] introduced a CPT-based
framework for mode choice modeling using observational
data. -e framework utilized CPT for modeling reliability in
the trip-based models. CPT has also been widely applied to
congestion pricing. Liu et al. [20] considered the psycho-
logical factors of passengers in the congestion pricing model
and verified the feasibility of the model based on user
equilibrium and CPT. Xu et al. [21] developed an optimal
congestion pricing model in which user equilibrium was
adopted to capture travelers’ response to pricing signals
under risk based on CPT. However, the application of CPT
in the pricing of the flexible bus is limited.

We aim to study the pricing of the flexible bus service
considering the interaction between passenger travel be-
havior and fares and thus propose a profit-maximization
pricing strategy for the flexible bus system based on CPT.
Considering the travel time of the flexible bus is uncertain
due to its high route flexibility, we can apply CPT to our
pricing model. -e relationship of detour time distribution,
fares, and acceptance of detours (choosing to take the
flexible bus) are explored. On this basis, considering the
detour problem of the flexible bus, we build a pricing model
under static demand for the flexible bus company with the
goal of expected profit maximization and social welfare
maximization.

In summary, the aims of this research are as follows:

(1) Under uncertain travel time of trips by the flexible
bus, we explore the influence of fares and uncertain
travel time on passengers’ travel mode choices based
on CPT

(2) We establish two customized pricing models with
the objective of profit maximization for the flexible
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bus company and social welfare, considering the
impacts of trip detours on-demand loss

-e remainder of this paper is organized as follows.
Section 2 establishes the mode choice model and the pricing
model. -e parameters are calibrated through a stated
preference (SP) survey. Section 3 describes the design of two
case studies and analyzes the results. -e last section
summarizes the innovations and conclusions.

2. Methodology

In this section, we first introduce the hypotheses used in the
flexible bus pricing problem. Based on prospect theory, we
calculate the perceived travel time utility of passengers.
Taking the travel time utility and out-of-pocket costs as the
components in the utility function, we can obtain the
probability of passengers taking flexible buses for a given
detour time. In addition, considering the mutual influence
among passengers in each other’s travel time, we develop a
series of equations to obtain the detour time distribution.
Finally, a flexible bus pricing model is constructed, which
aims at maximizing the bus company’s profit and maxi-
mizing the social welfare respectively.-emodel parameters
are calibrated through the SP survey and Maximum Like-
lihood Estimation (MLE). -e main ideas are shown in
Figure 1.

2.1. Problem Description. We consider regional flexible bus
service in this study [22], which allows vehicles to operate in
a demand-responsive way through reservation within the
service area. Passengers can only board or alight in the
predefined service areas. -e pick-up region and drop-off
region are connected by a non-stop fast route. It can be
regarded as a variant of customized buses. Figure 2 illustrates
the operation of the regional flexible bus. In this paper, we
aim to investigate the pricing problem for this regional
flexible bus service.

-e flexible bus adopts small and medium-sized vehicles
and provides door-to-door services based on reservation. In
the responsive area, the stops and bus routes depend on the
demand of passengers, and the demand of passengers is
elastic which is subject to the utility of the flexible bus.
Compared with the taxi, the flexible bus will detour when
delivering multiple passengers. More passengers to be served
will probably lead to longer detour time. To passengers, a
longer travel time would decrease the utility of the flexible
bus thus affecting his/her mode choice probability. It is
necessary to make reasonable pricing to compensate for the
side effects of detours so as to make flexible buses com-
petitive with taxies. In addition, as flexible buses may adjust
routes dynamically while en-route, the travel time of pas-
sengers on-board may be prolonged and thus is uncertain.
Passengers’ risk attitude and personal preference also in-
fluence passengers’ decision-making in the case of uncertain
travel time. -erefore, it is necessary to accurately measure
the impact of these factors on passenger decision-making to
obtain the probability of passengers choosing the flexible
bus. -e mode choice probability and ticket price jointly

affect the expected profit of the flexible bus company and the
social welfare. -is section solves the pricing problem
considering the interactions among passengers in the sys-
tem. -e price for each passenger is optimized to maximize
the expected profit and the social welfare respectively.

Due to the similarity of flexible bus and taxi services, we
assume passengers can choose between the flexible bus and
the taxi for their trip. -ey mainly consider the travel time
and the fare assuming the other influencing factors are the
same. -e flexible bus knows the demand of passengers in
advance through the reservation, but it is uncertain whether
passengers will take it in the end. After knowing the pas-
sengers’ demand, the flexible bus will plan the route. If the
passenger eventually chooses to get on the bus, the bus will
pick him up. According to the probability of passenger
boarding, the flexible bus can estimate the travel time
through the probability of passengers getting on the bus.
Before boarding, the flexible bus displays passengers the fare,
travel time, possible detour time, and corresponding
probabilities (in this paper, they are captured by the detour
time distribution). Detour time refers to the increased time
for passengers due to picking up other passengers (the time
loss for waiting for boarding, etc.) after boarding compared
with the shortest travel time from the origin to the desti-
nation.-e shortest travel time is equal to the travel time of a
taxi.-e distribution of detour time refers to the detour time
and its corresponding probability.

2.2. Behavior of Passengers. When passengers make mode
choice decisions, they will be affected by many factors such
as travel time, cost, and uncertainty of travel time [5]. In
addition, passengers will also be influenced by their risk
attitudes and preferences [21]. Considering the character-
istics of the flexible bus, serving other passengers leads to the
increase of uncertain detour time for the loaded passengers.
-e uncertain travel time and fare jointly affect the pas-
sengers’ mode choice decisions. -is part explores the in-
terrelationship between the distribution of detour time, the
fare, and the acceptance of detours under the condition of
uncertain travel time of the flexible bus.

2.2.1. Perceived Time Utility. Most of the traditional travel
decision-making models are based on the expected utility
theory, assuming that the decision-maker is entirely rational.
In fact, people in the process of making travel decisions are
often affected by the traveler’s habits, attitude towards risk,
preferences, and other factors. Decision-makers often can-
no’t be entirely rational.

CPT was developed by Kahneman and Tversky [17]
based on prospect theory (PT), which is different from the
traditional expected utility theory (EUT). CPT has three
main observations about an individual’s bounded ratio-
nality. (i) People usually consider possible outcomes relative
to a certain reference point (x0) rather than to the final state.
-e payoffs are defined as the gains or losses relative to x0
before making choices. -e payoffs that people perceive can
be described by a concave function for gains and a convex
function for losses which results in diminishing sensitivity.
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(ii) People tend to be loss aversion. People are more sensitive
to losses than gains. (iii) People tend to overweight the
probability of extreme, but rare events, and underweight
more common events. People’s decisions are affected by the
decision weights, not actual probabilities. In conclusion,
CPT argues that decision-makers perceive values v(xi)

(travel time in the case of this paper) differently from the
actual values xi, and probabilities Pi (probability of expe-
riencing a certain travel time for a given trip) are converted
to decision weights w(Pi).

Although some studies have considered the influence of
detour time, they have not considered the uncertainty of
detour [12]. Due to demand uncertainty, the travel time of
the flexible bus is uncertain. -erefore, the choice between
flexible public transportation and other modes of trans-
portation is a typical travel decision-making problem under
uncertain conditions. Given that CPT provides a well-sup-
ported descriptive paradigm for individuals’ decision-
making under risk or uncertainty, we can apply CPT to
measure travelers’ perceived utility of time.

We assume that a passenger intends to choose between a
flexible bus and a taxi for a trip. Choosing each alternative

can lead to k different outcomes, quantified by x1, x2, . . . , xk,
-e outcome i happens with probability Pi. Each alternative
can be seen as a prospect (xi, Pi). -e following value
function proposed by Kahneman and Tversky [17] is used in
this paper:

v xi(  �
xi − x0( 

α
, xi ≥ x0,

−λ x0 − xi( 
β
, xi < x0,

where 0< α, β< 1, λ≥ 1,
⎧⎪⎨

⎪⎩

(1)

where x0 is the reference point; α is the exponent of the value
function over the gain region, and β is the exponent of the
value function over the loss region. v(xi) is the value
function, reflecting an individual’s perceived value. -e
parameters α and β measure the degree of diminishing
sensitivity of the value function. λ is the loss aversion co-
efficient, indicating that individuals are more sensitive to
losses than gains.

-e following probability weighting function by Kah-
neman and Tversky [17] is used:

w Pi(  �
P

c

i

P
c
i + 1 − Pi( 

c
 

1/c where 0< c< 1, (2)

where c is the probability weighting parameter, repre-
senting the level of distortion in probability judgment in
the decision-making process. w(Pi) is the probability
weighting function, reflecting an individual’s perception
of probability. Figures 3 and 4 show the value function and
the weighting function. As shown in Figures 3 and 4, the
value function v(xi) is S-shaped, concave in the gain
region and convex in the loss region. Besides, individuals
are more sensitive to losses than gains. Furthermore, the
probability weighting function w(Pi) expands the influ-
ence of rare events and shrinks the influence of common
events.

-e cumulative prospect value is defined as

Perceived Time Utility:
Calculate the Time Utility Perceived by the 

passengers based on the CPT

Acceptance of Detours:
Calculate the probability of passengers 

choosing to take the flexible bus based on 
the utility maximization theory

Pricing Model:
Calculate the fare for each person with the goals of
maximizing profit and maximizing social welfare

Detour Time Distribution:
Calculate the detour time distribution 

using the probability of passengers 
choosing to take the flexible bus

Calibration of Parameters:
Calibrate the parameters of the 

pricing model through 
SP survey and MLE

Mutual Influence among Passengers Behavior of Passengers

Figure 1: Main idea of the method.

Region 1 Region 2

Responsive area
Fixed route (between regions)
Responsive route (within regions)
Responsive boarding station
Responsive alighting station

Figure 2: Operation of the regional flexible bus.
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CPV � 
k

v xi( π Pi( , (3)

π Pi(  � w Pi + Pi+1 · · · + Pk(  − w Pi+1 + Pi+2 · · · + Pk( ,

where i � 1, 2, . . . , k − 1,

(4)

π Pk(  � w Pk( , (5)

-e decision weight π(Pi) is calculated based on the
cumulative distribution function. All potential outcomes are
ranked in increasing order in terms of preference. In these
equations, k is the number of all potential outcomes, and i

denotes a generic outcome.
For mode-alternative m, the travel time can be

tm,1, tm,2, · · · , tm,k with probabilities Pm,1, Pm,2, · · · , Pm,k, re-
spectively. To apply CPT, we need to define the reference point,
the value function, and the weighting function first. In the case
of the flexible bus detour problem, people will pay more at-
tention to the increase in detour time compared with the
shortest travel time when making travel decisions. -erefore,
the shortest travel time t0 (equal to taxi travel time) is selected
as the reference point. (1) is assumed to be the value function.
(2) is assumed to be the probability weighting function. Since
tm,i ≥ t0,∀i ∈ k, we only model in the loss domain.

-e calculation process of perceived time utility
CPV(tm) is as follows:

v tm,i  � −λ tm,i − t0 
β
, tm,i ≥ t0, (6)

w Pm,i  �
P

c

m,i

P
c

m,i + 1 − Pm,i 
c

 
1/c, (7)

π Pm,i  � w Pm,i + Pm,i+1 · · · + Pm,k 

− w Pm,i+1 + Pm,i+2 · · · + Pm,k ,

where i � 1, 2, . . . , k − 1

(8)

π Pm,k  � w Pm,k , (9)

CPV tm(  � 
k

i�1
v tm,i π Pm,i , (10)

where CPV(tm) is the perceived time utility of mode m. (6)
calculates the perceived utility v(tm,i) corresponding to the
travel time tm,i. (7), (8), (9) calculate the decision weight
π(Pm,i) corresponding to the travel time tm,i. (10) calculates
the total perceived time utility of mode m.

2.2.2. Acceptance of Detours. We assume that the speeds of
the flexible bus and the taxi are equal.-e difference in travel
time between the flexible bus and the taxi is because that the
flexible bus needs to detour to serve multiple passengers in
one trip. -erefore, we define the probability of passengers
choosing a flexible bus as the acceptance of detours.
According to the assumption, the fare will also have an
important impact on passengers’ decision-making.

When travelers make travel decisions, they always
choose the one with a larger utility, which is called the utility
maximization theory. -e formula of the utility maximi-
zation theory is as follows:

Vm � 
A
θmym, (11)

where ym is the characteristic variable and θm is the pa-
rameter reflecting travelers’ perceived relative importance
of different attributes. According to the discussion above,
travel time and travel cost are selected as characteristic
variables. Considering that travel time is uncertain, the
utility of travel time is more suitable to be described by
CPT.-e travel cost is a deterministic factor. -erefore, the
probability estimation and risk attitude of travelers will not
affect the utility of the travel cost. -e modified utility
function is

MVm � β0σm + βtCPV tm(  + βcCm, (12)

where Cm is the travel cost of mode m; CPV(tm) is the
perceived travel time utility of mode m; σm is a dummy
variable indicating whether a particular mode-alternative is
the flexible bus or not; β0 is the mode-specific constant
added to capture the effect of unforeseen variables; βc is the
coefficient of cost, and βt is the coefficient of time. CPT can
be used to calculate the value of the modified utility (MVm)

of each mode (the flexible bus and the taxi) and the mode
decision between the two modes. Acceptance of detours can
be described by a Logit function:

p �
exp MVfb 

exp MVfb  + exp MVtaxi( 
, (13)

p �
1

1 + exp −β0 + βt CPV ttaxi(  − CPV tfb   + βcΔC 
,

(14)

ΔC � Ctaxi − Cfb, (15)

v (x)

xx0

Figure 3: Value function.
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where p is the acceptance of detours; fb refers to the flexible
bus; MVfb is the modified utility of the flexible bus; MVtaxi

is the modified utility of the taxi, and ΔC is the difference
between taxi cost and flexible bus cost. CPV(ttaxi) is equal to
0 and CPV(tfb) can be calculated by (6), (7), (8), (9), and
(10). -erefore, passengers’ acceptance of detour can be
simplified as

p �
1

1 + exp −β0 + βtλ
k
i�1 Δti( 

βπ Pi(  + βcΔC 
, (16)

Δti � ti − t0, (17)

where Δti is the detour time for taking the flexible bus.

2.3. Detour Time Distribution. In (16), the probability of
taking the flexible bus is affected by the perceived time utility
and fare. -e perceived time utility is jointly affected by the
detour time and its corresponding probability. Calculating
the perceived time utility of a passenger requires the detour
time distribution. By analyzing the reasons for the detour, we
propose a method to calculate the time distribution of the
detour. For a certain passenger, the detour he/she faced is
caused by serving other passengers during his/her ride.
Generally speaking, the more stations served, the longer the
detour time the passenger suffers. However, the detour does
no’t necessarily happen. It is related to the probability of
passengers choosing to take the flexible bus. Considering
that the passenger demand is usually densely distributed in a
certain area, it can be assumed that, for each passenger, the
detour time increases by T for serving every extra station
(including the boarding station and the alighting station).

To explain the method, we consider a case of five pas-
sengers, A-E, and they get on and off at given stations.
Figure 5 shows everyone’s boarding and alighting stations.
Since the flexible bus provides door-to-door service, the

boarding and alighting stations are also the origin and the
destination respectively. Take A as an example, if B-E choose
to take the flexible bus, A will be affected by the detour
caused by serving B-E. If B-E do no’t take the flexible bus, A
will not suffer a detour. -is is related to the probability that
B-E choose to take the flexible bus. -e probabilities of B, C,
D, and E taking the flexible bus are pB, pC, pD, and pE

respectively.-ey further affect the probability of the flexible
bus serving Stations 2–5. -e probabilities of serving Sta-
tions 2–5 are sp2, sp3, sp4, and sp5 respectively, which can be
calculated as follows:

sp2 � 1 − 1 − pB(  1 − pC(  1 − pD( , (18)

sp3 � 1 − 1 − pB(  1 − pD( , (19)

sp4 � pE, (20)

1.0

0.8

0.6

0.4

0.2

0.0

1.00.80.60.40.20.0

w 
(p

)

p

Figure 4: Weighting function.

1 6

2

3

4

5

A (on)

C (on)
B (on)

D (on) E (on)

A (off)

The route of a taxi
The route of a flexible bus

The boarding or alighting station of A
The boarding or alighting station of B-E

A gets on at this station
A gets off at this station

A (on) :
A (off) :

C (off)
E (off)

B (off)
D (off)

Figure 5: Boarding and alighting stations of A-E.
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sp5 � 1 − 1 − pC(  1 − pE( , (21)

According to the assumption, the detour time increases
by T for serving every extra station. For A, the detour time
can be 0, T, 2T, 3T, and 4T with probabilities P1, P2, P3, P4,

and P5, respectively. By combining Stations 2–5, the cor-
responding probability of the detour time can be obtained.
Taking the detour time Δt � 0 as an example, the corre-
sponding probability is calculated as follows:

P1 � P(Δt � 0) � 1 − sp2(  1 − sp3(  1 − sp4(  1 − sp5( ,

(22)

where sp2, sp3 sp4, and sp5 can be calculated by (18), (19),
(20), and (21). P2, P3, P4, and P5 can be calculated in the
same way.-e possible detour time for A is (0, T, 2T, 3T, 4T,
5T). -en, we can get the detour time distribution of
A. Similarly, we can use this method to calculate the detour
time distribution for customers B-E. -is idea of calculating
detour time distribution can then be extended to a flexible
public transport system with Q individuals. In general, for a
passenger, his/her detour time is related to the number of
other stations served by the flexible bus. -e probability
corresponding to the detour time is determined by the
probability of passengers choosing to take the flexible bus in
other stations.

2.4. Pricing Model

2.4.1. Service Provider Profit. -e profit of flexible buses is
the fare revenue minus the operating cost. -e expected fare
revenue of passenger is

rj � xj · pj, (23)

where xj is the fare of the flexible bus for passenger j and pj

is the probability of passenger j taking the flexible bus.
According to (12), (13), (14), (15), (16), and (17), pj is related
to detour time and the difference between taxi fare c and
flexible bus fare xj:

pj �
1

1 + exp −β0 + βtλ
k
i�1 Δti,j 

β
π Pi,j  + βc c − xj  

,

(24)

Taxi fare c is related to the travel distance of the pas-
senger.-e travel distance is composed of the travel distance
within the region and the travel distance between regions.
-e travel distance between regions is a constant, while
travel distance within the region is related to the origin and
the destination of the passenger. Considering that the travel
distance between regions accounts for the main part, we
assume that ticket fare and the distance between regions are
positively correlated. -e taxi fare c is:

c � μs, (25)

where μ is the fare of taxi per kilometer and s is the travel
distance between regions.

-e operating cost is assumed to be L, which is the
system parameter related to operating distance, the vehicle
types, fuel consumption, and other factors of the flexible bus
system. -e calculation of operating cost is similar to the
calculation method of taxi fare. -e operating distance is
composed of the operating distance within the region and
the operating distance between regions. -e operating
distance between regions is a constant, while operating
distance within the region is related to the spatial distri-
bution of passengers. Besides, detours within the region will
also affect the operation costs. -e operating cost L is

L � φ(s + vΔt), (26)

where φ is the fare of taxi per kilometer; s is the travel distance
between regions; v is the average speed of the flexible bus and
Δt is the expected detour time. Δt can be calculated by the
distribution of detour time mentioned in Section 2.4.

-e profit of the service provider Z1 can be expressed as

Z1 � 

Q

j�1
xj · pj − L, (27)

where L is the operating cost; pj is the probability of pas-
senger j taking the flexible bus, and c is the fare of the taxi.

2.4.2. Passenger Surpluses. -e passenger surplus is the fare
that a passenger is willing to pay for the flexible bus service
minus the actual out of pocket costs.-e fare that a passenger is
willing to pay for the flexible bus service can be expressed as:

W � c − UΔt, (28)

UΔt � βtλ
k

i�1
Δti( 

βπ Pi( , (29)

where W is the fare that a passenger is willing to pay, andUΔt
is the disutility caused by detours.

-e passenger surpluses Z2 can be expressed as:

Z2 � 

Q

j�1
Wj − xj , (30)

2.4.3. Optimization Model of Fares. We consider two ob-
jectives (profit maximization and social welfare maximiza-
tion) to optimize the fare of the flexible bus.

(i) Expected profit maximization: compared with the
taxi, the flexible bus will detour, so the fare of the
flexible bus will not exceed the fare of the taxi. -e
profit maximization model of the flexible bus can be
expressed as

maxZ1 (31)

s.t. (12)-(27)

0≤xj ≤ c, (32)
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(ii) Social welfare maximization: social welfare includes
the profit of the service provider and passenger
surpluses, considering the interests of the flexible bus
operator and the passengers simultaneously. -e
profit of the flexible bus operator should not be less
than the threshold θ. -e social welfare maximiza-
tion model of the flexible bus can be expressed as

maxZ1 + Z2, (33)

s.t. (12)-(30)

Z1 ≥ θ, (34)

(12), (13), (14), (15), (16), and (17) calculate the
probability of passenger j taking the flexible bus. (18),
(19), (20), (21), and (22) propose a method of calculating
the time distribution of each passenger. (23) calculates the
expected fare revenue of passenger j. (24) displays the
probability of passenger j taking the flexible bus. (25)
calculates the taxi fare. (26) calculates the operating cost.
(27) calculates the service provider profit. (28) calculates
the fare that a passenger is willing to pay for the flexible
bus service. (29) calculates the disutility caused by de-
tours. (30) calculates the passenger surpluses. -e ob-
jective function aims at maximizing the expected profits of
the flexible bus and maximizing the social welfare re-
spectively. Constraint (32) ensures that the fare is within a
reasonable range. Constraint (34) ensures that the profit
of the flexible bus operator should not be less than a
certain threshold.

Combined with the calculation of detour time distri-
bution proposed in Section 2.3, we can find that the pas-
sengers in the flexible bus system affect each other. Take the
service order as A-B-A-B as an example, the reduction in A’s
fare will increase A’s probability of choosing the flexible bus.
Because of the increase in the probability of A choosing the
flexible bus, the probability of B’s detour also increases,
resulting in a decrease in the probability of B choosing to
take the flexible bus. -erefore, the fare of each passenger
directly affects his probability of taking the flexible bus, and
indirectly affects the probability of other people’s detours,
thereby affecting the probability of other passengers’ taking
the flexible bus. Figure 6 shows the relationship between A
and B. -erefore, a reasonable price should be set for each
passenger in the flexible bus system to maximize the ex-
pected profit or the social welfare.

-e final output of the pricing model is the optimal fare
that is shown to each reserved passenger before the flexible
bus departs. However, the model is under static demand. -e
actual operation of a flexible bus is a dynamic process.When a
passenger refuses service or completes the service, new
passengers will enter the system. -is situation will lead to an
increase in detour time. It will reduce the level of service for
loaded passengers who have already received the initial fare
on the bus. Correspondingly, the fare should be reduced.
From the perspective of fairness to passengers, the result
calculated by the profit maximization model should be the
highest price given by the flexible bus in real-world operation.

2.5. Calibration of Parameters. To calibrate the parameters of
our model, we conducted an online stated preference survey.
-e SP survey includes three parts:-e first part is the individual
socioeconomic attributes of the participants. -e second part is
regarding people’s risk attitudes towards time.We design a set of
binary travel plan choices. Each has a different travel time
distribution. -e average travel time of the choice is equal, but
the variance is not. Participants need to choose their preferred
travel plan.-e third part is related to mode choice between the
flexible bus and the taxi. Finally, 246 questionnaires were
returned in this SP survey. After sorting the questionnaires, 205
valid questionnaires were obtained, with an effective rate of 83%.
Overall, the collected data samples are representative.-emodel
parameters were calibrated using the data of the SP survey.

In many existing studies on travel decision-making
based on CPT, researchers use the parameters in the value
and weighting functions which are directly estimated by
Kahneman and Tversky. However, parameters in Kahneman
and Tversky are estimated from the results of gambling in
the economic field. In different scenarios, the parameters β
of the value function in the loss domain of different travelers
should be different [21].

-e values of β in our model are estimated based on the
experimental results of stated choice questions of the second
part and the CPV parameter values (i.e., λ � 2.25 and
c � 0.69). A logit model and MLE are used to estimate the
value function parameter β. On this basis, the values of
β0, βt, βc in our model are estimated by using logistic re-
gression. Our estimation results are β � 0.60, β0 � −0.326,
βt � 0.252, and βc � −0.285.-e rate of substitution between
CPV(t) and travel cost in our study is 0.252/0.285� 0.88
RMB/min. For passengers, the detour is essentially a loss.
Compared with taxi fares, the decrease of flexible bus fares is
compensation for detours. -erefore, the results mean that
travelers’ willingness to accept every unit increase in CPV(t)
is about 0.88 RMB per minute in our SP survey.

Passengers’ willingness to accept CPT(t) includes the
willingness to accept detour time and the willingness to accept
the uncertainty of travel time.Most studies on the value of time
or uncertainty addressed users of cars, buses, and taxis, while
few considered ride-sharing or flexible bus passengers [23].
-ere aremainly three approaches considering reliability in the
utility maximization theory. Small [24] proposed a scheduling
model to analyze travelers’ departure time choices to ensure
on-time arrival. Small and Noland [25] improved Small’s
scheduling model to understand choices under uncertainty by
adding the probability distribution of travel time. -e mean
lateness at departure and/or arrival [26] is another approach to
measuring the value of uncertainty. -e mean-variance (MV)
model [25] estimates the values of travel time and uncertainty
within the utility maximization framework.

We choose the mean-variance model to compare with
our model based on CPT framework. In the mean-variance
model, the utility of mode i is

Ui � βtE ti(  + βSDSD ti(  + βcci + βσσi, (35)

where E(ti) is the expected travel time of mode i, SD(ti) is
the standard deviation of travel time, ci is the ticket fare, σi is
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a dummy variable indicating whether a particular mode-
alternative is the flexible bus or not, and βt, βSD, βc and βσ are
the parameters. -e value of travel time and value of un-
certainty can be defined as βt/βc and βSD/βc. We used the
data based on the experimental results of stated choice
questions to calibrate the parameters in the mean-variance
model. -e estimation results are βσ � −0.054, βt � 0.152,
βSD � 0.018, βc � −0.311. -e value of travel time is 0.49
RMB/min and the value of time uncertainty is 0.06 RMB/
min. -e value of time uncertainty is too small, which is
unreasonable. -e rate of substitution between CPV(t) and
travel cost in our model is 0.88 RMB/min, which is bigger
than 0.49 RMB/min. Because our model considers the time
uncertainty when calculating the value of travel time are
shown in Table 1.

In addition, travel time variability generates utility or
disutility depending on the relationship between the ref-
erence point. -erefore, the time value and uncertainty
perceived by travelers cannot be estimated separately. And
according to the above analysis, the subjective perception
value of the traveler will affect the utility. -erefore, it is
more reasonable to apply CPT to describe the passengers’
decision-making behavior in this context.

3. Case Study

3.1. Case Description and Parameter Settings. We suppose
that there are two small areas, area R is a residential area, and
area S is a commercial area. -e distance between the two
areas is 20 km.-ere are Q passengers going from R to S, and
passengers can choose between flexible bus and taxi. -e
flexible bus can obtain the demand of all passengers in
advance and determines the passengers’ boarding and
alighting order at the stops. Two cases are set up in this
section. Table 2 describes the stops where passengers get on
and off the bus. Case 1 adopts the first-on, first-off service
principle. In Case 2, there is no specific service principle
(random service principle).

-e parameters of the two cases are set as follows:
s, v, Q, T, μ,φ, and θ are system parameters. We set s � 20

km, v � 30 km/h, Q � 8, T � 2 min, μ � 3 RMB/km, φ � 4
RMB/km, and θ � 100 RMB. λ, c, β are parameters in CPT.
λ, c are obtained by referring to the research of Tversky and
Kahneman. β is calibrated through the SP survey. We set λ �

2.25, c � 0.69, and β � 0.60. β0, βt, βc are the parameters in
the pricing model, which are also calibrated through the SP
survey. We set β0 � − 0.326, βt � 0.252, and βc � −0.285. In
two cases, we omit the average detour time because the
average detour time is much smaller than the travel time
between regions.

3.2. Results

3.2.1. Case 1. Table 3 shows the fares for each passenger in
profit maximization and social welfare maximization

Fare of A

Fare of BProbability of A
taking the flexible bus

Probability of B
taking the flexible bus 

Expected profit(−) (−)
(−)

(−)

(+)

(+)

(+)

(+)

(+)

(+)

direct effect
indirect effect

Figure 6: -e relationship between A and B.

Table 1: Parameter calibration results of the mean-variance model.

Parameters βσ βt βSD βc

Coef. −0.054 0.152 0.018 −0.311
P-value 0.712 0.000 0.615 0.000

Table 2: Passengers’ boarding and alighting stops in Case 1 and
Case 2.

Stop Passenger Stop Passenger
Case 1
1 1 (on) 7 1 (off)
2 2 (on), 3 (on) 8 2 (off), 3 (off)
3 4 (on) 9 4 (off)
4 5 (on) 10 5 (off)
5 6 (on), 7 (on) 11 6 (off), 7 (off)
6 8 (on) 12 8 (off)
Case 2
1 1 (on), 2 (on) 5 3 (off), 6 (off), 7 (off)
2 3 (on) 6 2 (off), 4 (off)
3 4 (on), 5 (on), 6 (on) 7 5 (off)
4 7 (on), 8 (on) 8 1 (off), 8 (off)
Note. 1 (on) means Passenger 1 gets on the flexible bus.
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models. In addition, the number of stops that affect each
passenger’s detour is also listed.

In the profit maximization model, the average fare is
43.4, and the std is 0.3. -e expected maximum profit is
235.9. -e fare of each passenger is almost the same. It is
because that the number of detour stops (referring to the
detour suffered by the passenger due to serving other stops)
is the same. -e increase in the fare of passenger 1 will result
in a reduction in the probability of Passengers 2–8 taking the
flexible bus. It is the same for every passenger. When the
individual’s fare is set as the average, the expected profit is
reduced to 235.8 with negligible differences from the
maximum profit.

In the social welfare maximization model, the average
fare is 22.5, and the std is 1.2. -e maximum social welfare is
381.9 with the constraint that the service provider profit is at
least 100. -e fare of each passenger is slightly different.
When the individual’s fare is set as the average, the social
welfare is also with negligible differences from the maximum
social welfare.

Figure 7 shows that the profit and social welfare (without
the constraint that the service provider profit is at least 100
RMB) change with the fare. Here, we set the fare equal for
each passenger. As the fare increases, the profit first increases
and then decreases, reaching the maximum at around 43
RMB/trip, while the social welfare first remains almost
unchanged and then gradually decreased after around 34
RMB/trip.

3.2.2. Case 2. Table 4 shows the fares for each passenger in
profit maximization and social welfare maximization
models. In addition, the number of stops that affect each
passenger’s detour is also listed.

In the profit maximization model, the average fare is
45.5, and the std is 2.2. -e expected maximum profit is
254.8. In the profit maximization model, the average fare is
22.5, and the std� 2.64. -e expected maximum profit is
254.8. Since the number of detour stops for each person is
different, the individual fare is also different. Figure 8 shows
the relationship between detour stops and fares in Case 2.
When the travel distance is certain, the more stops you take,
the lower the fare is. It is because the effective distance (the
distance from the origin to the destination) is fixed for
passengers. Detours caused by serving other stops increase
the travel time of the passengers. -erefore, for the flexible
bus system, the more detour stops a passenger travels, the
lower the fare should be. -is is consistent with the cal-
culation results of our model.When an equal fare is used, the
expected profit is 249.9, reduced by 1.9% compared to the

maximum expected profit, and the social welfare is 388.7. It
shows that it is better to take a different fare for each user
when aimed at gaining more profits. However, taking a
different fare has negligible influence on social welfare.

-e travel distance, number of passengers, and other
parameters of Case 1 and Case 2 are all the same except for
the service order. By comparing Case 1 and Case 2, the
maximum profit of Case 2 is 8.0% higher than Case 1, and
the maximum social welfare of Case 2 is 1.8% higher than
Case 1. -is is due to the fact there are more detour stops in
Case 1 that affect each passenger than in Case 2. It shows that
the detour time has an important influence on the expected
profit of the system.

3.3. Effects of the Travel Distance. We set the travel distance
to vary from 10 to 40 km while maintaining the other pa-
rameters unchanged. Figure 9 shows that as the travel
distance increases, the profit and the social welfare per unit
distance increase, and the magnitude of the increase de-
creases. Take the maximum profit model as an example,
when the travel distance is 10 km, the maximum profit per
unit distance is 7.1 RMB; when the travel distance is 40 km,
the profit per unit distance is 15.2 RMB. Compared with the
travel distance of 10 km, the profit per unit distance in-
creased by 114.1%, indicating that the flexible bus can
obtain more profit in long-distance transportation. -e
trend of social welfare and profit is consistent. -erefore,
the development of long-distance flexible bus services
should be a priority strategy for the company and the whole
society. Focusing on providing long-distance flexible public
transportation services, such as between residential areas,
transportation hubs, large shopping malls, and work areas
can increase profit and social welfare. With the change of
travel distance, the optimal fares per unit distance of the
two objectives range from 1.8 to 2.5 and 1.1 to 1.2 re-
spectively.-e variation range is small, which indicates that
the pricing model has good robustness when travel distance
changes.

3.4. Effects of the Average Detour Time. -e average detour
time is caused by serving other stops for passenger boarding
and alighting. We set the average detour time to vary from 1
to 9minutes for serving one extra stop. Figure 10 shows that
as the average detour time increases, the maximum expected
profit and social welfare decrease, and the magnitude de-
creases. Take the maximum profit model as an example,
when the average detour time is 1minute, the maximum
profit is 254.2 RMB; when the average detour time is

Table 3: Results of case 1.

Passenger 1 2 3 4 5 6 7 8
Detour stops 5 5 5 5 5 5 5 5

Profit maximization model Fares (RMB) 43.6 43.1 43.1 43.6 43.6 43.1 43.1 43.6
Maximum profit (RMB) 235.9

Social welfare maximization model Fares (RMB) 23.7 21.0 21.3 24.0 23.3 21.3 21.9 23.4
Maximum social welfare (RMB) 381.9
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9minutes, the maximum profit is 161.1 RMB, substantially
reduced by 36.6%. As the average detour time increases, a
lower fare is needed to compensate for the delay suffered by
passengers, resulting in a decrease in the maximum profit
and social welfare. -erefore, the flexible bus company
should pay attention to setting an upper limit for the detour
time in operation. With the change of average detour time,
the optimal fares per unit distance of the two objectives
range from 1.7 to 2.3 and 1.1 to 1.2 respectively. -is small
range indicates that the pricing model has good robustness
when average detour time changes.

3.5. Effects of the Value of Time. βt/βc measures the value of
time, which is related to the individual’s attributes. We set
βt/βc to vary from 0.6 to 1.5 RMB/min while maintaining the
other parameters unchanged. Figure 11 shows that as the
value of time increases, the maximum expected profit and
social welfare decreases, and the magnitude decreases. Take
the maximum profit model as an example, when βt/βc is 0.4
RMB/minute, the maximum profit is 265.5 RMB; when βt/βc

is 1.2 RMB/minute, the maximum profit is 217.0 RMB,
substantially reduced by 18.3%. As the value of time in-
creases, the operator needs to compensate more for the same
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Figure 7: -e relationship between fares, profit, and social welfare in Case 1.

Table 4: Results of case 2.

Passenger 1 2 3 4 5 6 7 8
Detour stops 6 4 2 2 3 1 0 3

Profit maximization model Fares (RMB) 42.0 43.7 45.8 45.7 44.7 47.1 50.0 44.9
Maximum profit (RMB) 254.8

Social welfare maximization model Fares (RMB) 16.6 21.2 24.5 22.4 24.3 23.2 25.9 22.1
Maximum social welfare (RMB) 388.7
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delay suffered by the passenger whose value of time is
higher, resulting in a decrease in the maximum profit and
social welfare. -erefore, the flexible bus company should
determine the scope of target passengers in combination
with the available service level in operation. With the
change of the value of time, the optimal fares per unit
distance of the two objectives range from 2.0 to 2.3 and 1.1
to 1.5, respectively, indicating good robustness when the
value of time changes.

4. Conclusions

With the goals of maximizing the expected profit and
maximizing social welfare, the pricing model is constructed
based on the cumulative prospect theory for the regional
flexible bus service. -e parameters of the model were
calibrated through a stated preference survey, and two
flexible bus cases were designed to analyze the performance
of the model. First, we considered the passenger detour in
the flexible bus pricing problem and explored the influence
of uncertain detour time and fare on passengers’ mode
choice probability. Second, wemodeled themutual influence
among passengers and found that the certain passenger’s
mode choice probability would affect the detour probability
of other passengers. -us, a calculation method for detour
time distribution was proposed.

-e results showed that the detour time has a greater
impact on the profit and social welfare of the system. More
detour stops lead to a lower fare. As the travel distance
increases, both the maximum expected profit and social
welfare per unit distance increase. As the average detour
time increases, the maximum expected profit and social
welfare decrease. It is suggested that the flexible bus
company may develop long-distance services and set a
proper upper limit to the detour time to achieve higher
profit. Besides, the passengers’ value of time and uncer-
tainty also has a vital influence on the profit and social
welfare of the system. -e flexible bus company should
determine the scope of target passengers in combination
with the available service level in operation. With the
change of the parameters, the optimal fares per unit
distance vary in a small range. -e pricing model has good
robustness.

-ere were some limitations to this study. When the area
is small and the passengers are densely distributed, a detour
time distribution can be calculated. But for few passengers in
a large area, there may not be a specific detour time dis-
tribution. In addition, the current pricing model can only be
used to handle static demand. How to dynamically price the
flexible bus needs to be explored further.
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[26] R. Batley and J. N. Ibáñez, “Randomness in preference or-
derings, outcomes and attribute tastes: an application to
journey time risk,” Journal of Choice Modelling, vol. 5, no. 3,
pp. 157–175, 2012.

14 Journal of Advanced Transportation

http://www.scientific.net/SSP.23-24.117

