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Compared to conventional private vehicles (CPVs), shared autonomous vehicles (SAVs) provide users the potential for the
reduced value of time (VoT), improved mobility experience, and less traffic congestion. In the presence of the SAV system,
numerous studies have mainly concentrated on the strategic planning and operational decision problem separately while ignoring
the complicated interaction between them and the distinct features of autonomous vehicles. It is imperative to determine the
relocation and pricing strategies at the operational level. In this study, in terms of the pricing strategy, we formalize a logit model to
capture the mode choice behavior in a multimodal network, where the reduced VoT is considered simultaneously. A time-space
network is employed to capture the daily operation problem based on the elastic demand. -e minimum customer service rate is
regarded as a constraint to ensure the system’s reliability. Moreover, a mixed-integer nonlinear programming (MINLP) model is
formulated to jointly determine the number of stations and parking spaces, fleet size, relocation, and pricing strategies to
maximize the total profit. -en, we integrate the Particle Swarm Optimization (PSO) algorithm with the optimization solver
Gurobi to address the complex problem. Numerical experiments and comparative analyses are conducted to demonstrate the
feasibility and efficiency of the proposed model.

1. Introduction

In recent years, the urban transportation system has faced
unprecedented challenges such as severe traffic congestion,
environmental degradation, and a shortage of land re-
sources. Federal Highway Administration [1] has proved
that private vehicles only work for 90 minutes a day but are
idle and parked the rest of the time, which is an immense
waste of resources. With reference to these issues, the shared
autonomous vehicles (SAVs) emerge as a flexible modality to
provide a seamless door-to-door transport service for pas-
sengers and have the potential to improve mobility and
sustainability. Compared with traditional shared vehicles,
SAVs have no necessity for human involvement and comply
with instructions from the control center. It can pick up
passengers and relocate empty vehicles according to ad-
vanced reservation information [2], raising the opportunity
to manage the fleet easily. Moreover, there is literature

demonstrating that it is easier to implement ride-pooling in
a connected environment, which can improve air quality and
alleviate congestion [3]. However, various factors are in-
volved in designing a financially sustainable SAV system, not
only strategic planning decisions, but also the daily opera-
tion decisions that should be considered.

-ere are three sets of decisions to be optimized at the
operational level: vehicle-trip assignment, relocation, and trip
pricing. Vehicle-trip assignment is that when travelers submit
their request in advance, the control platform decides to
assign SAVs to pick up passengers or not. According to
Narayanan et al. [4] and Chen et al. [5], the most notable type
is the one-way station-based SAV system, which is flexible but
faces the imbalance problem due to the spatial and temporal
distribution variation in demand. In order to address the
issue, relocation is proposed as a primary technique to dis-
patch empty vehicles to stations where there is a lack of
vehicles [6, 7]. Another critical element that must be
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considered is pricing strategies for SAVs [8]. In the mixed
market of SAVs and conventional private vehicles (CPVs), the
induced travel demand for SAVs is determined by the trip
pricing strategies and the value of time (VoT) consumed
during the trip. As a side note, compared to CPVs, SAVs have
the potential to enable users to travel with higher comfort and
flexibility, thereby decreasing the VoTof users. Childress et al.
[9] proposed that the VoT is envisioned to reduce by 30–35%.
Besides, the customer service rate is always used to evaluate
the performance of the SAV system [10, 11]. Although there
are studies that have investigated the daily operation from
various aspects separately, few studies have considered re-
location, pricing, the reduced VoT, and customer service rate
simultaneously to delineate the daily operation problem.

At the strategic planning level, similar to other transport
infrastructures, the design of an SAV system is a long-term
process and has to accommodate the continuously changing
traffic environment [12]. Predictably, the SAV services will
hopefully be extensively used as the technology develops.
Namely, the travel demand for SAVs in daily operation is
unavoidable to increase in the future, which requires more
optimal decision-making on infrastructures, such as the
establishment of stations and parking spaces, and fleet size
over a long period.

Besides, there exists a complicated association between
daily operational and strategic planning decisions [13]. On
the one hand, efficient distributions of stations and parking
spaces benefit the vehicle-trip assignment and reduce the
mileage of empty SAVs. Also, large fleet size can decrease the
waiting time and schedule delays, which improves the
customer service rate. However, a greater cost is required to
purchase vehicles and establish more parking spaces. On the
other hand, existing research demonstrates that relocation is
beneficial for reducing fleet size and improving vehicle
utilization [14, 15]. At the same time, the automated tech-
nology is envisioned to park the idle SAVs at distant stations
where the land resource is adequate and inexpensive [16, 17].
-erefore, it is of great essence for the operator to design the
SAV systems considering the strategic planning and daily
operation decisions simultaneously, which maximizes the
total profit and provides a high customer service rate.

Noticing the above challenges, this paper proposes a
holistic optimization framework to describe the SAV system
design problem. -e main contributions of this study are as
follows. (1) To accommodate for the stochastic characteristic
of travelers’ mode choice, we formalized a logit model that
captures the nonlinear relationship between the elastic de-
mand and its attributes, such as reduced VoTand the pricing
for SAV trips. (2) Incorporating the elastic demand, a time-
space network flow is proposed to capture the vehicle-trip
assignment and relocation decisions in the daily operation
problem. What is worth mentioning is that a minimum
customer service rate is proposed as a constraint to ensure
the reliability of an SAV system. (3) A mixed-integer
nonlinear programming (MINLP) model is developed to
delineate the long-term design problem by simultaneously
integrating daily operation and long-term strategic plan-
ning. (4) To effectively address the MINLP optimization
model, we implement a hybrid computation procedure

combing the Particle Swarm Optimization (PSO) algorithm
with the optimization solver Gurobi. Note that the problem
formulated in this paper is not desired to acquire actual,
detailed operation decisions, which only serve as a bench-
mark for long-term planning for the SAV system. As far as
we know, this study is the first attempt to address these
problems simultaneously.

-e remainder of this paper is structured as follows:
Section 2 reviews previous literature on the SAV system
design problem and identifies the research gap. Next, the
discrete choice model and the time-space network flow
model are developed to formulate the daily operation
problem. -en, a MINLP model for the long-term design of
the SAV system is delineated in Section 3. Numerical ex-
periments are conducted, and results are analyzed in Section
4. Besides, several practical implications and insights are
discussed in Section 5. Furthermore, we draw the conclu-
sions and raise the future research direction in Section 6.

2. Literature Review

As a trending topic in the last few years, there exist nu-
merous studies in the context of SAV system design. Owning
to this study concentrating on the combinatorial optimi-
zation problem, thereby we provide a comprehensive review
related to relocation, pricing, system design, and other
relevant studies of the SAV system.

2.1. Relocation and Pricing of the SAV System. For the re-
location analysis of shared vehicle systems, two main classes
of methods are categorized: optimization-based methods
[18, 19] and simulation-based methods [14, 20]. Optimi-
zation-based methods are typically formulated as a mixed-
integer programming (MIP) problem or bilevel optimization
problem to address predefined decision-making objectives.
For instance, Li and Liao [2] creatively introduce a bilevel
model to determine the optimal fleet size and hub location
while considering the SAV relocations, the dynamic inter-
action between supply and demand, multimodal mode
choice, and dynamic user equilibrium. -e previous studies
conclude that the time-space network is the most frequently
used model to investigate the relocation strategies [21]. A
mixed-integer linear programming model is developed by
Correia [22] to determine the depot location so that the cost
of the shared vehicle system is minimized. As for the
simulation methods, microscopic traffic simulations are
commonly utilized to simulate the supply-demand inter-
action. A simulation-based method is employed byMart́ınez
et al. [23] to mimic relocation operations and indicate that
vehicle-trip assignment is crucial to the performance of the
vehicle sharing system. Besides, Hyland and Mahmassani
[24] develop an agent-based simulation tool to describe six
relocation strategies and demonstrate that they benefit
operational efficiency and vehicle utilization. Although
simulation methods efficiently respond to various scenarios
with distinct approaches, the lack of historical data because
of the limited penetration of SAVs in the current traffic
system results in the difficulties of calibrating the numerous
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parameters. In addition, the optimization-based methods
are more transparent and tractable with clearly specified
objective functions and constraints. -erefore, we develop
an optimization-based method to formulate and design the
SAV system.

In terms of trip pricing for SAVs, relevant studies have
been conducted to capture the stochastic nature of travelers
in mixed traffic. Optimal price-setting strategies for SAVs
and private vehicles are studied by Kaddoura et al. [25] to
avoid excessive use of transport resources. Liu et al. [26]
discuss how travelers react to mode choice under different
price-setting conditions. Similarly, Hörl et al. [27] carry out
stated-choice experiments to study SAV cost structures and
mode choice reactions through simulation. Concerning the
impact of pricing on the mode choice, Liu et al. [28] for-
mulate a unified framework to optimize supply-side pa-
rameters such as fleet size and fare by Bayesian optimization
and simulation method simultaneously.

2.2. (e SAV System Design Problem. One stream of liter-
ature on the SAV system design problem is optimization-
based methods. Various mathematical models are developed
in this context. For instance, Lu et al. [29] incorporate the
pricing and relocation into the car-sharing system and
formulate a bilevel nonlinear mathematical programming
model to optimize the fleet size. Nair and Miller-Hooks [30]
propose an equilibrium network design model to determine
the deployment of a vehicle sharing system, including station
locations, vehicle inventories, and parking capacities. Be-
sides, Hu and Liu [31] develop a mixed queueing network
model to decide the fleet size and station capacities with the
objective of profit-maximization. Similarly, Seo and Asakura
[13] propose a multiobjective optimization model to de-
termine the strategic planning of the SAV system while
considering passenger pickup/delivery and ridesharing. Li
et al. [12] propose a link transmission model to describe the
dynamic routing for SAVs, and a MILP model was devel-
oped to investigate the time-dependent SAV system design
problem.

Another common framework is integrating optimiza-
tion-based with the simulation-based methods to investigate
the combined strategic planning with operational decisions.
Deng and Cardin [32] formulate an optimization model to
design a vehicle-sharing system to minimize the overall cost.
A discrete event simulator is adopted to describe the sto-
chasticity of demand and the relocation operations. Fur-
thermore, Dandl et al. [33] develop a trilevel mathematical
model to capture the interrelation among the public sector,
operators, and travelers. At the same time, an agent-based
transportation model is adopted to capture mode choice and
mobility services provided by operators.

2.3. Metaheuristic Approach for SAV System Design. -e
optimization-based models with vast constraints and vari-
ables are hard to solve, and researchers are inclined to
employ metaheuristic methods to reduce the computational
complexity. For instance, Shun Su et al. [34] adopt a meta-
heuristic tabu search method to address the optimization

problem of reservation-based autonomous car-sharing
systems, and the performance of the metaheuristic is eval-
uated. In addition, the tabu search heuristic is used for the
SAVs congestion-aware routing problem [35]. Lu et al.
introduce a combination of genetic algorithm (GA) and
KKT conditions to address the bilevel model for relocation
and pricing problems of shared vehicles. -e GA algorithm
significantly raises the infer efficiency [29].

Particle Swarm Optimization (PSO) is another widely
used metaheuristic algorithm, a population-based optimi-
zation technique proposed by Eberhart [36]. Because PSO is
easy to implement and applicable to a vast array of problems,
it has been applied to various fields, such as communication
networks, control, and robotics. Numerous studies have
demonstrated that the PSO is successful in addressing
transportation problems [37]. In addition, the convergence
of this algorithm was theoretically studied and explained by
Clerc and Kennedy [38]. Recently, PSO has been used to
solve the path planning problem of autonomous vehicles
[39], transportation network design [40], autonomous ve-
hicle navigation, and obstacles avoidance [41]. Considering
the excellence of PSO, a valid metaheuristic approach is
presented to cope with the SAV system design problem.

2.4. Summary. Based on the literature review, three chal-
lenges need to be addressed in the SAV system design
problem. (1) Considering the automated nature of SAVs, the
reduced VoT for SAVs needs to be integrated with trip
pricing in the mode choice model to capture the stochastic
characteristic of travelers. (2) Accommodating operational
and strategic planning decisions into a holistic traffic model
are still a challenge, specifically the customer service rate,
relocation, pricing decisions, and infrastructure deployment.
(3) Only very few works have been done for the long-term
design of the SAV system, which ignores the continuously
growing demand and is not economically sufficient. To solve
the abovementioned problems, we formulate a MINLP
model to study the long-term SAV design problem. To the
authors’ knowledge, this is the first time to incorporate
customer service rate, relocation, pricing, and ride pooling
into a unified framework to determine the number of sta-
tions and parking spaces, fleet size, and operational
decisions.

3. Mathematical Model

-e long-term SAV system design problem involves two
categories of decisions: the daily operation and the long-
term strategic planning decisions. In this section, the first
step we carry out is modeling the mode choice in the mixed
traffic of SAVs and CPVs. A discrete choice model con-
sidering the various utilities is introduced to determine the
number of travelers who intend to employ SAVs. And then
secondly, a nonlinear programming (NLP) model is pro-
posed for the daily operation problem to optimize the
pricing, relocation, and vehicle-trip assignment to satisfy the
travel demand. Finally, we consider the increasing demand,
the daily operation problem, and strategic planning
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decisions into a unified framework and develop a MINLP
model to holistically describe the SAV system design
problem. And the complex modeling process in this paper is
delineated in Figure 1.

3.1. Network Presentation. We consider a one-way station-
based SAV system to provide on-demand mobility services.
In the daily operation problem, several assumptions are
made as follows:

(1) -e total travel demand is known prior based on
historical data or through the online reservation
system

(2) Only two travel modes are considered, including
SAVs and CPVs

(3) We assume that the relocation of SAVs only occurs
at the beginning of the time steps

(4) We simplistically assume that SAV users will choose
ride-pooling only if they have the same origin and
destination at the same departure time

(5) All the SAVs studied in this paper are regular in-
ternal combustion vehicles, and electric SAVs are out
of the investigation scope

-e study area is partitioned into multiple zones
N � 1, 2, . . . , N􏼈 􏼉, where N represents the total number of
zones. Define A � (i, j)􏼈 􏼉, which is a set for arcs linking

zones, in which i ∈ N, j ∈ N. Besides, the operation time is
divided into multiple time steps T � 1, 2, . . . , t, . . . , T􏼈 􏼉 and
Δ is the duration of one-time step. And we denote ct

i,j to
represent the shortest travel time from zone i to zone j

departure at time t. As a side note, the travel time is neg-
ligible when the SAVs depart from stations to pick up
travelers in the same zone. In the traffic network, travelers
will determine to use SAVs and CPVs according to their
travel cost (Figure 2). If the traveler chooses a SAV, he/she
will send the origin, destination, and departure time to the
SAV platform. -en, the central controller will determine if
an available vehicle can be assigned to finish this task. Once
the request is accepted, a SAV will drive to pick up the
passenger and deliver them to the destination. On the other
hand, if a traveler is rejected by the SAV platform or chooses
a CPV, he will drive himself to the destination and park.

We delineate the SAV system as a time-space network
(Figure 3), which is applied in the existing studies [29, 42].
Each node in the time-space network comprises time and
location information.-ere are three kinds of arcs for SAVs:
relocation arcs, delivery arcs, and waiting arcs. Relocation
arcs indicate that the system dispatch surplus empties SAVs
to service more travel demand. Delivery arcs represent that
SAVs s occupied with passengers to their destinations. -e
waiting arcs for SAVs are designed to allow stopovers at
regular parking regions. We let Qt

ij describe the number of
occupied vehicles with passengers from zone i to zone j and
Rt

ij represent the number of empty vehicles relocate from

Total travel 
demand Distinct VoT

Discrete choice model 

SAV demand

NLP optimization model 
for daily operation problem

Pricing decisions

Vehicle trip assignment

Relocation operation

Daily operation 
decisions

�e number and 
location of SAV station

�e number of 
parking spaces

Fleet Size

Strategic planning 
decisions

MINLP optimization 
model for the long-term 

SAV system design 
problem

Figure 1: Flowchart of the modeling process.
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zone i to zone j at time t. Furtherly, we employ Vt
i to indicate

the number of vehicles waiting at zone i at time t. At each
node, the SAVs obey the rule of flow conservation and satisfy
the travel demand as much as possible.

3.2. (e NLP Model on the Daily Operation Problem. -is
section introduces a NLP optimizationmodel to describe the
daily operation problem with discrete mode choice based on
the time-space network. -e premise assumes that the in-
frastructure deployment is determined initially, which will
be discussed together in Section 3.3. Specifications on
variables and parameters used in the daily operation
problem are shown in Table 1.

3.2.1. Discrete Mode Choice. Random utility maximization
(RUM) theory is extensively used to portray the mode choice

behavior [33, 43], which assumes that each traveler tries to
maximize the utility related to their trip. We define Dt

ij to
represent the total travel demand from zone i to zone j at
time t. Besides, we consider that the fare paid for the SAVs
consists of the base price and the time-related price. In this
paper, the base price δf for an SAV trip is introduced as a
decision variable to affect the induced demand. For SAV
trips from zone i to zone j departing at time t, the generalized
cost Ci,j,t

sav is formulated in (1), where the first term is the
travel time ct

i,j weighted by the unit VoT cvot
sav, and the second

term in the bracket is the fare paid for an SAV trip, which
includes the base price δf for an SAV trip and the travel time
ct

i,j weighted by the time-related price δt.

C
i,j,t
sav � c

vot
sav · c

t
i,j + δf + δt · c

t
i,j􏼐 􏼑, ∀i, j ∈ N, t ∈ T. (1)

For CPVs travelers from zone i to zone j departing at
time t, the generalized cost C

i,j,t
cpv is developed in

C
i,j,t
cpv � c

vot
cpv · c

t
i,j + β · c

t
i,j + cp, ∀i, j ∈ N, t ∈ T. (2)

where the first attribute is the travel time ct
i,j weighted by the

unit VoT cvot
cpv, the second attribute is the travel time ct

i,j

weighted by the unit fuel consumption cost β, and the third
attribute is the average parking cost cp for a CPV trip.

Based on the utility function, the probability of travelers
intending to choose SAVs pt

i,j is defined by

p
t
i,j �

exp −b · C
i,j,t
sav􏼐 􏼑

exp −bC
i,j,t
sav􏼐 􏼑 + exp −bC

i,j,t
cpv􏼐 􏼑

, ∀i, j ∈ N, t ∈ T. (3)

-erefore, the number of users who are inclined to SAVs
dt

i,j is determined by the choosing probability and is for-
mulated as the following constraint:

d
t
i,j � D

t
i,j. p

t
i,j ∀i, j ∈ N, t ∈ T. (4)

3.2.2. (e NLP Optimization Model. Our objective for the
daily operation problem is to acquire the most efficient
operational decisions, including relocation and pricing
strategies to maximize the daily operation profit (DOP),
which is formulated in

maxZ � 􏽘
t∈T

􏽘
i∈N

􏽘
j∈N

δf + δtc
t
i,j􏼐 􏼑 · s

t
i,j

− β · 􏽘
t∈T

􏽘
i∈N

􏽘
j∈N

Q
t
i,j · c

t
i,j + 􏽘

t∈T
􏽘
i∈N

􏽘
j∈N

R
t
i,j · c

t
i,j

⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

+ η · 􏽘
i∈N

V
1
i + 􏽘

t∈T
􏽘
i∈N

􏽘
j∈N

d
t
i,j − s

t
i,j􏼐 􏼑 · φ

⎫⎪⎬

⎪⎭
.

(5)

In (5), the first term represents the revenue charges from
the served SAV users, and the second term in the curly brace
is the daily operation cost (DOC). Here, wemarked the DOC
as H. -e DOC includes the fuel consumption cost for
occupied and relocated vehicles, the fixed cost for daily
maintenance of all SAVs, and the penalty cost for unserved

SAV station SAV station

park

Zone j

Drop offDelivery

Pick up

Zone i
Travel demand

CPVs

Drop off and park

Relocation

Figure 2: Representation of discrete mode choice.

••
•••

••
•••

••
•••

••
•••

••
•••

••
•••

Zone i

Time t-tji

Time t-1

Time t

Time t+1

Time t+tij

Zone j

Delivery arcs
Relocation arcs
Waiting arcs

Figure 3: SAV flow conservation in time-space network.
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SAV demand. -e objective function is subject to the cus-
tomer service rate, flow conservation, parking, and defini-
tional constraints.

Given the spatial-temporal imbalance between available
SAVs and travel requests, it is inevitable to lose some
travelers. -us, constraint (6) is proposed to ensure that the
served demand st

i,j is nomore than the total SAV demand dt
i,j

from zone i to zone j at time t.

s
t
i,j ≤d

t
i,j, ∀i, j ∈ N, t ∈ T. (6)

Besides, to guarantee the reliability of the SAV system,
constraint (7) is provided to satisfy the minimum customer
service rateα.Here, thecustomerservice rate is expressedas the
number of served demands divided by the total SAV demand.

􏽐t∈T􏽐i∈N􏽐j∈Ns
t
i,j

􏽐t∈T􏽐i∈N􏽐j∈Nd
t
i,j

≥ α. (7)

In addition, the number of occupied vehicles is no more
than the served travel demand, which can be expressed as the
following formula:

Q
t
i,j ≤ s

t
i,j, ∀i, j ∈ N, t ∈ T. (8)

Ride-pooling is simplistically considered in this study.
We denote the average number seat of SAVs is m . Hence,
the served travel demand is subject to the total capacity of
employed SAVs, which is described as follows:

s
t
i,j ≤m · Q

t
i,j, ∀i, j ∈ N, t ∈ T. (9)

-enumber of SAVs waiting at zone i at time t + 1 equals
the number of SAVs waiting at time t plus the occupied and
relocated SAVs, which arrive at zones i during time t and
t + 1, minus the occupied and relocated SAVs, which depart
from zone i at time t + 1, which is shown in constraint (10).
As a side note, subscript u describes the time instant at which
SAVs depart from zone j and exactly arrive at zone i during
time constant t and t + 1.

V
t+1
i � V

t
i + 􏽘

j∈N
Q

u
j,i + 􏽘

j∈N
R

u
j,i − 􏽘

j∈N
Q

t+1
i,j − 􏽘

j∈N
R

t+1
i,j ,

∀i ∈N, t � 1,2, . . . ,T −1,u �max 0, t +1− c
t
j,i􏽮 􏽯.

(10)

Further, we assume that the SAV system will recover to
the initial level at the end of the day in order to serve the
demand the next day, which requires that VT+1

i � V1
i . -us,

we have the constraint (11). -e right hand in equation (11)
is the number of vehicles waiting at zones i at the end of the
day, that is, VT+1

i .

V
1
i � V

T
i + 􏽘

j∈N
Q

u
j,i + 􏽘

j∈N
R

u
j,i − 􏽘

j∈N
Q

T+1
i,j − 􏽘

j∈N
R

T+1
i,j ,

∀i ∈N,u �max 0,T +1− c
T
j,i􏼚 􏼛.

(11)

Bydefinition, thenumberofvehicleswaitingatzone iatany
time t is nomore than the number of parking spaces in zone i.

V
t
i ≤yi, ∀i ∈ N, t ∈ T. (12)

Table 1: Variables and parameters used in the daily operation problem model.

Notations Description
Parameters
N Set of zones, indexed as i and j

T Set of time periods, indexed as t
δt -e unit time-related price for SAV users
cvot

sav -e unit value of time for SAV users
cvot

cpv -e unit value of time for CPV users
cp -e parking cost for a CPV trip
η Daily maintenance cost for an SAV
Dt

ij -e total travel demand for SAVs and CPVs from origin i to destination j departure at time t

α -e minimum customer service rate
m -e capacity of an SAV, which allows ride-pooling
φ -e unit penalty cost for one unserved SAV demand
β -e unit fuel consumption cost
ct

i,j -e shortest travel time from zone i to zone j at time t in k-th period
f -e total fleet size
yi -e number of parking spaces at zone i

Decisions variables
δf -e base price for a SAV trip
Qt

i,j -e number of occupied vehicles with passengers from zone i to zone j departure at time t

Rt
i,j -e number of empty vehicles relocating from zone i to zone j at departure time t

Auxiliary variables
Vt

i -e number of SAVs waiting at zone i at the beginning of time t

pt
i,j -e probability of travelers choosing SAVs from zone i to zone j at time t

dt
i,j -e number of travelers who intend to employ SAVs from zone i to zone j at time t

st
i,j -e number of travelers served actually by SAVs from zone i to zone j at time t
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Moreover, the sum of vehicles waiting at all zone i at the
beginning of the initial time equals the total fleet size.

􏽘
i∈N

V
1
i � f. (13)

Finally, the nonnegative constraints for decision vari-
ables are described in

Q
t
i,j ≥ 0, ∀i, j ∈ N,∀t ∈ T. (14)

R
t
i,j ≥ 0, ∀i, j ∈ N, ∀t ∈ T. (15)

V
t
i ≥ 0, ∀i ∈ N, ∀t ∈ T. (16)

3.3. (e MINLP Model on the SAV Design Problem.
Given the continuously growing demand and complicated
interaction between strategic planning and daily operation
decisions, there exists a necessity for the planner to design the
SAV system over a long planning horizon. -e long-term
strategic planning horizon is divided into multiple periods,
and we assume that one year is one period. Define the set
K � 1, 2, . . . , K􏼈 􏼉 to represent the planning periods. Se-
quential strategic planning decisions include where and when
to establish stations, how many parking spaces to deploy at
stations, and the fleet size. During each planning period, we
let X � xk

i􏼈 􏼉 be the binary variables. If xk
i � 1, then there is a

station built at zone i at the beginning of k-th period; oth-
erwise, we define xk

i � 0. Denote Y � yk
i􏼈 􏼉 to indicate the

number of parking spaces at station i at the beginning of k-th
period. Moreover, we define F � fk􏼈 􏼉 to represent the total
fleet size at the beginning of the k-th period. -ese strategic
decisions are determined at the beginning of each period, and
the daily operation problem in Section 3.2 is according to the
responding infrastructure deployment in k-th period. -e
decision variables and parameters in the long-term planning
horizon are listed in Table 2.

-e total capital cost (TCC) for the long-term infra-
structure deployment consists of three components: the
construction cost for stations W1(X), the construction cost
for parking spaces W2(Y), and the purchasing cost for SAVs

W3(F). And we assume that once stations and parking
spaces are established, they will continue working until the
final planning period. Moreover, the parking spaces at
stations are expanded year by year. We define the initial
value x0

i � 0, y0
i � 0, and then the numbers of newly

established stations and parking spaces at zone i are repre-
sented as xk

i − xk−1
i , yk

i − yk−1
i in the k-th period, respectively.

Similarly, we assume the initial fleet size is 0, that is, f0 � 0.
-enumberof SAVspurchased at thek-thperiod isfk − fk−1.
-us, W1(X) , W2(Y), W3(F) can be described as

W1(X) � 􏽘
k∈K

􏽘
i∈N

θkc
s
i x

k
i − x

k−1
i􏼐 􏼑. (17)

W2(Y) � 􏽘
k∈K

􏽘
i∈N

θkc
p
i y

k
i − y

k−1
i􏼐 􏼑. (18)

W3(F) � 􏽘
k∈K

θkc
v
k fk − fk−1( 􏼁, (19)

where θk is the money discounted factor, which is a de-
creasing function of interest rate ε, and we define
θk � 1/(1 + ε)k− 1.

Besides, the numbers of stations and parking spaces at
each station and the fleet size during the entire planning
period are monotonically nondecreasing, which are de-
scribed as

x
k−1
i ≤x

k
i ∀i ∈ N, k ∈ K. (20)

y
k−1
i ≤y

k
i ∀i ∈ N, k ∈ K. (21)

fk−1 ≤fk ∀k ∈ K. (22)

Constraint (23) limits the number of parking spaces
established at station i and cannot exceed the maximum
number of parking spaces pmax

i .

0≤y
k
i ≤p

max
i x

k
i ∀i ∈ N, k ∈ K. (23)

Finally, constraints (24)–(26) denote the feasible solu-
tion domain of decision variables.

Table 2: Variables and parameters used in the long-term planning of the SAV system.

Notations Description
Parameters
K Set of the planning periods, indexed as k

cs
i Unit construction cost for a station at zone i

c
p
i Unit construction cost for a parking space at zone i

cv
k Unit purchase cost for an SAV in k-th periods

ε Interest rate
θk Discount factor in the k-th planning period
ϑ -e total number of operational days in a year
pmax

i -e maximum number of parking spaces at zone i

Decision variables
xk

i If there is a station built at zone i at the beginning of k-th period
yk

i -e number of parking spaces at zone i at the beginning of k-th period
fk -e total fleet size at zone i at the beginning of k-th period

Journal of Advanced Transportation 7



x
k
i ∈ 0, 1{ } ∀i ∈ N, k ∈ K. (24)

y
k
i Integer≥ 0 ∀i ∈ N, k ∈ K. (25)

fkInteger≥ 0 ∀k ∈ K. (26)

In terms of the given xk
i , yk

i , fk in the k-th period, the
operation decisions can be acquired from the optimization
model in Section 3.2. Here, we consider the set
Z � Z1, Z2, Z3, . . . , ZK􏼈 􏼉 to represent the daily operation
profit (DOP) in different periods. We assumed that daily
demand is similar; namely, DOP in the specific planning
period is identical every day. -e assumption can be held
because the demand variation has a negligible impact on the
optimization objective. -e total operational profit (TOP) in
a long period is the sum of DOP in all the planning periods.
Hence, TOP is formulated as follows:

Z Q, R, δf􏼐 􏼑 � 􏽘
k∈K

θkϑZk. (27)

In (27), ϑ is employed to denote the total number of
operation days in a year. In this paper, we assume that SAVs
are of use throughout the year, that is to say, ϑ � 365. As a
side note, the base price is only considered in the discrete
mode choice, and we have not considered the varying base
price in long-term planning, which will be studied in the
future. Hence, the discount factor is applied to the TOP
integrally, not affecting the base price separately in this
paper. According to the thorough analysis of the daily
operation problem and the long-term strategic planning, we
can formulate the long-term SAV system design problem as
a MINLP model as follows:

maxP Q, R, δf,X,Y, F􏼐 􏼑 � Z Q, R, δf􏼐 􏼑 − W1(X) − W2(Y)

− W3(F),

(28)

subject to (1)–(27), where P represents the total profit in the
SAV system and is defined as the difference between TOP
and TCC.

3.4. Solution Approach. As stated in Section 3.3, the long-
term SAV system design problem is formulated as a MINLP
model, which involves a large number of decision variables.
Specifically, seven sets of decision variables are included.-e
number of each decision variable is, respectively, listed in
Table 3.

According to Table 3, the total number of decision
variables is equal to (2 · N + 2 · N · (N − 1) · T + 1) · K + 1,
which is determined by the number of study areas, operation
time steps, and planning periods. With the exception of the

logit mode choice model in constraint (3), the objective and
other constraints are linear. Considering the solving com-
plexity of the NINLP model, this study integrates Particle
Swarm Optimization (PSO) algorithm [36] and the Gurobi
solver [44]to address the problem effectively. In such a case,
PSO is envisioned to generate the initial solution for the base
price; constraint (3) will be a known probability parameter
once particles are generated. Further, the MINLP model is
converted into a MILP model, which can be solved by
optimization solvers Gurobi. -e modified computation
procedure is as follows (Figure 4).

-e parameters of PSO are defined with constriction
factors of 2 and inertial weights of 0.6. -e number of
particles in a swarm is set to 50, and the maximum number of
iterations is set to 100. -e solution of the MILP model is
obtained using the interior point method by Gurobi, which is
installed with Python 3.8 and runs on a personal computer
with Intel Core i5-CPU of 3.2GHz and 16GB RAM. A
maximum time limit of 10 thousand seconds is to find an
optimal solution. Besides, we set the gap as 0.001, and if an

Table 3: -e statistical number of variables in the proposed model.

Variables xk
i yk

i fk δf Rt
i,j Qt

i,j

-e number of variables N · K N · K K 1 N · (N − 1) · T · K N · (N − 1) · T · K

Start

Generate initial pricing group

Calculate the objective function for each pricing
via Gurobi

Update the gbest and pbest values

Initialize the parameters of PSO, c1, c2, itermax,w,error

Calculate the travel demand of SAV trip

Iteration iter=0

Update the position and velocity of the particles

Iteration iter=iter+1

Check the stopping criteria 
according to the error limit

gbest of PSO is the solution of SAV system design 
problem

End

No

Yes

Figure 4: Flowchart of the solution algorithm.
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optimal solution cannot be found in the limited time, we
regard the current best feasible solution as the objective value.

4. Numerical Experiments

4.1. Model Validation Framework. Two numerical experi-
ments are conducted to validate the performance of the
proposed MINLP model and the solution method. We first
perform numerical experiments on the Four-Node [45]
network to illustrate the optimal results and analyze how the
parameters influence the system’s performance. In Section
4.2, we set the basic parameters in the test case. -en, we
continuously explore the distribution of relocation activities,
deployment of parking spaces, and fleet size in Section 4.3 to
validate the solvability and efficiency of the proposed model.
Furtherly, sensitivity analysis experiments are carried out to
validate the robustness of the proposed model in Section 4.4.
Finally, a large-scale case in the Sioux Falls network is
conducted in Section 4.5, which aims to validate that the
model is applicable to more complex networks.

4.2. Test Case Setting. We first select a small example to
manifest that the model can determine the infrastructure
deployment and operational decisions. -e example con-
cerns a Four-Node Network (Figure 5), in which zone 1 and
zone 2 are defined as home zone and work zone, and there
are travel demands between the two zones to conduct work
activity. Additionally, zones 3 and 4 are set as leisure areas
with zero demand and are designed to achieve relocation
when there are no available vehicles at zones 1 and 2. In this
problem, we assume that the SAV system operates from 6:30
to 20:30 in a day and is divided into 28 time steps, that is to
say, Δ � 0.5h. We supposed that the travel demands
departing from zones 1 and 2 are randomly generated and
are depicted in Figure 6.

We assume that the free-flow travel time along each link
is one-time step. However, travel time is associated with the
actual traffic situation. -us, a correction factor is put
forward in Table 4 to describe the congestion characteristic
of traffic flow.

-is study attempts to integrate the increasing demand
over the next 10 years to design the SAV systems. Further-
more, it is reasonable to assume that the total travel demand is
gradually growing at a rate of τ � 1.05 per year. Also, the
monetary discount factor is set as ε � 0.05. According to
Huang et al. [42] and Li et al. [12], daily operational pa-
rameters are set as follows: the VoT for SAV users
cvot

sav � 5$/time step, for CPV users cvot
cpv � 8$/time step, and

the parking cost for a CPV trip cp � 2$. -e unit fuel con-
sumption cost for vehicles β � 3$/time step, the unit time-
related price for SAV travelers δt � 1$/time step, and the
maintenance cost for an SAV in a dayη � 1$/da y. -e
feasible region for the base price of an SAV trip δf ∈ [6, 12]$.

Similarly, we define the infrastructure construction cost as
follows: the unit construction cost for a station and a parking
space is cs

i � 15000$, c
p
i � 150$ for home and work zones,

and cs
i � 10000$, c

p

i � 100$ for other zones. And the max-
imum number of park space at zone i is defined as
pmax

i � 100. -e unit purchase cost for an SAV in the initial
year is cv

1 � 15000$ and will decrease by 150$ per year. In
addition to these system parameters, to better balance the
quality of service and total profit, in what follows in this paper,
we define the minimum customer service rate as α � 0.9.

-e following indicators are collected to evaluate the
performance of the proposed model:

(1) -e total profit for the SAV system P(Q, R, δf,

X,Y, F).
(2) -e total capital cost (TCC). W � W1(X)+

W2(Y) + W3(F)

(3) -e total operational cost (TOC). Similar to TOP, we
consider the set H � H1, H2, H3, . . . , HK􏼈 􏼉} to
represent the DOC in different periods. We calculate
the TOC as H(Q, R, δf) � 􏽐k∈KθkϑHk.

(4) -e strategic planning decisions, such as the number
of parking spaces yk

i at zones i and the total fleet size
fk at the beginning of the k-th period.
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Figure 5: Four-node network example.
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4.3. Optimal Results

4.3.1. (e Optimal Trip Pricing. According to the above-
mentioned parameters, a preliminary experiment is con-
ducted to determine the optimal base price in order to
achieve the total profit maximized. In the benchmark case,
ride pooling is not taken into account, that is, m � 1.
According to the iterative process by PSO-Gurobi, the
optimal solution of the base price is determined as δf �

8.61$ with the maximized profit P � 24365598.85 $. -e
MILP solved by Gurobi can obtain the optimal solution
through an average of 7317 simplex iterations. -e average
computation time for each optimization run is 5940s, which
indicates that the model and algorithm are efficient.

-e variation tendency of total profit and fleet size is
delineated in Figure 3 under the varying base price. As ex-
pected, the fleet size in the SAV system is decreasing with the
upward base price, owing to the reduced demand. However,
the total profit has a transfer point; that is, although the
demand for SAVs decreases with the growing base price, the
incremental revenue allows the total profit to grow. Once the
base price is exorbitantly high, fewer travelers are likely to
choose SAVs to travel, resulting in less revenue. -erefore,
the total profit tends to rise first and then fall, and the solid
red dot in Figure 7 represents the optimal base price.

4.3.2. (e Optimal Distribution of SAV Relocation Activities.
According to the mentioned analysis, we define the base
price δf � 8.61 to analyze the optimal results of the SAV
system design. -e total profit of the SAV system is 2.44 ×

107$ with a gap of 0.0788%. In the final planning year, the
SAV system employs 245 vehicles to serve 2474 trips in a
day, in which one vehicle can deliver 10 trips due to relo-
cation. -e distributions of relocation activities from or to
each zone are described in Figures 8(a) and 8(b). -ere are
1731 relocation activities in the small network, with an
average of 15 per zone per time step.

We can obviously observe that relocation activities fre-
quently happen in two time periods, which are 6:30–9:00 and
16:30–18:30, respectively. At 6:30–9:00, a considerable vol-
ume of empty vehicles relocates from zone 2 or zone 3 and 4
to home zone 1. Because numerous traveling demands
originate from the home zone, there are no sufficient available
vehicles constrained to the parking spaces. Similarly, at 16:
30–18:30, empty vehicles relocate from the home zone and
leisure areas to the work zone to carry out the travel activities
for home. Simultaneously, it is necessary to relocate vehicles
from the work zone to the home zone to recover the SAV
system for the initial distribution. Another interesting ob-
servation is that relocation activities are more intense when

the demand is more unbalanced. For instance, at the be-
ginning of the day, few vehicles arrive at the home zone, but a
large number of vehicles leave. Accordingly, more relocation
activities are carried out from other zones to zone1. Sum-
marily, these findings demonstrate that relocation is beneficial
to unbalanced demand, which is meaningful in reducing fleet
size and improving the utilization rate of SAVs.

4.3.3. (e Optimal Strategic Planning Decisions. With re-
spect to the long-term design of the SAV system, Figure 9
depicts the distribution of parking spaces and fleet size at
each zone at the beginning of each planning period. We can
observe from Figure 9(a) that, in zones 1 and 2, the number
of parking spaces equals the maximum number due to high
travel demand and limited parking spaces. However, the
number of parking spaces in zone 3 is growing consistently.
Even though no travel demand originates from zone 3 in the
hypothetical network, more parking spaces are constructed
for the growing demand from other zones, which is achieved
through relocation. Moreover, at zone 4, there are hardly any
changed parking spaces established from beginning to end.
One possible explanation for that may be that the number of
parking spaces is enough for relocation through zone 4 in the
initial year. Figure 9(b) furtherly summarizes the distribu-
tion of fleet size at the beginning of the k-th period.
Figure 9(b) shows an apparent growing tendency in the first
six years, and then the fleet size has been sustained.-e trend
is that it is more economically viable to carry out relocation
to serve travel demands than to purchase more vehicles.
Results of the strategic planning decisions have demon-
strated that the varying demand deeply influences infra-
structure deployment to achieve the total profit maximized.

Table 4: -e growth factor of travel time departure at different time periods.
Time 6:30–7:29 7:30–9:29 9:30–10:59 11:00–13:29 13:30–14:29
Growth factor 1 1.5 1.3 1 1.2
Time 14:30–16:29 16:30–18:29 18:30–19:29 19:30–20:00 —
Growth factor 1 1.5 1.3 1 —
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4.4. Sensitivity Analysis

4.4.1. Comparison with and without Long-Term Strategic
Planning. To investigate the impact of long-term strategic
planning on the SAV system, in this subsection, this study
dives into the optimal solutions obtained using the MINLP

model with long-term planning and its counterpart without
long-term planning, as seen in Figure 10. We set several
scenarios in that the total length of planning periods k

change from 3 to 10, respectively. Regarding the scenarios
without long-term planning, we design the SAV system only
considering travel demand in the current year.
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Figure 8: -e distribution of relocation activities in a small network.
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As seen in Figure 10(a), the optimal total profit with
long-term planning is significantly increased versus the
scenarios without long-term planning. An interesting ob-
servation we can find is that the range of improvement in
total profit gradually increases with the growth of planning
years; even the gap reached 18% when the entire planning
year is up to 10. We carry out two comparative analyses to
portray the connection between TCC and TOC. Figure 10(b)
shows that the TCC with long-term planning is always
higher than that without long-term planning, no matter how

long the entire planning year is. Inversely, the TOC with
long-term planning will remain lower than that without
long-term planning. -is is because the increasing demand
in the future year is considered in the scenarios with long-
term planning, which will need to invest more budget to
purchase vehicles and building stations or parking spaces
instead of the cost for relocation in daily operation. Simi-
larly, the gaps of TOC and TCC with and without long-term
planning in Figure 10(b) are positively associated with the
total planning years, which indicates that the effect is more
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Figure 10: System performance with and without long-term planning.
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remarkable when the whole length of planning years is
longer. With respect to these phenomena, we can conclude
that long-term planning is beneficial to achieving total profit
maximization and a trade-off between the TCC and TOC.

4.4.2. Impacts of the Ride Pooling. Ride-pooling is envi-
sioned to alleviate traffic congestion and reduce carbon
emissions. To discuss how ride-pooling influences the design
of the SAV system, the parameter of vehicle capacity changes
in this section. Regarding ride-pooling, we design three

comparative experiments, no ride-pooling (m � 1), two-
person ride-pooling (m � 2), and four-person ride-pooling
(m � 4), and the result is delineated in Figure 11.As shown in
Figure 11, the fleet size, the TCC, and the TOC of the SAV
system have a clear downward tendency. Contrarily, there
exists a significant increase in total profit. All these results
demonstrate that ride-pooling is beneficial in reducing fleet
size and the number of relocation activities. -us, some
subsidy policies are essential to be conducted to encourage
passengers to ride together, which will be investigated in our
future research.
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Journal of Advanced Transportation 13



4.4.3. Impacts of the Customer Service Rate. -e constraint
of the minimum customer service rate strictly limits the
system reliability, forcing the operator to satisfy travel de-
mands. In order to discuss how the customer service rate
influences the SAV system, we carry out sensitive experi-
ments when the customer service rate is precisely equal to
[0.1, 0.2, . . ., 0.9,1]. Figure 12 delineates the SAV system
performance under different scenarios based on the statis-
tical data. We can observe a noticeable increase in the fleet
size and TOC with the variation in customer service rate.
-is is due to the higher customer level requiring more
vehicles to carry out more travel activities to pick up pas-
sengers and relocation. Moreover, the TCC also grows be-
cause of more fleet size and parking infrastructures. -us,
the total profit tends to go up first and then down. We can
conclude that the SAV system design is tightly associated
with the customer service rate, and the optimization results
can be distinct due to different reliability constraints.

4.4.4. Impacts of Model Parameters. To further analyze the
effects of crucial model parameters on the performance of
the SAV system, four parameters in the MINLP model,
namely, unit fuel consumption cost for an SAV β, unit
purchase cost for an SAV cv

1, unit construction cost for a
station cs

i , and unit construction cost for a parking space c
p

i ,
are changed in a specific rule. -is section investigates how
the total profit, TOC, and TCC change correspondingly to
different scenarios. -e relative changing tendencies are
displayed in Figure 13.

As seen in Figure 13(a), the sensitivity analysis of unit
fuel consumption cost for an SAV β changes from 2$ to 4.5$

at step size 0.5$. When β increases, the total profit declines,
while the TOC goes up. -at is due to the constraint on the
customer service rate so that the cost for passengers occu-
pied vehicles and relocated empty vehicles inevitably in-
creases. Another observation is that the TCC then barely
changes. One reason might be that the fleet size is subject to
the customer service rate and is hardly changed. -erefore,
there is less influence on the infrastructure construction cost.

Meanwhile, a scale factor from 1 to 5 is utilized to
multiply the unit purchase cost for an SAV cv

1 and the effect
on the system is shown in Figure 13(b). We can see the total
profit is decreased by about 51.72%. But the TCC increases in
number threefold. As cv

1 increasing, fewer vehicles are put
into the SAV systems; still, concerning the constraint of the
customer service rate, the number of SAVs is incapable of
reducing overtime. -erefore, the decline in fleet size would
hardly influence the total daily operation, indicating small
changes in the TOC. Further, the TCC increases in terms of
the unit purchase cost for an SAV growing, thus a tiny
reduction in the total profit.
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More importantly, a scale factor from 1 to 5 is multiplied
by the unit construction cost for a station cs

i to investigate the
effect on the SAV system. As displayed in Figure 13(c), the
variation of cs

i leads to the total profit, the TCC, and the TOC
are rarely changing. Resemble results are graphically shown
in Figure 13(d), in which sensitivity analyses are conducted
regarding unit construction cost for a parking space c

p

i that is
multiplied by the scale factor changes from 1 to 10.
-erefore, the conclusion can be drawn that unit con-
struction cost for a station or parking space has few impacts
on the total system performance.

Broadly speaking, the SAV system ismore sensitive to the
unit fuel consumption cost and purchase cost for a SAV than
the unit construction cost for a station and a parking space.

4.5. Large-Scale Network Application

4.5.1. Sioux Falls Network Case Setting. To investigate the
efficiency and flexibility of the proposed MINLP model and
the solution method, this section explores a larger transport
network (Figure 14) concerning the long-term SAV system
design in the Sioux Falls network, one of the most frequently
used in the transportation area. -e study network consists
of 24 zones and 76 links. We divide the network into four
home zones, four work zones, and other zones for enter-
tainment or medical. Similarly, the travel demand is ran-
domly generated, as displayed in Figure 15. We assume the
travel cost at links 12–13 and 18–20 as two-time steps, but all
the remaining links are one-time step. For the sake of
consistency, these basic parameters are set the same as in the
Four-Node network.

4.5.2. Optimization Results. According to the assumption,
the SAV system of the Sioux Falls network is designed over
the next ten years, considering the fluctuating demand and
the minimum customer service rate required. We display the
first result of the favorable base price for SAV trips in the
Sioux Falls network obtained by the proposed method. By
repeatedly iterative calculation using the proposed method,
we can observe that the optimal base price is 8.33$, as de-
scribed in Figure 16. Moreover, we can draw the conclusion
that the variation tendencies of total profit and fleet size
comply with the results in the Four-Node network referred
to in Figure 7. -ereby, it is believed that favorable pricing is
essential for the performance of different SAV systems.

We design the SAV system with the optimal base price in
the following. Based on the optimal solutions, the system’s
performances are depicted in Table 5. Besides, the accu-
mulated fleet size deployed during the design period is
portrayed in Figure 17. Regarding the continuously growing
demand in the future years, the number of SAVs remarkably
increases before the first six years and then is nearly

constant. Indeed, in the initial year, 1235 vehicles are needed
to serve 10355 demands at a customer service rate beyond
0.9.

Another strategic decision we should pay attention to is
the parking space construction in the Sioux Falls network. A
stacked bar chart is shown in Figure 18, which delineates the
newly built parking spaces during the different planning
periods. At the beginning of the planning period, the
number of parking spaces will arrive at the maximum ca-
pacity at the zones, which are origins, destinations, and
zones near them. According to the growing demand in the
long-term planning periods, the number of parking spaces
will grow gradually in other zones. Hence, we can conclude
that designing the SAV system from a long-term perspective
is of great essence, and the strategic planning decisions are
closely associated with the travel demand.

To further depict the distribution of relocation activities
in a large network, a heat map is displayed in Figures 19(a)
and 19(b), representing the number of relocation activities
conducted from and to each zone at different time steps. -e
relocation activities are distributed mainly at 6:30–7:30, 15:
30–17:30, and 19:30–20:00. At the morning peak, relocation
activities always originate from work and entertainment
zones to the home zones, contrarily, from home and other
zones to work zones at the evening peak. -e number of
relocation activities reaches 9841 in one day of the initial
year, with an average of 14 per zone per time step.

Meanwhile, a comparative trial is conducted in the context
ofTOCandTCC,considering the scenarioswith the long-term
planning or not.We suppose the design period changes from3
to 10, and the corresponding relations under the varying
scenariosarepresented inFigure20.Analogous toFigure10,an
apparent increase in total profit in scenarios with long-term

Table 5: Performance of the optimal solution.

Total profit (×108) Total capital cost (×107) Total operation cost (×108) Customer service rate Gap (%)
1.29 2.37 3.59 0.94 0.39
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planning is indicated in Figure 20(a), and a trade-off relation
between TOC and TCC can be concluded in Figure 20(b).

-ese thorough analyses of the Sioux Falls network
demonstrate the flexibility and applicability of the MINLP
model. In addition, these results confirm that integrating
long-term strategic planning and daily operation decisions is
of great significance for designing the SAV system while
considering relocation and pricing.

5. Discussion

-ispaper develops aMINLPmodel to dealwith the SAVdesign
problem with long-term planning periods. -e objective of the
model is to maximize the operator’s profit during the whole
planning horizon. -e proposed model provides an effective
decision tool for the SAV system configuration considering the
balance of SAV strategic planning and total daily operation cost.
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Figure 19:-e distribution of relocation in the Sioux Falls network. (a)-e number of relocation activities from each zone. (b)-e number
of relocation activities to each zone.
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Based on the above numerical analysis, we can have the
following practical implications and insights on the SAV
system design problem. (1) Firstly, the model and method
proposed in this paper provide suggestions to the SAV
operator on the optimal infrastructure deployment scheme
and operation strategies of the SAV system. Considering the
unbalanced demand, this model determines the initial fleet
deployment to reduce the relocation and improve mobility
efficiency. (2) Secondly, compared to the time-depend SAV
design problem in Li et al. [12], we consider the pricing
decision sufficiently and discuss the mode choice in a
multimode traffic network. Our results show that the total
profit is tightly associated with the base price for SAVs. -e
total profit will be maximized when the base price is 8.61$
and 8.33$ for the Four-ode and Sioux Falls networks. Hence,
the decision-maker can employ our proposedmodel to make
reasonable pricing to maximize their earnings. (3) More-
over, Lu et al. [29] have studied in detail the performance of
one-way car-sharing systems under the combined strategy of
pricing and relocations. Referring to this literature, we in-
vestigated the long-term SAV design problem and indicated
that the average total profit increased by nearly 18% when
the planning period was ten years. -e analysis also shows
that growing demand in the future has a higher impact on
the SAV system design, which the policymaker should take
into account. (4) Finally, the additional service level con-
straints compared to Huang et al. [42]strictly limit the re-
liability of the SAV system, which can also be relaxed for
other objectives by the decision-makers.

-emodel we developed has strong flexibility, versatility,
and scalability, which can be applied to other shared mo-
bility scenarios. -is paper only considers CPVs and SAVs,

but the traffic network is more complex. -erefore, our
model can easily extend to discuss more travel modes, such
as public transit, taxi, and micro-mobility. In addition, our
model is expected to be applied in the interurban SAV
system, which will significantly improve the availability and
quality of public transport. With the maturity of electric
vehicle technology, it has the potential to deploy electric
vehicles in the SAV system, and it is convenient to integrate
the profile of electric vehicles to investigate the electric SAV
system design problem.

6. Conclusions

6.1. Summary. -is research investigates the long-term SAV
system design problem while considering relocation and
pricing strategies, which is novel in this context. To solve the
sophisticated system design problem, a novel MINLP model
based on the time-space network is devised to tackle the
strategic and operational decisions in the SAV system. -is
model originally contains new factors that AVs bring to the
shared system, such as reduced VoTand central dispatching.
Simultaneously, we have taken the minimum customer
service rate into account to guarantee the reliability of the
SAV system. Moreover, a novel PSO-Gurobi method is
proposed to address the complicated problem and acquire
joint pricing, relocation, fleet size, and infrastructure de-
ployment scheme to maximize the total profit.-e empirical
results demonstrate the effectiveness and efficiency of the
proposed solution scheme. Managerial insights are sum-
marized using the proposed framework, including the de-
cision guide for the deployment of stations, parking spaces,
fleet size, and operational decisions.
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6.2. Limitations. While this study proves that it is feasible to
design the SAV system integrating operational decisions into
the long-term strategic planning, the proposed model has a
few limitations that we would like to emphasize on for future
research. Firstly, the demand in each planning period we
employ is of a deterministic value, ignoring the stochastic
characteristic on a particular day. Although this assumption
is reasonable, it may be more efficient to propose a robust
optimization method to represent the uncertainty. Secondly,
there exists a necessity to investigate dynamic pricing and
real-time vehicle-trip matching. -irdly, the actual traffic
conditions (i.e., congestion) are not considered in the
current research. If these factors can be taken into con-
sideration, the overall framework will be more realistic.
Finally, the popularity of electric vehicles is an irreversible
trend in the traffic system. -us, integrating the charging
station siting and the charging characteristic will become
another stream of the focal point.
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