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Congestion pricing is one effective demand management strategy to alleviate traffic congestion. 'is work investigates pricing
schemes for mixed traffic flow systems where the human-driven vehicles (HVs) and autonomous vehicles (AVs) coexist. 'e
emerging and integration of autonomous vehicles can help improve the overall transportation efficiency and safety. Given the
coexistence of HVs and AVs in the near future, there is need to adjust the existing traffic management strategies to adapt to the
mixed traffic conditions. In this study, congestion pricing is imposed on the HVs and the AVs differently, that is, a distance-based
toll to the HVs while a delay-based toll to the AVs. We consider six user groups based on the value of time (VOT) and the vehicle
types. Compared with the unified distance-based toll, the advantage of delay-based toll is demonstrated first. 'en, a surrogate-
based optimization framework, namely the regressing Kriging (RK) model, is formulated. 'ree pricing schemes are investigated
and compared: equity-oriented (EQ), environment friendliness-oriented (EN), and revenue-oriented (RE) schemes. Results show
that the RE scheme collects the highest revenues; however, its cost-efficiency is weakened. 'e EQ scheme reduces the variance in
the average travel costs among user groups, thus solving the equity issue.

1. Introduction

With the rapidly increasing population, traffic congestion
has become a major problem, especially in urban areas. Due
to the limited land resources and high costs, it is unsus-
tainable to address this issue by merely building new in-
frastructures. Given this situation, congestion pricing, one of
the promising demand-oriented strategies, is widely advo-
cated to mitigate congestion. As an economic lever, it
originates from the Pigou’s theory where extra traveler
entering the network should be charged an additional fee for
his negative impact imposed on other road users [1]. 'is
type of pricing model is known as the first-best pricing.
However, the first-best pricing is difficult to be implemented
because it is unrealistic to charge all links in a network
strictly by the marginal cost surplus of traffic [2]. Instead, the
second-best pricing model was proposed wherein just a

subset of links are charged based on the traffic conditions [3].
A branch of congestion pricing practices emerged since
1975, when the area licensing scheme (ALS) was successfully
operated in Singapore. However, quite a few schemes were
aborted at the stage of trial or referendum. Low public
acceptance was the main reason which led to the failure of
these cases [4].

Equity is a vital factor influencing public acceptance
towards the congestion pricing policy [5]. As a result, vast
literature discussed the equity issue on the design of con-
gestion pricing schemes from different perspectives. Lucas
et al. pointed out that drivers’ places of residence will affect
their willingness to pay. Under a cordon-based pricing
scheme, people living outside the cordon and commuting
towards it may become losers while the winners are those
living and conducting activities inside the cordon [6]. Gaunt
et al. investigated residents’ attitudes towards congestion
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pricing in Edinburgh (Scotland). He found that people with
high car dependency were less supportive of congestion tolls
[7]. Chen at al. conceived a novel pricing scheme consid-
ering drivers’ perceived level of service (LOS). People who
enjoyed higher LOS on their trips would pay more [8].

Value of time (VOT) is an important direction when we
deal with the equity issue. According to Arnott’s research,
the heterogeneity in VOT affected the calculation of welfare
effects. 'e congestion toll favored people with high VOT
relative to the schedule delay [9]. Later, more studies were
dedicated to examine the impact of congestion pricing on
users with different VOTs [10–12]. However, few researches
designed the equitable toll rates directly based on the dif-
ference in VOTs. Zheng et al. carried out a seminal study
where the group-based tolls were determined according to
the distribution of VOTs. 'ey argued that when the total
time savings after the implementation of congestion pricing
were monetized, drivers with higher VOTwould gain more.
Hence, it is unfair to ask all road users to pay the same
amount of toll [13]. However, the VOT categorization in
their research is only related to income levels. Obviously, the
vehicle type also influences VOT.'e advent of autonomous
vehicles (AV) has the potential to impact travel behaviour as
well as the transportation system. 'e AV technologies
enable drivers to do other activities on their trips, thus
making travel time more productive [14–16]. Zhong et al.
applied a mixed logit model to quantify the changes in VOT
if taking AVs. 'e results showed that the VOT would be
reduced by 30% at most [17]. On the contrary, the majority
of actualized congestion pricing schemes are cordon-based
or distance-based [5]. 'e drawback of the cordon-based
scheme is that drivers are charged equally regardless of the
actual distance travelled inside the cordon. As for the dis-
tance-based case, it may induce people to choose the shortest
paths, thus making the distribution of congestion more
uneven. Gu et al. once put forward the joint distance and
delay toll (JDDT) scheme to remedy the limitation of the
distance-based congestion pricing policy [2]. But the novel
scheme is difficult to be put into practice in the era of
human-driven cars. With the embedded vehicle-to-vehicle
communication technology, AVs can collect rich informa-
tion for the real-time traffic condition. As a result, it provides
opportunities to apply advanced congestion pricing
approaches.

'e traditional way to solve the congestion pricing
problem is formulating a bi-level mathematical program
with equilibrium constraints (MPECs) [18–20]. Nonetheless,
it remains challenging to deal with MPEC in a dynamic
large-scale transportation network. As the dynamic con-
gestion pricing (DCP) problem often involves high-di-
mension decision variables and a nonconvex, nonlinear, and
nonclosed form objective function [21–23]. In recent years,
with the help of mature dynamic traffic assignment (DTA)
simulators, simulation-based optimization (SBO) is recog-
nized as an alternative way to handle this problem. It does
not require an explicit mathematical formulation of the
objective function which is usually unavailable under

stochastic traffic dynamics. In general, SBO methods can be
classified into four types: (1) direct search; (2) gradient-based
approach; (3) feedback control; (4) surrogate-based method.
'e direct search partitions the search space into hyper
rectangles. By comparing the objective function values, the
potential optimal rectangle is determined for further par-
tition [24]. Given its exhaustive partitioning characteristics,
it is time-consuming to improve the current best solution.
'e gradient-based method is derivative-based, which tries
to approximate the gradient by finite difference. However, it
is not suitable for objective functions where the gradient
does not exist everywhere [25]. 'e feedback control is an
efficient optimization method. It adjusts the input variables
iteratively to let the system output approach the set point
[26]. But this method is not applicable when it comes to
high-dimension problem with complex constraints [27]. In
this context, the surrogate-based methods gain popularity
for their ability in approximating expensive-to-evaluate
functions. With limited number of evaluations, they can
approximate simulation input-output mapping [28]. 'e
regressing Kriging (RK) model outperforms other surrogate
models for its excellent performance in prediction [29]. By
constructing a probability model, it generates not only an
interpolated spatial correlation but also an estimate of the
uncertainty. Meanwhile, the feature of regressing sample
points overcomes the influence of simulation noise [30].

In order to monitor the effects of the congestion pricing
schemes, it is essential to understand the traffic dynamics at
the network level. Geroliminis and Levinson proposed the
macroscopic fundamental diagram (MFD), which related
the network average density to the average flow [31]. 'e
congestion can be identified when the flow decreases with
the density, and it indicates the oversaturated state of the
network.'e critical density is the one at which the maximal
production (flow) is achieved [32]. After the implementation
of the pricing scheme, we hope the network density would be
around the critical value.

Although plenty of studies attempted to design appro-
priate congestion pricing schemes, there are still some re-
search gaps: (1) few works considered the mixed traffic of
human-driven vehicle (HV) and AVs. 'e inserted com-
munication technologies of AVs enable us to apply the ad-
vanced pricing strategy, which can be different from that of
HVs; (2) reduction in VOT for AV users was not well con-
sidered; and (3) existing studies rarely compared the pricing
schemes with different objectives. In this paper, we propose a
surrogate-based optimization to solve the dynamic pricing
problem for mixed traffic with drivers of heterogeneous
VOTs. 'e HVs are charged by distance while AV users pay
according to the average link delay. 'e VOT-based tolls are
adopted among different groups. 'e results of three pricing
schemes, namely equity-oriented (EQ), environment
friendliness-oriented (EN), and revenue-oriented (RE)
schemes are compared. To the best of the authors’ knowledge,
the congestion pricing optimization under mix traffic with
heterogeneous users has never been proposed before and
hence offers significant contributions to the literature.
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2. Methodology

2.1. Simulation-Based Dynamic Assignment. 'e stochastic
route choice (SRC) model is a kind of nonequilibrium-
seeking DTA model. It has been extensively used for
transportation operations owing to the lower computational
cost compared to the dynamic user equilibrium (DUE)
model [33]. Table 1 summarizes the notations used in SRC
model. Let G � (N, L) denote the object network. 'e time-
varying distance-based toll rates for the HV user group i can
be represented as a decision vector
vi � [v1i, v2i, . . . , vni, . . . , vNi]. And the delay-based toll rates
for AV user group j is expressed as
wj � [w1j, w2j, . . . , wnj, . . . , wNj].

'e generalized travel cost for HV user group i to choose
link a in the nth interval is as follows:

Cai(n) � ta(n − 1) +
lavni

VOTi

. (1)

'e generalized travel cost for AV user group j to choose
link a in the nth interval is as follows:

Caj(n) � ta(n − 1) +
da(n − 1)wnj

VOTj

. (2)

Note that the communication is only among AVs. Hence
da(n − 1) is the average value acquired from AVs which
crossed link a during the (n − 1)th time interval. Given the
mixed traffic, it can approximately represent the average
delay for all groups.'e C-logit model is used to simulate the
route choice behavior. 'e probability of choosing path r

among the path set RO D for a given OD pair in the nth
interval is as follows:

Pr(n) �
exp − Cr(n) − CFr( 􏼁

􏽐m∈RODexp − Cm(n) − CFm( 􏼁
, (3)

where the term CFr (CFm) is the commonality factor of path
r(m) which describes the degree of overlapping with other
alternative paths [34]. Cr(n) is the sum of the travel costs of
all links in path r.

2.2. Proposed Framework. In this paper, travelers are cat-
egorized according to the income level and the vehicle type
(HV or AV). Given the same vehicle type, high-income
travelers have higher VOT due to high productivity [35].
Given the same income level, AV users will have a smaller
VOT because they can spend in-vehicle time engaged in
other activities.'e differentiated VOTs influence the route
choice behavior. When paying the same amount of toll,
travelers of high VOT will perceive fewer costs (according
to equation (1) and (2)), thus resulting in inequity. As a
result, let vn,low denote the distance-based toll rate for the
HV user group of the lowest VOT (HV reference group) in
the nth time interval. 'en, the toll rates for other HV user
groups are set based on the VOT difference from the HV
reference group. Similarly, denote the delay-based toll rate
for the AV user group of the lowest VOT (AV reference
group) in the nth time interval as wn,low. 'en, the toll rates

for other HV user groups are set based on the VOT dif-
ference from the AV reference group. We focus on the
optimization of congestion pricing for the congested
central area of the city. 'ree different congestion pricing
schemes are investigated: (1) EQ scheme; (2) EN scheme;
and (3) RE scheme.

As we adopt the distance-based and delay-based tolls for
HV and AV user groups separately, the average travel costs
(AUD/trip) for different groups would be disperse after the
congestion pricing. Hence, the objective of the EQ scheme is
to minimize the variance in average travel costs:

minZ1 � σ2 ATCg􏼐 􏼑, (4)

where Z1 is the objective function for the EQ scheme and
ATCg is the average travel cost for the user group g after the
implementation of congestion pricing. Note that ATCg

includes the trip travel time (in monetary unit) and toll paid.
As for the EN scheme, we aim to minimize the total

emission in the pricing zone. 'e QUARTET pollution
emission model is utilized [36]. In the mesoscopic simu-
lation, we can only acquire the average speed for a link
during each time interval.'e impact of the acceleration and
deceleration processes has been considered via the average
speed:

minZ2 � 􏽘
G

g�1
EMg, (5)

where Z2 is the objective function of the EN scheme; EMg is
the total emission of the user group g during the toll period;
and G is the number of user groups.

'e RE scheme is devoted to maximizing the total toll
paid. It is equivalent to minimize the negative version of this
term. 'e collected revenues can be redistributed to road
users or used to maintain the transport infrastructures:

minZ3 � − 􏽘
G

g�1
REVg, (6)

where Z3 is the objective function of the RE scheme; REVg is
the revenues collected from the user group g; and G is the
number of user groups.

'ere are several constraints considered for all three
schemes:

1
N

􏽘

N

i�1
Kn − Kcr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< e,

vn,low − vn+1,low
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ α, n � 1, 2, . . . , N − 1,

wn,low − wn+1,low
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β, n � 1, 2, . . . , N − 1,

vmin < vn,low ≤ vmax, n � 1, 2, . . . , N,

wmin <wn,low ≤wmax, n � 1, 2, . . . , N.

(7)

Constraint 7 controls the network performance.Kn is the
network average density in the nth time interval; Kcr is the
critical density of the network; and e is the preset threshold.
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'is constraint makes sure that the network density is close
to the critical value over time. Constraint 8 and 9 ensure that
the toll rates between adjacent time intervals do not change
sharply. vn,low (vn+1,low) is the distance-based toll rate for the
HV reference group in the nth ((n + 1)th) time interval;
wn,low(wn+1,low) is the delay-based toll rate for the AV ref-
erence group in the nth ((n + 1)th) time interval; and α and β
are the smoothing parameters. Constraint 10 and 11 set the
upper and lower bound for the toll rates. vmin (vmax) is the
lower and upper bound for the distance-based toll rate of the
HV reference group. wmin (wmax) is the lower and upper
bound for the delay-based toll rate of the AV reference
group. Note that the toll rates of other groups are set
proportionally. Once the toll rate ranges for reference groups
are confirmed, the ranges for other groups are also
determined.

2.3. Surrogate-Based Optimization. 'e RK model is
employed to do the constrained optimization. Figure 1
shows the procedure of the surrogate optimization. Some
initial points (or toll plans) are generated by a certain
sampling method. In our work, Latin hypercube sampling
(LHS) is adopted. It is a space-filling approach which
stratifies each dimension of the decision variables into an
equal number of partitions [37]. At least (m + 1) initial
points are needed for m-dimension problems [38]. Con-
sidering the high dimension of our optimization problems,
totally 2(m + 1) points are generated. 'e we run the net-
work simulation to get the objective function values for these
initial inputs. 'e simulation input-output mapping is used
to build a preliminary surrogate model. In order to enhance
the model, additional infill points are required. 'e addi-
tional samples can provide more information in the po-
tential regions where the good solution may exists. 'e infill
process will not terminate until the stop criteria are met.
Finally, the accuracy of the model is checked. When the
accuracy is validated, we can declare that the optimum is
achieved. Otherwise, the surrogate model should be
redesigned.

2.3.1. Model Construction. For the RKmodel, the prediction
for a nonsampled point xn+1 is written as follows:

􏽢y xn+1( 􏼁 � 􏽢μ + ε xn+1( 􏼁, (8)

where 􏽢μ is the constant mean; ε(xn+1) is a normally dis-
tributed and independent estimation error, and it can be
expanded as follows:

ε xn+1( 􏼁 � ψT
(R + λI)− 1

(y − 1􏽢μ), (9)

where y is the output vector for n sampled points
(y � [y1, y2, . . . , yn]T); I is the identity matrix; R is the
correlation matrix between the sampled points; and λ
(λ ∈ (0, 10]) is the regression constant. With the positive λ,
the RKmodel regresses the data to reduce the influence from
the simulation noise. Ψ is the correlation vector between n

sampled points and the new point. 'e correlation between
point xi and xj is given as follows:

Corr xi, xj􏽨 􏽩 � exp − 􏽘
k

h�1

􏽢θh xi,h − xj,h

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽢ph⎡⎣ ⎤⎦, (10)

where k is the dimension of variables; 􏽢θh and 􏽢ph is the scaling
and smoothness coefficient for the hth dimension, sepa-
rately; and 􏽢θh (􏽢θh ∈ [0.001, 100]) denotes the sensitivity to
the objective function value. A larger 􏽢θh means the certain
dimension is more sensitive than others. 'e use of
􏽢p ∈ [0, 1] is usually advocated. However, 􏽢p � 2 proves to be
suitable for the engineering-based problem [39].

'en, the vector of scaling coefficients θ, the variance σ2
and the mean μ are estimated by maximizing the likelihood
probability [40]:

1

2π1/2 σ2􏼐 􏼑
1/2

|R + λI|1/2
exp

− (y − 1μ)
TR + λI− 1

(y − 1μ)

2σ2
􏼠 􏼡.

(11)

'e limited memory Broyden–
Fletcher–Goldfarb–Shanna (LBFGS) algorithm is employed
to solve the maximization problem. 'is iterative method is
appropriate for problems with large numbers of variables
[41].

2.3.2. Infill Strategy. In order to improve the accuracy of the
surrogate model by the augmented data set, the acquisition
function is used to guide the search direction. 'e expected
improvement (EI) function is a widely-used acquisition
function, which estimates the magnitude of improvement at
a new point [42]. It can explore the unvisited region and
exploit the domain of interest at the same time. Let ymin

Table 1: Notations used in the SRC model.

Notation Description
N Node set for the object network
L Directed link set for the object network
vni Distance-based toll rate for HV user group i in the nth time interval
wnj Delay-based toll rate for AV user group j in the nth time interval
N Number of time intervals
VOTi Value of time for HV user group i

VOTj Value of time for AV user group j

da(n − 1) Average delay in link a in the (n − 1)th interval
ta(n − 1) Average travel time for link a in the (n − 1)th interval
CFr Commonality factor of path r
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denote the current best solution. 'e improvement of a new
point x can be expressed as I(x) � max(0, ymin − 􏽢y(x)).
'en, the formulation of EI is demonstrated as [43]:

E[I(x)] �

ymin − 􏽢y(x)􏼂 􏼃Φ
ymin − 􏽢y(x)

􏽢sri(x)
􏼠 􏼡 + 􏽢sri(x)ϕ

ymin − 􏽢y(x)

􏽢sri(x)
􏼠 􏼡, if 􏽢sri(x)> 0,

0, if 􏽢sri(x) � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

where Φ(.) is the normal cumulative distribution function;
ϕ(.) is the probability density function; and 􏽢sri(x) is the re-
interpolation prediction error for the objective:

􏽢sri
2
(x) � 􏽢σri

2 1 − ψT
(R + λI)− 1ψ􏽨 􏽩, (13)

where 􏽢σ2ri is the estimate of σ2 for the re-interpolation:

􏽢σ2ri �
(y − 1􏽢μ)

T
(R + λI)− 1R(R + λI)− 1

(y − 1􏽢μ)

n
. (14)

Note that by replacing 􏽢σ2 with 􏽢σ2ri, E[I(x)] stays at zero
for all the existing points. Hence, the EI sampling will not be
trapped at existing sample points. 'e new points are ob-
tained with the aim of maximizing the E[I(x)].

'e EI function is sufficient for unconstrained optimi-
zation. However, when it comes to the constrained opti-
mization. A new point that has a good objective value may
not meet the expensive-to-evaluation constraint at the same
time. As such, another acquisition, namely the probability of
improvement (PI) function is utilized. 'e mechanism of PI
is to research for a new point which has the highest
probability to meet the complex constraint. We need to

construct a new surrogate model for the constraint sepa-
rately. Denote 􏽢c(x) as the estimated constraint value. 'en,
we can formulate the PI function as follows:

P 􏽢c(x)> cmin􏼂 􏼃 �

Φ
cmax − 􏽢c(x)

􏽢sc,ri(x)
􏼠 􏼡, 􏽢sc,ri(x)> 0,

0, 􏽢sc,ri(x) � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(15)

where cmax is the preset threshold as in Constraint 7 and
􏽢sc,ri(x) is the re-interpolation prediction error for the
constraint. 'e constrained EI function E[CI(x)] can be
written as follows:

E[CI(x)] �
E[I(x)] · P 􏽢c(x)≤ cmin􏼂 􏼃, 􏽢c(x)≤ cmin,

0, 􏽢c(x)> cmin.
􏼨 (16)

2.3.3. Model Validation. 'e leave-one-out cross-validation
is a method frequently used to measure the accuracy of
surrogate models [44]. 'is approach leaves out one ob-
servation and reconstructs the surrogate model with the

Initial sample points

Network simulation

Constructing the
surrogate modelRedesign the model

Add infill sample points

Stop criteria
reached?

Model
accuracy
satisfied?

Optimum achieved

No

No

Yes

Yes

Figure 1: Flowchart of the surrogate-based optimization.
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remaining points. 'e estimated output of the removed
point from the re-fitted model will be compared with the
actual output. 'e key metric for the leave-one-out cross-
validation is the standardized cross-validated residual
(SCVR). It is calculated as follows:

y xi( 􏼁 − 􏽢y− i xi( 􏼁

􏽢s− i xi( 􏼁
, (17)

where y(xi) is the actual output for xi; 􏽢y− i(xi) is the esti-
mated output of xi without xi; and 􏽢s− i(xi) is the prediction
error of xi from the re-fitted model without xi. 'e model is
validated when the SCVRs for all points roughly fall in the
interval [− 3,3]. It means the model proves to be 99.7%
confident that y(xi) lies in the interval [􏽢y− i(xi) − 3􏽢s− i(xi),
􏽢y− i(xi) − 3􏽢s− i(xi)] [41].

3. Results and Discussion

3.1. Experiment Setup. In this paper, we perform a meso-
scopic simulation-based DTA in the Melbourne city, Aus-
tralia in the traffic simulation software AIMSUN. 'e travel
demand is collected via the loop detector and changes every
15min between 6 : 00 AM and 10 : 00 AM. Figure 2(a) shows
the congested central business district (CBD) (inside the red
box). We choose it as the pricing zone. 'ere are 75 nodes
and 218 links in the object network.'e information of daily
income of residents is extracted from the Victorian Inte-
grated Survey of Travel and Activity (VISTA). We assume
that people work 8 hours a day. As a result, the VOTs equate
to the daily income divided by eight. Travelers are classified
into three groups based on the distribution of VOT initially.
'e VOT of each group is the median of the corresponding
population. Since the mass market penetration of AVs is
challenging in the near future, 30% AV penetration rate is
used in our work. Meanwhile, we assume that more high-
income travelers can afford AVs. Finally, there are totally six
user groups shown in Table 2. Note that AV users will have a
reduction in their VOTs by 30% [14].

'e agents of different user groups are uniformly dis-
tributed in the network. In order to avoid simulation ran-
domness, we run three replications with different random
seeds. 'e MFDs for the three replications (R1, R2, and R3)
and the average result (AVE) are presented in Figure 2(b).
According to theMFDs, the flow starts to drop at 25 veh/km/
lane. Hence, we set the critical density as 25 veh/km/lane.
'e network density over time in the no-toll scenario is
demonstrated in Figure 2(c). Observe that the density ex-
ceeds the critical value around 8:30. So the toll period is from
8:30 to 10:00.

In our study, vmin is set as 0 AUD/km, and vmax is set as 1
AUD/km.wmin is set as 0 AUD/h, and wmax is set as 15 AUD/
h. 'e smoothing parameter α is set as 1/3 × (1 − 0) � 0.3,
while β is set as 1/3 × (15 − 0) � 5. One can refer to the study
by Gu et al. [34], wherein the analysis on the smoothing
parameters is conducted. 'e threshold e is set as 2.45 veh/
km/lane which is nearly one-fourth of the value (9.8 veh/km/
lane) in the no-toll scenario. 'e toll period is divided into
six 15-minute intervals. Hence, the decision variable vector

has 12 dimensions, six of which are distance-based toll rates
for the HV reference group, while the rest are delay-based
toll rates for the AV reference group.

3.2. Comparison between Unified Delay-Based Toll and Dis-
tance-Based Toll. In order to unveil the advantage of the
delay-based toll, we compare the network performance
under the unified delay-based toll and distance-based toll.
First of all, let us introduce a term, namely the spatial spread
of density [45]. It measures the heterogeneity of congestion
distribution and is calculated as follows:

c �

�������������

􏽐ilini ki − K( 􏼁
2

􏽐ilini

􏽳

, (18)

where li is the length of link i; ni is the number of lanes of link
i; ki is the density of link i; and K is the network density.

'e relationship between the spatial spread of density
and the network density can be expressed as the third-
polynomial function [34]:

c(K) � aK
3

+ bK
2

+ cK. (19)

We collect 1000 data points to plot Figure 3(a).'e lower
envelop of Figure 3(a) is fitted to Equation (19). Parameters
are estimated as: a � − 0.0004, b � 0.0278, and c � 1.2345.
According to Figure 3(a), the spatial spread of density will
naturally increase with the network density. Simoni et al.
further proposed an advanced metric: the deviation from
spread [46]:

Δ � c − c(K). (20)

Smaller Δ indicates the lower heterogeneity of conges-
tion distribution, thus leading to the higher network flow.
We select a delay-based toll scheme with the unified delay
toll rate of 13 AUD/h and a distance-based toll scheme with
the unified distance toll rate of 0.5 AUD/km. According to
Figure 3(b), the network density under the distance-based
toll scheme (DI_density) is smaller than that of the delay-
based toll (DE_density) in most of the time. However, the
result of the network flow is the opposite. When we look into
the average deviation from spread during the toll period, we
find that it is much smaller under the delay-based toll
scheme (1.93 veh/km/lane vs. 4.93 veh/km/lane). 'is
conclusion is in line with Gu’s research [27]. It indicates that
the delay-based toll can reduce the heterogeneity of con-
gestion distribution to a great extent. 'is is also one mo-
tivation of our research to implement the delay-based toll on
AVs which are equipped with the perfect technology to
realize it. 'e inserted advanced communication technology
of autonomous vehicles enables us to collect data such as the
vehicle position and the average delay of queues.

3.3. Results of Optimal Toll Designs with Different Objectives.
'e stop criterion in this paper is that 30 infill points are
collected or EI � 0 for consecutive 10 points. Figures 4(a)–
4(f ) show the results for the EQ scheme. When we track the
convergence history of EI, the value decreases gradually
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(shown in Figure 4(e)).'e infill process terminates after the
24th infill point because EI equates to zero for 10 function
evaluations successively. It means, it is unlikely to find a new
point which improves the current best solution. According
to Figures 4(a) and 44(b), the accuracy of the objective and
constraint models are both validated, seeing all the sample
points lie in the interval [− 3,3]. 'e distribution of sample
points is demonstrated in Figure 4(f ). Note that only the
infill points which have EI � 0 are plotted. As the limited
memory LBFGS algorithmwill randomly select a point when

it cannot find a new point with EI> 0. As a result, the infill
points with EI � 0 are not representative in terms of the
objective and constraint values. 'e X-axis is the constraint
value while Y-axis is the objective value. 'e dashed red line
is the constraint limit. Most of the initial points violate the
constraint while only one infill point is beyond the con-
straint limit, which proves that the infill strategy works well.
'e point inside the red circle is the optimal solution for the
EQ schemes. We solve the EN (Figures 5(a)–55(f)) and RE
scheme (Figures 6(a)–66(f)) in the same way.
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Figure 2: (a) Pricing zone; (b) MFD for the pricing zone in no-toll scenario; (c) density over time in no-toll scenario.

Table 2: 'e VOTs and percentages of different user groups.

Group name VOT (AUD/h) Percentage AV penetration (%)
AV low 8 15 20
AV medium 19 10 50
AV high 28 5 85
CV low 12 59 0
CV medium 28 10 0
CV high 42 1 0
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Figure 3: (a) Relationship between the spatial spread of density and density and (b) comparison of flow and density between unified delay
toll scheme and distance toll scheme.
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3.4. Comparison among Gree Schemes. In this section, we
compare the results of three schemes. 'e optimal toll plans
for three schemes are illustrated in Figures 7(a)–7(c). 'e
primary Y-axis is the distance toll rate for HV groups, while
the secondary Y-axis is the delay toll rates for AV groups.
According to Figure 7(d), all schemes control the network
density over time around the critical value (25 veh/km/lane)
well. 'e constraint values under all three schemes are
within 2.45 veh/km/lane (shown in Table 3). 'e RE scheme
lets road users to pay 15.79 (10 × 3 AUD) which is 40%
higher than the revenues collected in the EQ or EN scheme.
However, when we look into the total travel time reduction
and the constraint value, the network performance under RE

scheme is similar to those under other two schemes. It
indicates that RE scheme is less cost-effective. 'e extremely
high toll may induce the low marginal effect.

'e EN scheme produces least emissions (7.02 kg).
According to the QUARTET pollution emission model, the
emission rate goes up with the increase of the cruising speed.
Moreover, the optimal toll plan for the EN scheme reduce
the emissions by controlling the total time travelling inside
the pricing zone, seeing the least total travel time
(7726min.veh) among three schemes. It suggests that the EN
scheme can encourage individuals to travel less time in the
pricing zone. Nonetheless, since the HVs and AVs are
charged differently in our work, in order to increase the
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Figure 4: Results for EQ scheme: (a) comparison between predictions and observations for the objective model; (b) residuals of sample
points for the objective model; (c) comparison between predictions and observations for the constraint model; (d) residuals of sample points
for the constraint model; (e) convergence history of EI; (f ) distribution of sample points.
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Figure 5: Results for EN scheme: (a) comparison between predictions and observations for the objective model; (b) residuals of sample
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Figure 6: Results for RE scheme: (a) comparison between predictions and observations for the objective model; (b) residuals of sample
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Figure 7: (a) Optimal toll plan for EQ scheme; (b) optimal toll plan for EN scheme; (c) optimal toll plan for RE scheme; (d) density over time
under different schemes.

Table 3: Metric comparison among different schemes.

Scheme name No-toll EQ scheme EN scheme RE scheme
Equity (AUD/per2) 9.14 6.53 8.00 9.50
Emission (kg) 9.35 7.64 7.02 7.63
Revenue (10 × 3 AUD) 0 11.92 11.20 15.79
Constraint value (veh/km/lane) 9.8 1.25 1.94 2.23
Total travel time (min.veh) 10,665 8589 7726 7829
Average speed (km/h) 27.69 30.30 30.47 30.62
'e bold ones are the most important values.
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acceptance of the policy, σ2(ATCg) should be as small as
possible. From this perspective, the EQ scheme outperforms
other schemes with σ2(ATCg) � 6.53 AUD/per2. In addi-
tion, compared with the no-toll scenario, the EQ scheme
reduces the NOx emissions by 18.3% and collects 11.92 (10 ×

3 AUD), which is appreciable.

4. Conclusion

'e formulation of DCP optimization involves high-di-
mension decision variables as well as the expensive-to-
evaluate objective function. Meanwhile, with the emerging
of autonomous technology, HVs and AVs will coexist in the
transportation network in the near future. How to design
appropriate congestion pricing schemes under mixed traffic
is challenging. In this paper, we divide the road users into six
groups according to the vehicle type and VOTs. 'ree
congestion pricing schemes with different objectives are
investigated. 'e network performance is considered as a
complex constraint to keep the network density close to the
critical value. 'e RK model is adopted to estimate the
input-output mapping. Initial and infill sampling strategies
are combined to search for optimal toll plans.

A large-scale simulation-based DTA model of Mel-
bourne, Australia, is used to demonstrate the results of
proposed pricing schemes. 'e RE scheme is not advocated
because it charges road users too much money without
achieving much better network performance. 'e phe-
nomenon illustrates that demand originates from the pricing
zone is evitable. High tolls may obtain low marginal effect.
'e EN scheme produces least emissions and maintains the
relatively high average speed. In this study, AVs are charged
by delay while HVs are charged by distance. Meanwhile,
people with higher VOTs will have high toll rate. As a result,
we should guarantee that the proposed pricing scheme can
be accepted by all groups. Hence, the EQ scheme is superior
to EN and RE schemes for its smallest σ2(ATCg). To ensure
the efficiency of our pricing schemes.

We should also guarantee that travelers report their
VOTs honestly. Nan et al. [15] conducted an in-depth
discussion on how to stimulate people to tell truth. For
instance, the mechanism design which does not require
travelers to provide confidential information. In addition,
punishments such as fines or banning the liars from the
pricing zone for a certain period are considerable. As long as
the government takes a lead role to boost the group-based
discrimination, the proposed pricing schemes can be put
into practice.
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