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*e multidepot capacitated arc routing problem (CARP) is investigated with the hybrid optimization algorithm of the Dijkstra
algorithm and genetic algorithm. *e complex multidepot CARP is transformed into multiple single depot CARP by systematic
clustering analysis. After completing the system clustering, the Dijkstra algorithm is used to adjust the boundary arc locally and
merge it to a reasonable depot, while in the genetic algorithm, the structure of the chromosome is reset to use the path as the way of
real coding, and the elite selection is used to decode to obtain the optimal path optimization scheme. Finally, Lanzhou road
network data as experimental data, through Matlab to achieve the practicability of the algorithm in sprinkler applications. *e
results show that the improved genetic algorithm can successfully solve the multi-segment CARP with a certain road network
scale, ensuring the correctness and feasibility of the algorithm. In addition, the efficiency of the algorithm in the later iteration is
basically controlled at about 0.5 seconds, indicating that the efficiency of the algorithm is worth identifying.

1. Introduction

With the rapid advancement of computer technology, in-
telligent computing has become increasingly widely
employed in various areas, while the problem of vehicle path
optimization is one of the best examples. In real life, the
driving route plan of the work vehicle usually depends on the
experience of the staff, which will undoubtedly increase
driving costs and reduce work efficiency. *e research topic
of this study is to apply artificial intelligence algorithms to
vehicle operation path planning, which is one of the im-
portant contents of intelligent calculation methods to solve
practical problems. *e capacitated arc routing problem
(CARP), originally proposed by Golden and Wong [1] in
1981, is a well-known combinatorial problem. *e current
research can be roughly divided into two categories: one is
the vehicle routing problem (VRP) with the point of service,
and themost common application is the point path problem.
*e other is an arc routing problem (ARP) with a path as the
service object, which can be defined as a connected graph
where several edges require a type of service, a point is used
as a depot. Each sidemust be serviced by a car and the service

needs to be completed at one time. All edges are allowed to
be passed any number of times. Each vehicle departs from
the depot and returns only after the service is completed.*e
total service demand on the route passed does not exceed the
capacity of the vehicle [2].

At present, domestic and overseas scholars have inves-
tigated the CARP widely. For small-scale ARP, an exact
algorithm can be used to solve the problem, but for large-
scale ARP, heuristic algorithms are required to obtain ap-
proximate solutions, such as taboo search algorithm [3],
large-scale greedy algorithm [4], variable neighborhood
search [5, 6], multi-population cooperative coevolutionary
algorithm (MPCCA) [7], and improved ant colony algo-
rithm [8]. In this regard, there are a variety of practical
applications, such as urban garbage recycling [9], road
maintenance deicing and salting in winter [10], and elec-
tricity meter [11]. Tirkolaee et al. [9] took the driver’s and
occupant’s working hours into consideration to make the
scheduling of the service more reasonable. Yang et al.
[12, 13] developed an empirical model to estimate the
standard deviation, quantile, and BTI of optimal TSP trips.
Genetic algorithm is used to find the shortest paths
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randomly generated to connect N customers in a specific
service region through experiments. To be more realistic,
Tagmouti et al. [14] converted the arc routing problem into a
vehicle routing problem with the point and used the variable
domain search descent algorithm VND to move the
neighborhood arc. *e arc path problem was solved by arc
crossover and arc resection transformation, and the time
window can be considered to solve the problem of dynamic
change according to time and weather during driving.
However, it is not suitable to consider the time only during
the time window.*e traffic delay caused by the traffic signal
control and traffic conditions should be taken into account
moderately because the traffic situations at different times of
the day cannot be estimated accurately [15–21].

When solving large-scale path problems, Willemse and
Joubert [22] combined the greedy algorithm with existing
local search operations and optimized the acceleration
mechanisms of greedy compound independent moves and
static move descriptors to solve the problemmore efficiently.
*e open CARP is an extension of the general CARP
[23, 24]. It does not require a path to form a loop but limits
the vehicle’s capacity and distance traveled, and minimizes
research costs without exceeding these limits. For the
multiobjective CARP, Shang et al. [25] proposed an ex-
tended search (ED-MAENS) method to deal with MO-
CARP, using weights to decompose it into a single-objective
problem. To ensure the rationality of multiple objective
solutions, the priority of the scheme is proposed. However,
there is still no guarantee that the distribution balance will be
achieved when the weights are assigned, and the search
range is wide. In this article, nondominant ranking and
crowding are considered as the tradeoff between the two
goals, which is better than assigning weights to the two goals,
because the influence of two targets cannot be calibrated
with a reasonable number [26–28]. For the drawbacks of
weight distribution, Chen and Hao [29] proposed a two-
stage method. In the first stage, the number of vehicles was
minimized as the main target, while in the second stage, the
minimum number of vehicles was taken as the upper limit to
minimize the total cost. However, in the case of a small
search space, it is easy to fall into a local optimal solution.
Archetti, Lu, and Linfati and Escobar [30–32] investigated
the specific demand and profit units on each edge of a series
of edge sets. *e profit on one edge is collected by at most
one vehicle, and the vehicle can serve several edges. It was to
determine a set of paths to meet the vehicle capacity limit
and maximize profits within the maximum time limit.
Zachariadis and Kiranoudis [33] explored the goal of
maximizing profit and making the shortest travel time.
When one of the two goals is close, the other target can be
used as the preferred criterion. Dhein et al. [34] designed a
genetic local search algorithm to maximize profit, and the
construction path adopts nonlinear dispersion metrics to
capture the routing characteristics found when the vehicle is
driving in harsh environments, which is a new direction
worth studying.

For the research of the CARP, the predecessors have
made many improvements and innovations in the algo-
rithm, not only in the use of combinatorial optimization

algorithms [35] but also on the premise of combined al-
gorithms to improve search efficiency and search scale.
However, for the development of modern society, sustain-
able development has become our primary goal, thus low
carbon and emission reduction has become one of the issues
emphasized [36–38]. Bruglieri et al. [39] proposed a green
vehicle path problem with capacity alternative fuel stations
(AFSs), based on the integer programming formula, two
variants of the precise cut plane method were proposed to
shorten the solution time. In addition, the time window was
introduced to allow AFSs to be reserved. Pelletie et al. [40]
discussed electric vehicles that are less polluting than con-
ventional trucks. Robust optimization and large-scale
neighborhood search are used to obtain the lowest cost route
of energy consumption uncertainty. Erfan et al. [41] studied
the difference in carbon emissions generated by different fuel
types and concluded that the theoretical carbon emission
factor coefficient was consistent with the actual experimental
data. Different consumptions are generated in different
vehicle loading states [42].

Consequently, this article takes into account the carbon
emissions from the sprinklers in operation, to achieve a
more green service plan than the traditional way. Sprinkler
operations are carried out when the sprinkler is working
through an arc that requires service, as a result, the amount
of water carried changes, hence the difference in carbon
emissions will occur during driving. When the route is not
required to be serviced, only the distance is accumulated, but
the water carrying capacity does not change, which means
that the load of the vehicle does not change. *erefore,
traveling on such a path, the carbon emissions will remain
the same until the curve to be serviced changes. It can be
known that the carbon emissions generated under different
load conditions are different. *us, this article considers the
shortest driving path and minimum carbon emissions as the
two objectives of the study.

*is article is organized as follows. Section 2 describes
the background of the problem. Section 3 gives the math-
ematical model and symbol definition for this problem.
Section 4 describes two heuristic algorithms to solve this
problem, one is the single-objective two-stage method and
the other is the multiobjective one-stage method. Section 5
proposes the algorithm-specific algorithm flow chart and
algorithm steps. Section 6 presents the specific solution
results obtained from the examples. Finally, conclusions and
further research directions are summarized.

2. Problem Description

*e objective of this article is to optimize the CARP path by
minimizing the distance and carbon emissions of sprinklers.
As the actual road network map increases, the service de-
mand for the road will also increase, so the research object of
this article belongs to the multidepot multiobjective CARP.
*e problem is described as follows: road topology G(V, E),
where V � v1, v2, . . . , vn􏼈 􏼉 represents the set of n vertices in
the graph. *e arc set E � e1, e2, . . . em􏼈 􏼉 indicates that there
arem directed arcs in the graph.*em arc contains ε service
arcs and m − ε non-service arcs. *e length of arc ei is L(ei).
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*ere is a required value N(ei) � L(ei) × ρ for any service
arc ei ∈ E. ρ is the demand factor (the specific value is
determined by the actual situation), and there is no demand
value for the non-service arcs.

3. Mathematical Model

3.1. Symbol Description. *e specific meanings of some
symbols involved in the article are described in Table 1.

3.2. Problem Hypothesis. It is stipulated by the Environ-
mental protection department that the sprinkler operation
should be carried out according to different weather con-
ditions and road conditions. In this article, the weather is
clear and the road condition is good.

Assumption 1
(1) *e sprinkler vehicle is a model with the same water

carrying capacity.
(2) Each depot has a sufficient number of vehicles in

multiple depots.
(3) All sprinkler vehicles travel at a uniform speed and

are less than 30 km.
(4) When the sprinkler vehicle is fully loaded, it starts

from the depot and returns to the original depot after
the end of the service.

(5) For any service arc, only one sprinkler serves, and
only once.

(6) When the sprinkler load meets the amount of
sprinkler needed for the next arc path, the path is
served; if the water load is less than the demand, it
cannot meet the demand of the path and return to
the original starting depot.

3.3. Mathematical Modeling

3.3.1. Fuel Consumption. *e regression equation of fuel
consumption rate (FCR) calculated based on statistical data is

f � 0.00556x + 0.254, x ∈ [0, 22.4]. (1)

*e FCR under the current load is

μ Q1( 􏼁 � μ0 +
ε∗ − ε0

Q
Q1. (2)

*e fuel consumption between node i and node j is

μij

fuel � μ wij􏼐 􏼑dij. (3)

3.3.2. Building Model. Objective function:

(1) *e smallest total distance traveled by a vehicle is

minD � 􏽘
k

i�1
dist Ti( 􏼁. (4)

(2) *e smallest carbon emissions of vehicles are

minCco2 � F 􏽘
i∈V

􏽘
j∈V

μ0 +
ε∗ − ε0

Q
wij􏼠 􏼡cijPij. (5)

Constraints:
(1) Vehicle load capacity constraints. *e model of the

sprinkler vehicle is fixed, and there is an upper limit of
water carrying capacity, so the sprinkler demand is less
than the upper limit of thewater capacity of the vehicle.

N Ti( 􏼁 � 􏽘
n

j�1
ρL ei( 􏼁≤Q(1≤ i≤N). (6)

(2) Constraint on the number of services. Each service
arc is only allowed to be served by one arc path and
can only be served once.

Ti􏼈 􏼉∩ Tj􏽮 􏽯 � ∅, (i, j � 1, 2, . . . , n). (7)

(3) 0–1 variable state selection constraint.

Pij �
0,

1,
􏼨 ∀i, j ∈ V. (8)

(4) *e total number of service arcs for all paths must
not exceed ε.

􏽘

k

i�1
Ti

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ε. (9)

Table 1: Symbol description.

Symbol Definition
G Connected graph G(V, E)

V Set of all nodes in the graph, V � v1, v2, . . . , vn􏼈 􏼉

E *e set of arc paths in a graph
ε Number of service arcs in the figure
k *ere are currently a total of k service arcs
ρ Sprinkler demand coefficient
L(ei) Length of arc path ei

σi Depot i, i � 1, 2, . . . i

Q *e carrying capacity of each car
Q0 *e weight of each car
Q1 Current load of the vehicle
f Fuel consumption rate (FCR)
x Weight of vehicle load (in tons)

dij

*e distance between node i and node j in road network
graph

wij Load from node i to node j in road network graph

μij

fuel
Fuel consumption from node i to node j in road network

diagram
Cco2

Carbon emissions
Cfuel Fuel consumption

F
Fuel conversion factor, gasoline vehicle F � 2.30, diesel

F � 2.63
Ti Path i
τi Service arc set
r Boundary arc set
c Judging the critical threshold of boundary arc
W Collection of nodes for all service arcs
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(5) Flow conservation at the node. In the process of
sprinkler travel service, the number of entries on any
node is equal to the number of times the sprinkler
leaves the node.

􏽘
(i,j)∈V

xjik � 􏽘
(i,j)∈V

xijk.
(10)

(6) *e calculation function of the driving distance of
path i.

dist Ti( 􏼁 � d σ, Ti,1􏼐 􏼑 + 􏽘

|n−1|

j�1
L Ti,j􏼐 􏼑 + d Ti,j, Ti,j+1􏼐 􏼑􏼐 􏼑

+L Ti,|n|􏼐 􏼑 + d Ti,|n|, σ􏼐 􏼑.

(11)

4. Algorithm Design

4.1. Chromosome Design. *is article employs the chro-
mosomal gene sequence priority coding scheme. *e
chromosome designed by this scheme consists of each
chromosome on the side of the road network map. Each
gene position represents an edge, and all service arcs form
a complete chromosome. *e length of the chromosome

is adjusted according to the number of sides of the service
that the actual problem requires. Suppose |W| � p is the
number of arcs to be serviced, and each edge is numbered
by a natural number. *en any random number from
natural numbers 1 to p is a chromosome. *e order in
which gene values appear determines the priority of the
service edges. Suppose all edges in the graph need to serve
a total of 14 service arcs, so generating an arbitrary
arrangement from 1 to 14 is a complete chromosome,
such as

chrom � [6159271012118131443]. (12)

*e specific node of the service side can be expressed in a
matrix form as

W �
4 1 3 6 1 5 7

5 2 6 9 4 7 8
t
8 8 5 9 10 2 2

10 9 6 11 11 5 3
􏼠 􏼡. (13)

Each of the numbers in the matrix W represents each
node in Figure 1. *e first row in the matrix W can be
represented as the start point (end point) of the edge vivj,
and the second row in the matrix W can be represented as
the end point (starting point) of the edge vivj. *e corre-
sponding set of service edges can be expressed as

W � v4v5, v1v2, v3v6, v6v9, v1v4, v5v7, v7v8, v8v10, v8v9, v5v6, v9v11, v10v11, v2v5, v2v3􏼈 􏼉. (14)

*e resulting chromosomes differ in the order in which
they are accessed. As a result, the number of vehicles
arranged is different, and the fuel consumption of a single
sprinkler is different. Each access route is encoded and
decoded so that the shortest driving distance and the least
fuel consumption of the vehicle among all routes can be
searched.

4.2. Genetic Manipulation

4.2.1. Fast Non-Dominated Sort. *e NSGA-II algorithm is
layered according to the dominance relationship between
individuals before the execution of the selection operator,
and the algorithm complexity can be reduced to O(n).
Before the selection operation is performed, the population
is sorted according to the dominance and non-domination
relationship between the individuals to achieve the layering
effect. *e detailed practices are as follows:

(1) By calculating the fitness function to compare the
values of fitness, the dominance and non-domi-
nation between individuals i and j are obtained
(i≠ j). If there is no fitness value of any individual j
that is better than the fitness function value of
individual i, then j is marked as the dominant
individual.

(2) For each individual i, there are two parameters n(i)

and s(i), where n(i) is the number of dissolving
individuals who dominate the individual in the
population. s(i) is a collection of dissolving indi-
viduals governed by individual i.

(3) Find all individuals with n(i) � 0 in the population
(all individuals in the population that are not
dominated by other individuals) are classified to the
set F1 of the leading edge 1.

(4) For the individual j governed by each individual i in
the set F1, the number of solutions governing j is
decremented by 1 and stored in the set H.

(5) Using F1 as the first-level nondominated individual
set and assigning the same nondominated order to
the individuals in the set, and then continuing to
repeat the above-mentioned hierarchical operation
on the set H and assigning the corresponding
nondominated order.

(6) Only the individuals who control the number of
individuals to 0 are the current frontier until all
individuals are classified.

4.2.2. Congestion Calculation. *e average distance between
two points on either side of the point is calculated according
to each objective function. *e density of the surrounding
individuals of a given individual in the population can be
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visually represented as an individual. As shown in Figure 2,
the congestion coefficient of the ith solution is the length of
the surrounding cuboids (indicated by the dotted line). *e
specific calculation method is as follows:

Step 1: Initialize the crowded distance of each indi-
vidual with the number of noninferior layers where i is
located, di � 0.
Step 2: Each individual i is sorted on the corresponding
target, and the crowded distance between different
target individuals is solved by the formula
(objnext − objprevious)/(fi+1

k − fi−1
k ), where obj is the

subscript and fi
k is the kth target value after the ith

individual is sorted on the kth target.
Step 3: Set the distance between the first and last in-
dividuals after sorting to infinity, di �∞.
Step 4: Sort each individual into different dimensional
targets and select individuals with large crowded dis-
tances to enter the next generation.

*e calculation of congestion degree is an important
part of ensuring the diversity of the population. *e
population is sorted based on the objective function so that
the congestion degree of the boundary individual is in-
finity. After the nondominated sorting and congestion

degree are computed, each individual in the population
has a corresponding nondominated sorting number and
congestion degree. *rough the two indicators, the
dominating and non-dominating relationship of any two
individuals in the population can be distinguished, in this
way, the constraint relationship between the two objectives
can be balanced.

4.2.3. Binary Bidding Selection. *e tournament method
selection strategy is referred to taking a certain number of
individuals from the population each time and then selecting
the best one to enter the offspring population.*is operation
is repeated until the new population size reaches the original
size. *e specific steps are as follows:

(1) Determine the number of individuals selected each
time and determine the new population size.

(2) Two individuals i and j are randomly selected (each
subject has the same probability of being selected)
from the population to form a group each time
(i≠ j).

(3) According to the dominance number and the degree
of crowding of each individual, the individuals with
the highest order of dominance are preferentially
selected. Similarly, it is preferable to select an in-
dividual with a large degree of congestion, and fi-
nally, select an individual for which the conditional
ranking is satisfied to enter the progeny population.

(4) Repeat step (2) and step (3) until the number of
individuals reaches the population size to form a new
generation population.

4.2.4. Fragmented Crossover Operator. Randomly two
parent chromosomes C1 and C2 are selected from the
initial population of chromosomes using a binary bidding
selection mechanism, and then random number
n(1≤ n≤p − 1) is generated to select the gene position as

i-1

i+1

i

f1

f2

Figure 2: Congestion degree of the individual i.
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Figure 1: Simple road map.
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the entry point, and successive n genes are selected from
the (n + 1)th gene position for exchange. *e resulting gene
fragments are inserted into the heads of C2 and C1, re-
spectively, to obtain C1′ and C2′, and the duplicate numbers
are deleted to achieve two progeny, for example, gener-
ating a random gene position n � 3, the crossover opera-
tion is

C1 � 2, 4, 1, 3 , 6 , 5( 􏼁

C2 � 4, 1, 6, 5 , 3 , 2( 􏼁

⇓

C1′ � 5 , 3 , 2 , 2, 4, 1, 3 , 6 , 5( 􏼁

C2′ � 3 , 6 , 5 , 4, 1, 6, 5 , 3 , 2( 􏼁

⇓

C1′ � (5, 3, 2, 4, 1, 6)

C2′ � (3, 6, 5, 4, 1, 2).

(15)

4.2.5. Gene Swap Mutation Operator. A chromosome is
selected from the parent chromosome population. *e pair
of genes that produce mutations is decided by the length of
the chromosome, and the formula is d � ceil(p/10) (Indi-
cates rounding up). *e variant gene position is determined
by generating a random integer n1, and n2. In addition, the
mutated gene position check mechanism is set to prevent the
same random integer from being generated and the variation
is invalid. *is ensures the correct validity of the mutation
operation. According to the gene position, a specific gene
value is obtained in the chromosome, and the gene value is
exchanged to obtain a new daughter chromosome. For
example, the length of chromosomeA is p� 9.*e logarithm
of the gene that produces the mutation is d� 1. *e location
of the variant gene is n1 � 5 and n2 � 8. *us,

A � 5, 9, 8, 7, 2 , 3, 1, 4 , 6( )⇒A′ � 5, 9, 8, 7, 4 , 3, 1, 2 , 6( ).

(16)

4.2.6. Elite Selection Strategy. Elite selection is also called
the optimal preservation strategy, meaning a certain
number of individuals with the best fitness in the current
group are saved in the temp array and do not participate in
cross-variation operations. If the best individual in the
preserved population is better than the new generation of
individuals, then the next generation of the population is
copied directly to replace the corresponding number of
individuals with the worst fitness. If it is no better than a
new generation of individuals, it will not be replaced. To
prevent the optimal individual of the current group from
being lost in the next generation, and then the genetic
algorithm cannot converge to the global optimal solution.
*e common competition mechanism between the parent
population and the offspring population is introduced so
that the next generation population can inherit the superior
genes of the ancestors.

4.3. Chromosome Decoding Operation

4.3.1. Decoding Strategy. Decoding strategy for chromo-
some chrom � (s1, s2, . . . , sp):

(1) *e strategy of driving and serving. According to the
chromosomal gene order priority coding scheme, if the
first representative gene represents an edge of si, the
corresponding node number is vivj, and the starting
point is vi. *erefore, the sprinkler chooses the shortest
path from the depot to vi. If it is through the served arc,
it will travel in the order of the gene andwill not serve it.

(2) *e strategy of returning route without service.
When the vehicle’s load capacity limit cannot serve
the next arc, the service is terminated and returned to
the depot on the shortest path, and the service will no
longer be serviced to any side of the return path.

(3) Path segmentation strategy. A breakpoint is generated
when a condition for ending the service of a vehicle is
reached during the decoding process. *is breakpoint
splits a complete chromosome and after segmenta-
tion, the breakpoint is placed in the undecoded
segment chromosome to continue decoding.
Suppose chrom � [6159271012118131443] gets the
split points r1 � 3 and r2 � 5 during the decoding
process, to prevent confusion between the node and
the service arc number, the starting point is set to a.
*en the service paths of the three vehicles are de-
scribed, respectively.
Chromosome ①: a 6 1 a
Chromosome ②: a 5 9 a
Chromosome ③: a 2 7 10 12 11 8 13 14 4 3 a
*e termination condition of the decoding
algorithm:

(1) *e water capacity of the sprinkler cannot meet the
demand for the next service arc.

(2) All service arcs have been traversed.
(3) All genes of the chromosome are traversed during

the decoding process.

4.3.2. Decoding Specific Steps

Step 1: Randomly select the vehicle to depart from the
depot. Select chromosomes from the population in order.
Step 2: Select the gene value according to the priority,
and get the service arc ei.
Step 3: Select the starting point of the service arc ei from
the nearest node of the depot as the route to determine
the direction of travel.
Step 4: According to the strategy of serving while
driving, a 0–1 matrix P record is used for the serviced
arc path during driving.
Step 5: After the new vertex is reached at the end of the
selected edge, calculate the shortest distance from the
current node to the next service arc and record the
corresponding arc path.
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Step 6: Consider the capacity of the vehicle. When the
water capacity of the sprinkler can support the demand
for a new service arc, turn to step 5 and update the
remaining water capacity of the vehicle.
Step 7: If the sprinkling demand of the new service arc
exceeds the upper limit of the sprinkler, the vehicle
returns to the starting depot. Record the location of the
chromosome breakpoint gene.
Step 8: Choose the next vehicle. Reload the gene at the
breakpoint into the remaining undecoded gene of the
strip and return to step 2.
Step 9: If all service arcs are traversed, go to step 10.
Step 10: Terminate the algorithm.

5. Algorithm Flow Chart

5.1. Single Objective Multidepot One-Stage Algorithm.
Service arc set τi � em􏼈 􏼉 is obtained based on cluster
analysis, but there is no rounding for the arc at the
boundary of the area, i.e., there is a boundary arc
r � e1, e2, . . . , en􏼈 􏼉, 1≤ n<m. Complete clustering needs to
include all service arcs, so the boundary arc needs to be
adjusted. For any boundary arc ei ∈ r, in terms of the
shortest arc distance matrix, the shortest distance from the
boundary arc to each depot σi can be obtained. Set a
threshold c(0< c≤ 1), let D � dei,σ i

/dei,σj
. If D≤ c, the

boundary arc is merged into the depot σi otherwise it is
merged into σj.

*e specific algorithm flow chart is shown in Figure 3.

5.2. Multi-Target Multidepot One-Stage Algorithm Process.

Step 1: *e randomly generated path chromosomes
constitute the initial population P(t), t� 1. *e pop-
ulation size is N.
Step 2: Perform fast nondominated sorting on P(t),
and label the number of levels and calculate the con-
gestion between individuals.
Step 3: Perform binary competition, selection, and
cross variation on P(t).
Step 4: Generate a child group Q(t), merge the child
Q(t) and the parent P(t) to get R(t).
Step 5: Perform fast nondominated sorting on R and
calculate crowding between individuals.
Step 6: Retain the top N priority individuals according
to the elite strategy and update the population.
Step 7: Determine the termination condition of the
algorithm. If the upper limit of the number of iterations
is reached, the corresponding pareto solution is output,
otherwise P(t) � P(t + 1), and go to step 2.

*e specific algorithm flow chart is shown in Figure 4.

Phase 2 : According to the arc to be service by each
vehicle, the number of sprinking vehicles and the specific

service route are given.

Phase 1 : Assign a service arc to each yard and adjust the
boundary arc

Input genetic algorithm parameters

Dividing regions by system cluster analysis

gen<=GUpdate population

Elite selection strategy

Calculating, child fitness

Select,crossover, variation

Calculating population fitness

Decoding operation

Make the population initialize

Use the dijkstra algorithm to adjust the boundary arc and
calculate the shortest distance matrix

gen = gen + 1

Output optimal solution

Y

N

Figure 3: Flow chart of two-stage hybrid genetic algorithm.
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6. Example Analysis

*e example data of this article come from a part of the road
network map within a certain district in Lanzhou, based on
the optimization of the sprinkler route of the sanitation
department, whose task is to sprinkle water and reduce dust
on the roads in this area.*e road topology diagram is shown
in Figure 5, which includes a total of 49 nodes (represented by
the number of circles in the diagram), and 74 service edges.
Each edge has a distance value and a demand value, and the
number of each edge is the distance of each edge.*e value of
demand is determined by the distance and demand factor. As
a result of the larger road network, the setting up of a depot
for the allocation of sprinkler tasks, the time cost, and the high
cost of fuel consumption, the subregional contract system is
adopted in this area. According to the clustering analysis, the
road is divided into three regions, one, two, and three,
corresponding to the red area, the yellow area, and the blue
area, and several vehicles are sent out by the three depots to be
responsible for the sprinkler operation. *e three depots are

located at node 3, node 32, and node 49, respectively. All
sprinkler vehicles complete the service at the depot and return
to the original depot. Parameter settings are given in Table 2.

6.1. Single Objective Solution. *e road network map is
divided into three areas, and the sprinkler vehicles are all 5
tons, where “� ” indicates that the section of the road is
sprinkled, and “–” means that only the road does not
sprinkle water. Only object one is considered here. *e
objective equation is equation (1).

A detailed description of multiple depots is listed in
Table 3. Although the empty-loaded rate of vehicles in region
1 is only 22.9%, less than 3 tons of sprinkler water is required
in this area, allowing vehicles to carry 2 tons of water back to
the warehouse with more carbon emissions than empty ve-
hicles returning to the parking lot. From the empty-loaded
rate of traffic volume in the three areas, the area of region 2 is
larger than that of the other two areas, and the corresponding
empty-loaded rate has increased by 10%. *e second vehicle

Start

Make the population initialize

Gen<=Set value

End

Population classification completed

Front = 1

Non-dominated sorting and congestion calculation

Binary classification completed

Crossover and mutation

Merged descendant parent population

Using slite strategies to select the top N preferred individuals

Non-dominated sorting and congestion calculation

Gen = Gen + 1

Identify non-dominated individuals

Specify virtual fitness value

Applied to fitness sharing niches

Font = Font + 1

Y

N

Y

N

Figure 4: NSGA-II algorithm flow chart.
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in region 2 needs only 1.3304 tons of water, which is not only
an increase in empty traffic but also produces more carbon
emissions than other vehicles. If the road network becomes
larger, the number of vehicles required in different areas will
continue to increase, which will easily lead to an increase in
the empty-loaded rate in each area. If the cross-zone oper-
ation is allowed, the remaining water load of the second
vehicle in region 2 can fullymeet the demand of region 3, thus
directly reducing the travel of a sprinkler. As a result, it can be
found that although the division of this operation can be very
convenient to divide their own sprinkler tasks, it is easy to
cause waste of excess resources and increase costs.

Taking the search solution in region 1 as an example, as
shown in Figure 6, the solution obtained is also relatively
poor, and the downward trend of the optimization curve is
steep at the beginning of the optimization process. Because
the initial population is randomly generated and the initial
fitness of the group is poor as a whole, thus the corresponding
iteration time is also relatively long. With the increase of the
number of evolutionary iterations in the process of evolution,
continuous elite selection to leave the contemporary optimal
solution can be found to gradually approach the global op-
timal solution, and the speed of solution begins to become
stable. From 300 generations later, the volatility of the so-
lution starts to be stable, as well as the optimization curve, and
gradually converges to the optimal solution.

6.2.Multiobjective Solution. *e initial population produced
is shown in Figure 7 when the population size is 150.

Figure 8 shows the solution when the number of iterations
is 100. Compared with the initial solution generated in
Figure 7, the target values of both targets are refined, and the

optimal value of f1 is reduced from 5.4 × 104 to 4.55 × 104.
*e optimal value of f2 is decreased from 37 to 22.25.
Compared with the initial solution, the solution after 100
iterations reveals an obvious sense of hierarchy, and the closer
to the optimal solution, the more obvious, which fully reflects
the effect of nondominant ordering used in NSGA-II.

Figure 9 gives the optimal Pareto solution set at the end of
the final iteration. It can be intuitively seen that there are four
optimal solutions in the first layer, but there are six optimal
solutions in the actual solution process, whereas the difference
is only due to the difference between chromosomes and the
same target value, so it cannot be shown in the graph. Different
chromosomes denote that there are also many different work
schemes when the same target value is obtained.*e two-stage
heuristic algorithm decomposes the sprinkler path optimi-
zation problem into two optimization issues and then solves
them in stages, which is easy to lose the real optimal solution,
while the hybrid algorithm proposed here belongs to the one-
stage method, in which the path optimization problem of
multidepot sprinkler is always optimized as a whole.
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Figure 5: Road topology of a district in Lanzhou.

Table 2: Parameter settings.

Parameter name Settings
Population number 50
Number of iterations 500
Selection rate 0.5
Cross rate 0.8
Mutation rate 0.2
Depot 3, 32, 49
Sprinkler model 5t
Demand factor 0.8

Journal of Advanced Transportation 9



Table 4 shows the specific target values for the Pareto
solution corresponding to Figure 9. From the numerical
value, it can be figured out that the length of the distance
cannot directly decide the amount of carbon emissions.

*e order in which the service arc is served in the arc
path is one of the influencing factors on carbon emissions,
because the greater the load in each driving process, the

Table 3: Detailed description of multiple depots.

Area Veh Driving path Sprinkling capacity (tons) Travel distance (km) Empty rate (%)

I 1
3�10�12�13�14�15� 6� 5� 4� 3–10�11� 18

� 17–18�19� 2� 3–2�1� 21� 22–21� 19–18�12–13–14
� 8� 6–8� 7� 9� 4� 3

2.9384 4.767 22.9

II
1

32� 34� 41� 47–41� 39� 35� 34–32� 36� 37� 38
� 35–34–32–36� 28� 27� 25� 26� 30� 31� 42� 45

� 33� 34–32–36–28� 29� 23–29� 37–38� 40
� 39–41–34–33� 31–42� 44� 43

� 24� 26� 20�19–20–26–30� 32–36� 35–34–32

4.7536 8.923 33.4

2 32� 30–31� 43–24� 22� 20�17�16� 23
� 15–23�16� 27–25� 32 1.3304 2.513 33.8

III 1 49� 48� 45–48� 47� 46� 40–46� 49 1.7936 2.908 22.9
Sum 10.816 19.111 23.4
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Figure 6: Evolution diagram of optimal solution and iteration time
diagram of region 1.
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Figure 9: Pareto solution set.
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greater the carbon emissions. If the service volume is mainly
concentrated on the first half of the formal distance, in the
case of an increase in the empty-loaded rate in the second
half, the carbon emissions generated will be smaller.
*erefore, in the application of sprinklers, it is reasonable to
take carbon emissions into account and can better plan low-
carbon routes and reduce vehicle pollution, to achieve the
concept of sustainable development.

7. Conclusion

In this article, the multidepot CARP optimization is in-
vestigated with the hybrid optimization algorithm of
Dijkstra algorithm and genetic algorithm. *e complex
multidepot CARP is transformed into a multiple single
depot CARP by systematic clustering analysis. After com-
pleting the system clustering, the Dijkstra algorithm is used
to adjust the boundary arc locally and merge it into a
reasonable depot, while in the genetic algorithm, the
structure of the chromosome is reset to use the path as the
way of real coding, and the elite selection is used to decode to
obtain the optimal path optimization scheme. Finally, the
designed algorithm is applied to the actual sprinkler oper-
ation path optimization scheme, and the experimental re-
sults show that the improved genetic algorithm can
successfully solve the multidepot CARP of a certain road
network scale. Moreover, the efficiency of the algorithm in
the later iteration is basically controlled at about 0.5 seconds,
indicating that the efficiency of the algorithm is worthy of
recognition. However, in the analysis of the results of the
two-stagemethod, it is found that the increase in the number
of vehicles with the expansion of the road network will lead
to an increase in the empty driving rate, which will lead to
the waste of resources and cause pollution problems.
*erefore, the problem is transformed into a one-stage
solution, and the partition strategy is no longer used. In this
article, we considered that the driving path is as short as
possible, the operation efficiency is improved, and the total
carbon emission is minimized to reduce pollution, thus the
hybrid algorithm of NSGA-II algorithm and Dijkstra al-
gorithm is used to solve this problem. Taking the non-
dominant ranking and crowding degree as the tradeoff
standard of the two objectives, this method performs better
than allocating the weights of the two targets, because the
influence of the two targets cannot be calibrated reasonably.

In this study, although carbon emissions are taken into
account, the water flow is sprinkled at a specific flow rate
during the sprinkler operation. *erefore, the carbon
emission in a service arc should be a real-time change as the
amount of water decreases, which will be the direction of the
next problem to be solved. In addition, due to the

particularity of sprinkler operation, the working time re-
quired is also different from the general travel, so the time
window factor is also worth studying.
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