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Commuters are the stable travel group for the public transportation (PT) service system. Accurately identifying the PTcommuters
is conducive to promoting PTservice quality and development of urban sustainable transportation. +is paper extracts individual
PT travel chain information and constructs individual travel knowledge graphs of PT passengers based on the association
matching algorithm and the theory of multilayer planning. A mixed dataset is formed by associating individual travel chains with
travel survey data. Seven travel characteristic indicators regarding travel performance and spatiotemporal travel characteristics are
extracted. +e identification model of PT commuters is developed based on a three-layer backpropagation neural network
(BPNN). +e optimal model structure of neuron node number, transfer function, and learning rate are discussed quantitatively
according to the minimization of model errors.+e evaluation indexes of overall accuracy and kappa coefficient of the constructed
model are 94.5% and 87.9% separately. +e results indicate that the model identification accuracy is acceptable, and the proposed
characteristic indicators and systematic modelling procedure are effective. +en, the model performance is compared with the
other five machine learning models further. +e results confirm that the proposed model has a better identification accuracy and
viability, and the model performance will improve with the increase of the sample size.

1. Introduction

With the continuous penetration of the concept of sus-
tainable transport and green traveling, especially, the Chi-
nese government put forward the goal of “carbon peak” and
“carbon neutral” in 2021, and public transportation (PT) has
become an increasingly important transportation option for
the residents. According to official statistics, the total
number of PT trips was 12.6 million accounting for 55.9% of
the total number of motorized trips downtown in 2019 as
compared to 48.1% in 2015, Beijing [1]. PT has occupied the
largest share in the urban transportation market in the
Chinese context. With a better understanding of the travel
patterns of transit riders, transit authorities will be able to
evaluate their current services to reveal how best to adjust
their marketing strategies to attract higher PT usage [2].

Nevertheless, it is pointed out that there are prominent
differences in the travel characteristics between PT com-
muting passengers and others [3]. +erefore, it is of great
significance to effectively grasp the travel demands and
mobility characteristics of the PT commuters, which is
conducive to improving urban sustainable transport service.
For this purpose, realizing accurate identification of the PT
passenger category is the premise of revealing the travel
demand and characteristics of heterogeneous passengers.

Most of the previous studies have attempted to apply
smart card transaction data and travel survey data for an-
alyzing mobility characteristics of PT commuters and
detecting their behaviour differences. Some studies identi-
fied PT commuters by analyzing the commuting travel
characteristics including travel mode, travel spatiotemporal
regularity, and travel-route selection diversity [4, 5]. Jun and
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Deng took the threshold values of travel frequency and
departure time standard deviation as the classification
standard; then, PT passengers from IC card data were di-
vided into three categories: commuting, ordinary, and
random [6]. Ma et al. proposed that commuters’ travel
regularity and spatiotemporal repeatability can be measured
from the aspects of residence, workplace, and departure
time; then, PT commuters were identified by leveraging
spatial clustering and multicriteria decision analysis ap-
proaches [3]. Zou et al. proposed a rule-based recognition
method that is utilized to identify the commuters from the
perspective of spatiotemporal features, personal property,
and travel behaviour [7]. However, although the afore-
mentioned studies enable us effectively realize the passenger
classification with significant commuting characteristics,
they are inapplicable to accurately identify commuters with
unapparent commuting behavioural characteristics. +us,
the selection of multidimensional and spatiotemporal travel
behavior indicators is the crucial link to realize the identi-
fication of these atypical commuters. Besides, some relevant
studies collected the travel data including travel purposes,
travel mode, origins, and destinations of trips through the
resident travel survey [8, 9], but the behaviour classification
of passengers in the whole sample could not be realized due
to the high cost and limited samples of travel survey.
Moreover, many previous studies only used a single data
source such as a travel survey or smart card transaction and
lacked the integrated utilization of multisource travel data to
extract more multidimensional travel behavior
characteristics.

+e intelligent PT system has been effectively improved
with the emerging technology development of Internet of
+ings, big data, and cloud computing. In addition, the rapid
evolution of artificial intelligence and machine learning
technology also provides methodological support for data-
driven PT passenger classification. Some previous studies
identified the PT commuters based on the intelligent algo-
rithm including association rules algorithm [10], convolu-
tional neural networks (CNNs) [8], Näıve Bayes
probabilistic model [11, 12], support vector machine and
decision tree [12], and statistical analysis model [13]. Zhang
et al. identified the commuters among numerous bus pas-
sengers by using the IC data with the cluster analysis [14].
Allahviranloo and Recker used Markov chain models to
study the sequential choice of activities; then, the sequential
multinomial logit (MNL) models and multiclass support
vector machines (K-SVMs) were adopted to identify the
activity pattern of in-home, work, maintenance, personal,
pick up/drop off, and stop [15]. Rafiq and McNally analyzed
transit-based activity-travel patterns by classifying users via
latent class analysis, and data from the household travel
survey were collected to classify the transit users [16].
Manley et al. also used the density-based spatial clustering of
applications with noise (DBSCAN) algorithm to identify the
travel spatiotemporal regularity of individuals, and the
spatial and temporal regularity difference of each cluster was
derived through a continuous long-term observation period
[17]. +e DBSCAN model was improved and applied to
classify the passengers under a much lower calculation

complexity [18, 19]. Sun and Yang established the Bayesian
probabilistic relations from travel survey data; then, a Naive
Bayesian method was constructed to identify PTcommuters
[11]. Moreover, they proposed a Naive Bayesian classifier
model to identify PTcommuters.+e results showed that the
model can identify the objectives using smart card data
without requiring travel regularity assumptions of PT
commuters [20]. Bösehans and Walker utilized the centroid
clustering algorithm and k-means procedure to cluster the
staff and students; then, the main travel mode of staff
commuters and student commuters was identified and
analyzed [21]. Weng and Lv selected the characteristic in-
dexes of the average number and gap time of smart card
transactions and departure time stability of weekdays from
IC card transaction data; then, a commuter identification
model was constructed by using the gradient boosting de-
cision tree (GBDT) algorithm [22]. +e above studies
showed the methods of using intelligent models could
identify the variation of traveler identity attributes and
detect the categories of PTpassengers. However, most of the
previous studies on the analysis of passengers’ commuting
characteristics oversimplified the definition of PT com-
muters [6], and the characteristic variables of identification
models were incomplete. Many studies characterized the PT
commuters considering partial travel pattern characteristics,
such as the simple frequency count [4], spatial travel pat-
terns, [6] and travel time characteristics [8]; more com-
prehensive indicators including the spatiotemporal travel
modes and travel choice characteristics should be adopted.
Additionally, the structure design and parameter adjustment
were not discussed in the modelling process quantitatively.
+erefore, the applicability and extensibility of these
methods need to be improved further.

Figure 1 shows the keyword structure relationship vi-
sualization of the aforementioned related literature. +e
prominent keywords of PT passenger identification are
travel pattern, behaviour, information, neural network, and
prediction model. It can be acquired that the literature
structure relationship among neural networks, knowledge
graphs, and travel patterns is relatively weak. +erefore,
exploring the types of residents’ travel patterns combined
with the neural network and knowledge graph is beneficial to
enrich the research achievements.

+e artificial neural network (ANN) algorithm has the
advantages of self-learning, self-organization, favorable fault
tolerance, and the ability of highly nonlinear mapping from
the input to the output which can figure out the classification
problems with better performance. What is more, more than
80% of ANNs employ the error backpropagation (BP) al-
gorithm or its improved algorithm to construct their
structures [23]. +erefore, we adopt the BP neural network
(BPNN) framework to develop a mixed data learning model
that is employed to identify PT commuters accurately.

+is paper is aimed at proposing a systematic process
approach to identify the PT commuters based on the PT
travel chain data and multimode travel graph. +e proposed
method based on a three-layer BPNN model contributes to
illustrating the relationships between the estimated pas-
senger categories and multidimensional travel behavior
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characteristics. Wherein, a quantitative analysis method is
used to determine the model parameters and structure,
which improves the scientific and systematic construction of
the proposed PT commuter identification model. +e result
is expected to lay a solid foundation for multidimensional
analysis of passenger’s travel demands and enhance un-
derstanding of the composition of urban travel groups and
their behaviour performance duringmonitoring of the smart
card data. Besides, the identified behavior characteristics of
commuter groups are conducive to traffic managers to
improve PT services and their sharing rate.

+is paper is structured as follows. +e data foundation
is introduced first, followed by the extraction of individual
passenger travel chains. +e identification method of PT
passengers is explained in the following order: (1) con-
struction of travel knowledge graph of passengers, (2) ex-
traction of travel characteristic indicators of PT passengers,
and (3) structural design and parameter adjustment of the
BPNN model, after which the constructed model is applied
to detect the categories of PT passengers, and the model
results are verified effectively. +e paper concludes by
summarizing the research findings and suggesting directions
for future research.

2. ExtractionMethodology of Travel ChainData

+is section proposes a method for extracting individual
travel chains that reflect the whole travel process of pas-
sengers through the collection, correlation, andmatching for
multisource PTdata, and attempt to lay a foundation for the
construction of the PT commuter identification model.

2.1. Multisource PT Data Acquisition and Processing. +e
multisource PT trip data used in this paper including the
smart card (automated fare collection card, AFC card; inte-
grated circuit card, IC card) transaction data, PT network
data, and global positioning system (GPS) data of bus are

collected at the entire city scale, according to Beijing
Transportation Operation Coordination Center (TOCC) and
Transit Metropolis Platform. To improve the quality and
availability of obtained raw bus data, the GPS data, PT net-
work data were utilized to calibrate the information on the
boarding and alighting stations and time; also, the missing
data of stations were restored by adopting similar handling
methods in literature [24, 25]. Considering the detailed
process of data handling was not the focus in this section, the
related contents can be learned from the aforementioned
literature. Moreover, the location of the AFC system in metro
stations is fixed, so it is not necessary to check the smart card
information of the metro system using the data obtained from
the automatic vehicle location (AVL) system.

To effectively extract and analyze the travel information
of PTpassengers, some valuable fields related to the mobility
of passengers can be obtained from the raw data of smart
card transaction data, PTnetwork data, and GPS data of the
bus. Table 1 shows the selected valid fields of these data.

2.2. Extraction of Individual PT Travel Chains. To clearly
understand the individual PT travel behaviour and mine
more useful information from smart card transaction data,
an extraction process of the individual PT travel chains will
be implemented in this section. Each smart card transaction
record is defined as a travel stage that reflects information
about a segment of a passenger’s journey. A travel chain
means a continuous journey of passengers over time. Hence,
a travel chain could contain multiple travel stages. Figure 2
shows the two-dimensional structure of the individual PT
travel chain that includes two transfers and three travel
stages in the spatiotemporal dimensions. +e horizontal axis
represents the travel time and the duration of the trip, and
the vertical coordination indicates the spatial mobility from
the origin (O) and destination (D); the slopes of the slanted
lines can intuitively reflect the speed of mobility for each
travel mode. Additionally, the definitions of several

Figure 1: Keyword structure relationship of the related literature.
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parameters in Figure 2 are described as follows: Ti_on means
the boarding time at the beginning of the ith travel stage,
Ti_off presents the alighting time at the end of the ith travel
stage, Dsi demonstrates the duration at the ith travel stage,
and Tti illustrates the transferring time between the ith travel
stage and the (i+ 1)th travel stage. We note that Dsi and Tti
are available when the card code of a cardholder is provided,
since the data of these variables are defined from two
consecutive transaction records. In addition, “Mode i” in-
dicates different modes of PT; “Transfer i” is the process of
traffic mode conversion from the travel phase i to the travel

phase (i+ 1) and “Travelled distance” means the distance
between OD.

+e method of extracting individual travel chains based
on multisource PT data includes two steps: multisource PT
data integration and the association and matching of pas-
sengers’ travel information [27]. Figure 3 describes the whole
extraction process of the individual travel chains for PT
passengers.

+e first step focuses on integrating the spatiotemporal
mobility data and presenting the travel stages of PT pas-
sengers. Besides selecting the corresponding attributes per
algorithm, some general preprocessing operations were
applied to the data. +e smart card transaction data were
merged into a dataset and then were grouped by the card
code and sorted by timestamp. +us, the individual smart
card transaction data with key fields can be organized
preliminarily.

+e next step consists of four processing substeps: the
judgment of transferring time threshold, travel chain
structure acquisition, O/D inference of travel stage, and
travel feature information matching need to be executed to
extract the individual travel chains. We note that three
transferring time thresholds need to be discussed resulting
from three kinds of mode transferring relations including
bus to bus, bus to metro, and metro to bus. In addition, the
passengers can transfer to another metro line within the
station, and there are no transaction records for tracking the
transferring time of metro trips. +erefore, the transferring
time threshold of the metro to the metro is not included in
this study.+e smart card transaction records of the bus only
provide the alighting time, and the smart card transaction
records of the metro contain both the boarding and alighting
time, so the transferring time gaps of the bus to bus and
metro to bus contain the riding time on PT. +us, the three
kinds of transferring time thresholds have great differences.

Table 1: Valid fields of multisource PT data.

Bus Metro

Smart card transaction data

User card code User card code
Boarding/alighting line number Inbound/outbound line number

Boarding/alighting station number Entry/exit station code
Boarding/alighting time Inbound/outbound time

GPS data
Line number

—Data return time
Latitude and longitude of return point

Network and station data

Arc start/end number Entry/exit station code
Arc length Inbound/outbound name

Longitude and latitude of stations Longitude and latitude of stations
Station spacing Station spacing

Note: the card codes of the smart card data are not always identical to the individuals. For example, a smart card can be shared among family members and
friends, or a traveler can hold several cards. However, such usagemay not be themajority, especially when registered monthly passes belong to the smart cards
[9]. With the rapid development of mobile payment, the PT systems apply to the quick response (QR) code payment besides the traditional smart card
payment in Beijing. However, the code rules of QR codes are not consistent with those of the smart cards, and the service operators do not provide the number
of QR codes in the transaction application software.+erefore, it is infeasible to associate the individual travel data and QR code transaction data that account
for about 20% of all transaction data in Beijing. +us, this study focuses on the smart card transaction data to effectively introduce and match the cor-
responding individual travel survey data. What is more, smart card data are ticket-dependent methods, and they typically underestimate the travel demand
owing to possible fare evaders in many worldwide transit systems [26]. However, no ticketing system can avoid fare evasion, and the percentage of possible
fare evaders is relatively low, so this limitation is ignored in the study. +e PToperating companies allowed the use of the smart card data only for research
purposes; the individual information had been anonymized prior to the analysis to protect the privacy of cardholders throughout this study.

Travelled distance

Time

O

Travel stage 1

Transfer 1

Transfer 2

D

Mode 1

Ds1

Travel stage 2 Travel stage 3

Mode 2

Mode 3

Ds2 Ds3Tt1 Tt2

T1_on T1_off T2_on T2_off T3_offT3_on

Figure 2: Two-dimensional structure of an individual PT travel
chain.
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We use the probability distribution statistical method to
extract the values of 95% of cumulative frequency as the
transferring time thresholds, which are 112min, 20min, and
104min, respectively.

In the PT travel chain dataset, any travel information of
PT can be included more than what appears in smart card
transaction data. +erefore, more mixed travel information
can be effectively obtained from the travel chain data, such as
OD points, travel distance, transferring time, the number of
transfers, and travel model. Table 2 shows some important
travel information of PT passengers obtained from the in-
dividual travel chain dataset.

Especially, the field of card type in IC card transaction
data provides the elementary category information of PT
passengers. It is not difficult for us to intuitively recognize
the identity including students, adults, and seniors of PT
passengers by the field of card type.+us, the numbers of PT
travel chains of the passengers with different categories can
be obtained severally, and the day-to-day changes in pas-
senger numbers of different passengers can be observed.
Figure 4 shows the changes and statistical results of PT travel
chains of different passengers from 1st to 7th June in 2019,
Beijing. +e travel chain data covering four consecutive days
from 3rd to 7th June were workdays, and the number of travel
chains is about 8 million every day. +e days of 1st and 2nd
June were weekends, and 7th June was Dragon Boat Festival
which is a Chinese traditional festival, so the number of

travel chains in each of these days was slightly lower than
that of the workday, and the number was about 6 million.
From the relative perspective, the scale of student passen-
gers’ travel chains accounts for 4.2% to 5% of the total
number of daily travel chains, which was the smallest group.
+e senior passengers who travel for leisure and recreation
by PT account for nearly a third of all trips on weekends or
festivals. Additionally, it is not surprising that the group of
adult passengers makes up the largest proportion of trips
reaching 62% to 65% of the total PT passenger flow.

However, the above analysis is just a coarse-grained
category identification of PT passengers, and it is infeasible
to infer the main daily travel purposes of the adult passenger.
Namely, the passengers’ behavioural categories including
commuting and noncommuting activities cannot be iden-
tified merely according to the card types. +erefore, the
following part focuses on the model construction and cat-
egory analysis of the adult passengers selected from the
whole sample.

2.3. Construction of Individual Travel Behaviour Graph.
To observe and extract the individual travel characteristic
variables for identifying the PT commuters more intuitively
and effectively, we introduced the knowledge graph system
to establish the individual travel behaviour graph in this
study. Knowledge graph, as a visual expression way of
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Figure 3: Extraction process of individual travel chains for PT passengers.
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characteristic information, owns the advantages of de-
scribing the concepts and mutual relationships among ob-
jects in the form of symbols, and the network structure
which can realize the intuitive expression of characteristic
indicators is formed by the connection of relations [28].
+erefore, we can realize the individual travel behaviour
expression based on the knowledge graph theory from the
fragmented and incomplete individual data. +e significant
effect of the individual travel behaviour graph is to transform
the low dimensional numerical data into a high dimensional
visual structure.

Based on the individual PT travel chain dataset, the
spatiotemporal physical relation network of PT passengers’
travel behaviour information including spatial positions,
time distributions, and trip routes can be constructed. +e

construction steps of the individual travel behaviour graph
are shown as follows [29]:

(1) +e first step is to cluster the individual travel spatial
locations. +e hierarchical system cluster model is
applied to cluster the longitude and latitude data of
passengers’ travel OD points from the travel chain
dataset. +us, these OD points are divided into
different groups from the spatial dimension.

(2) +en, the individual travel time of PT passengers is
further classified based on the results of travel space
position clustering. Firstly, the travel time range of
05 : 00 to 23 : 00 which is the PT operation time in
Beijing needs to be split into 2-hour intervals; thus,
the travel time was divided into 9 intervals.

Passenger numbers
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Figure 4: Day-to-day changes in the number of every category passengers.

Table 2: Travel chain data sample of a PT passenger.

Card code 24XXXX73 24 XXXX73
. . . 24 XXXX73Card type 1 (adult card)

Travel mode Metro Metro . . . Bus-metro
Boarding/inbound time 2017/5/1 8 : 28 2017/5/1 17 : 53 . . . 2017/5/31 17 : 04
Alighting/outbound time 2017/5/1 8 : 55 2017/5/1 16 : 29 . . . 2017/5/31 17 : 39
Boarding/inbound line number 4 1 . . . 114
Alighting/outbound line number 1 4 . . . 4
Travel distance (m) 8115 8115 . . . 8620
On station Beijing south station Muxidi station . . . Baiyunqiao west
Off station Muxidi station Beijing south station . . . Beijing south station
On station longitude (°) 116.3779 116.3369 . . . 116.3395
On station latitude (°) 39.8641 39.9075 . . . 39.8973
Off station longitude (°) 116.3369 116.3779 . . . 116.3779
Off station latitude (°) 39.9075 39.8641 . . . 39.8641
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+ereafter, the departure time is classified in each
OD group, and a dataset is established to store the
cluster results.

(3) Next, the actual travel paths of the PT-passenger
trips are clustered. +e travel paths are represented
by the actual travel distance and travel direction from
the individual travel chain dataset. +e results of the
travel path clustering represent the travel modes of
individual passengers.What is more, each travel time
cluster was further classified in each travel path
cluster.

(4) +e last step is to construct an individual travel
knowledge graph. Based on the multilayer planning
theory, the foregoing clusters of spatial location,
travel time, and travel paths were adopted to re-
spectively construct the first, second, and third layers
of the individual travel knowledge graph. +e sta-
tistical probabilities of different travel behaviour
modes in each layer of the travel knowledge graph
are calculated to present the travel choice behaviour.

+e individual travel behaviour graph represents intu-
itively the behavioural attributes in the spatiotemporal di-
mensions. +e individual travel behaviour graphs are
constructed to better understand PT passengers’ travel
characteristics including trips’ spatiotemporal characteris-
tics and travel stability, which is conducive to accurately and
hierarchically extracting the input indicators of the PT
commuter identification model. Figure 5 depicts the indi-
vidual travel knowledge graph of a PT passenger that is
selected randomly from the travel chain dataset inMay 2017,
Beijing. +e spatial and temporal characteristics of indi-
vidual travel behaviour in several continuous weekdays were
intuitively expressed.

3. PT Commuter Identification Modelling

Neural network algorithms are among the most widely
applied supervised learning methods in the field of machine
learning and artificial intelligence.+emethod is well known
in computer science, and there have been some successful
applications of the method in traffic flow prediction [30],
traffic model selection [31], and traffic congestion detection
[32]. +e BPNN method as a multilayer feedforward net-
work is among the most widely applied supervised classi-
fication methods. +e method is well known in computer
science, and there are many successful applications of this
method in the field of transportation [33–35]. However, the
application of this methodology in studying aspects of travel
behaviour and passenger category has been extremely
limited, especially when it comes to identifying PTpassenger
categories in the Chinese context. What is more, Guo, et al.
proved that a three-layer BPNN can satisfy most of the
problems according to the universal approximation theory
[36].

+erefore, a BPNN model with a three-layer structure
was constructed as the identification model for the cate-
gories of PTpassengers. +e overall architecture of BPNN is
composed of the input layer, hidden layer, and output layer.

+e description of the calculation flow of the BPNNmodel is
as follows:

(1) Input layer to hidden layer:

αh � 􏽘
d

i�1
vih ∗ xi, (1)

where αh represents the input value of the hth
neuron, d is the number of input variables, xi in-
dicates the input variables of the model, and vih is the
weight to connect xi in the input layer to the neuron
αh in the hidden layer.

(2) Activation function processing in the hidden layer:

bh � f αh − ch( 􏼁, (2)

where bh is the output value of the h
th neuron in the

hidden layer, f(x) illustrates the activation function,
and ch presents the threshold of the hth neuron.

(3) Hidden layer to output layer:

yk � 􏽘

q

h�1
whk ∗ bh, (3)

where yk is the model output value, whk illustrates
the weight to connect the neuron αh to the output
variables in the output layer, k indicates the number
of output indicators of the PT commuter prediction
model, and q means the number of neurons in the
hidden layer.

In addition, the model errors between the model results
and the expected results are adopted to improve the model
parameters.+emodel errors E are calculated using the least
square method as follows:

E �
1
2

􏽘

K

k�1
yk′ − yk( 􏼁

2
, (4)

where yk′ indicates the prediction results, yk represents the
training results. +e error is taken as the control target to
capture the best functions and parameters of the BPNN
model.

+e following part describes the construction of a three-
layer BPNN model from two aspects: structure design
(feature variables of the input layer and passenger category
of the output layer) and parameter adjustment (neuron node
number of the hidden layer, transfer function, and learning
rate). +e details of the model are discussed quantitatively.

3.1. Structure Design

3.1.1. Input Layer Design. +e input layer of the BPNN
model contains the typical characteristic variables of pas-
sengers’ PT travel behaviour. To extract individual travel
behaviour characteristics, several methods of entity ex-
traction, relationship extraction, and attribute extraction in
the domain of knowledge graph are used. Table 3 shows the
selected seven characteristic indicators and their profile. By
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observing the structure and features of individual travel
knowledge graphs from multiple perspectives, four travel
behaviour characteristic indexes including average travel
days (ATDs), the average number of trips (ANTs), OD
cluster number (ODCN), and PT roundtrip coefficient (RC)
were extracted from the spatial dimension. While from the
temporal dimension, the indicator of departure time con-
centricity (DTC) was developed from the second layer of the

travel knowledge graph. Likewise, we selected the indicator
of travel path fixity (TPF) from the third layer of the in-
dividual travel behaviour graph. Besides, one more com-
prehensive indicator of travel space equilibrium (TSE) was
proposed to measure the frequency with which passengers
travel to different activity OD points, through travel be-
haviour analysis based on individual travel knowledge
graphs. +ese seven indicators can be used to define and

40%
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26.9%

33.3%

33.3%

33.3%

84.6%

7.7%

7.7%

A1

A2

A3

A4

B2

B1

B31

B32

B33

C1

C21

C22

C23

26.9%
Probability 

A1-A4: PT tripsA0:
non-PT trips 

OD
Clusters

Second layer B:
Time Cluster

Third layer C :
Path Cluster Distance

Direction

Route

First layer A:
OD Cluster

84.6%
Probability 

 Morning (5-11 am)
symbol

size Increases with size Increases with sizeconstant
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Figure 5: Travel knowledge graph of a PT passenger.

Table 3: Profile of characteristic indicators of PT commuter travel behaviour.

Indicators Profile
ATD +e average number of days a passenger traveled by PT per month
ANT +e average number of trips by PT per month
ODCN +e cluster number of trips’ OD points per month
RC RC� 1, if a PT trip has a corresponding return trip by PT on the same day, 0 otherwise
DTC +e most concentrated departure period of the day for traveling by PT per month, where DTC� 1, 2, . . ., 9
TPF TPF� 1, if the travel path is fixed for the same OD pairs in different departure time, 0 otherwise

TSE +e spatial distribution equilibrium characteristics of travel frequency of PT passengers to different activity OD points per
month
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identify the PT commuter from different travel behavior
perspectives. In general, the bigger the values of ATD, ANT,
RC, and TPF, the smaller the values of ODCN and TSE, and
the more concentrated the DTC; then, the respondents were
more likely to be the commuters.

+e first six indicators in Table 3 can be directly acquired
based on individual travel knowledge graphs. Meanwhile,
TSE is denoted by (5) and (6) which introduce the con-
ception of information entropy. +erefore, we defined the
TSE combined with the paradigm of information entropy
function as follows:

TSE � − 􏽘
m

i�1

1
N

􏽘

N

n�1
αi

⎛⎝ ⎞⎠∗ log2
1
N

􏽘

N

n�1
αi

⎛⎝ ⎞⎠, (5)

αi �
0, the passenger didn’t go to activity point i onN

th day,

1, the passengerwent to activity point i onN
th day,

⎧⎨

⎩ (6)

where m denotes the total number of different activity OD
points, i � 1, 2, 3, . . . , m, N indicates the total number of
travel days in a month, N � 31, and αi presents the decision
variable.

3.1.2. Output Layer Design. +e output layer of this model is
designed to predict the PTpassenger categories including the
commuter and noncommuter. To acquire accurately the
ground truth of the passenger category to train the model
proposed in this paper, the RP survey was designed and
conducted to obtain the individual attributes and travel
behaviour information of PT passengers from 10th to 27th
May in 2017, Beijing. From the temporal perspective, the
survey period covered the morning peak hours (7 : 00–9:00),
evening peak hours (17 : 00–19 : 00), and off-peak peak
hours. From the spatial perspective, this survey activity
involves five subway stations and three bus stations in the
downtown area of Beijing, and the land-use attributes cover
residential, commercial, and leisure areas. +us, 453 valid
questionnaires were collected on purpose.

+e survey comprises two parts. +e first part is the
travel records for activities which ask for detailed infor-
mation about respondents’ mobility information in the past
one week, including the travel days, travel purpose, de-
parture and arrival time, travel mode, and the number of
trips. +e second part is the sociodemographic character-
istics including the main travel purpose (commuting and
noncommuting), age, gender, occupation, monthly income,
vehicle ownership, and educational status. +e key infor-
mation of travel purpose, which is utilized to mark the
passenger categories, is significant to the results and the
accuracy of the proposed model. +erefore, we emphasized
the importance of this question to the interviewees and
asked them to complete the question according to the actual
situation during the field survey. In general, the commuters
are the population whose daily travel purpose are com-
muting; they may work full time or several days per week.
Besides, the card codes of respondents’ smart cards were also
collected in the form of anonymity through this survey.
+us, the corresponding travel chain dataset can be
matched, and continuous one-month travel chain data of

respondents were extracted from the whole travel chain
dataset.

+ereafter, the survey data were correlated and matched
with the travel chain database through the field of card code,
and the respondents whose card type belonged to the adult
card were further selected. +us, the multidimensional
survey data containing both individual travel chain data and
travel survey data of 147 commuters and 42 noncommuters
were achieved. +en, Cronbach’s alpha test and Kai-
ser–Meyer–Olkin (KMO) test were used to measure the
reliability and validity of the collected survey data. +e
results show that Cronbach’s alpha coefficients and KMO
coefficients of the collected survey data are all above 0.836
and 0.851, respectively, which implies that the survey data
are effective and representative. Table 4 presents the basic
information statistics of the respondents.

From the overall perspective, a large proportion of PT
passengers are between 26 and 35 years old (about 39%),
followed by the group of 21–25 years old which accounts for
almost a quarter of the whole samples. Surprisingly, the re-
spondents own a relatively high education level, and about
80% of respondents have a bachelor’s degree or above in
Beijing. As expected, the overall income level of the PT travel
group is slightly lower because the monthly salary of three-
quarters of the respondents is lower than the average monthly
salary (8,476 RMB) of residents in Beijing, 2017. Besides, nearly
half of the PTpassengers only own one car, and around 40% of
respondents do not have private cars. +e low private car
ownership saliently results from the strict policy restrictions on
the license plate which was introduced in 2011, Beijing.

From the relative perspective, it is interesting to note that
the ratio of women in the commuter group is slightly higher,
while that is lower in the noncommuter group. Besides, the
expected results were found that the proportion of pas-
sengers over 50 years old in the noncommuter group is
higher than that in the commuter group, due to the retirees
in that group. Additionally, the proportion of households
with more than two cars is slightly higher in the non-
commuting group, which may result from the actual con-
dition that the elderly have more probability to own cars,
and a majority of the elderly tend to live with their children
who belong to the major car ownership groups in China.
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3.2. Parameter Adjustment. In this section, the neuron node
number, transfer functions between adjacent layers, and the
learning rate are discussed, which is conducive to saliently
improving the efficiency and accuracy of the identification
model proposed in this paper.

3.2.1. Selection of Neuron Node Number in the Hidden Layer.
+e number of neuron nodes in the hidden layer of the
BPNN network follows the following functional relationship
(7) with the number of input variables and output variables
[23]:

n �
��������
nin + nout

√
+ α, (7)

where n is the number of neuron nodes in the hidden layer,
nin indicates the number of input variables, nout means the
number of output variables, and α is a constant between 0
and 10.

Since the model has seven input variables and 1 output
variable, we can obtain the number of neuron nodes
n⊆ [3, 13] in the hidden layer according to (7). Considering
the difference of prediction results with the change of the
model structure, the BPNN model is executed 10 epochs,
while the number of neuron nodes (n) in the hidden layer

Table 4: Basic information statistics.

Attribute Share (%) Attribute Share
(%)

Passenger category 1 (commuter) 61.82 Passenger category 0 (noncommuter) 38.18

Gender Men 48.73 Gender Men 53.26
Women 51.27 Women 46.74

Age

18–20 2.96

Age

18–20 2.48
21–25 25.37 21–25 26.72
26–35 39.75 26–35 38.57
36–45 17.76 36–45 17.36
46–50 9.73 46–50 7.44
≥50 4.43 ≥50 7.43

Education

High school or below 4.86

Education

High school or below 4.14
High school 11.63 High school 14.92

Undergraduate 74.21 Undergraduate 72.10
Graduate or above 9.30 Graduate or above 8.84

Monthly income (RMB)

≤1500 17.30

Monthly income (RMB)

≤1,500 18.28
1,501–3,000 7.81 1,501–3,000 9.42
3,001–5,000 16.46 3,001–5,000 17.17
5,001–8,000 33.12 5,001–8,000 29.36
8,001–15,000 20.68 8,001–15,000 20.78
≥15,000 4.63 ≥15,000 4.99

Vehicle ownership

0 40.80

Vehicle ownership

0 38.67
1 52.43 1 52.21
2 6.13 2 7.73
≥3 0.64 ≥3 1.39

Number of weekly travel days

0 0

Number of weekly travel days

0 0
1 2.33 1 22.73
2 0 2 27.27
3 9.30 3 13.64
4 6.98 4 9.09
≥5 81.39 ≥5 27.27

Number of weekly commuting
trips

0 2.50

Number of weekly commuting
trips

0 59.09
1–3 2.50 1–3 22.73
4–6 7.50 4–6 18.18
7–9 7.50 7–9 0
10–12 62.50 10–12 0
13–15 5.00 13–15 0
≥16 12.50 ≥16 0

Number of weekly leisure trips

0 22.50

Number of weekly leisure trips

0 4.55
1–3 50.00 1–3 45.45
4–6 25.00 4–6 40.91
7–9 0 7–9 0
10–12 0 10–12 9.09
13–15 2.50 13–15 0
≥16 0 ≥16 0
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increases linearly, n � 3, 4, . . . , 13. +us, a model classifi-
cation accuracy can be obtained after each model runs.
+erefore, the average classification accuracy of the pro-
posed model with different neuron nodes numbers can be
achieved, respectively.

Figure 6 gives some insight into the relationship between
the average classification accuracy and the number of
neuron nodes in the hidden layer. It can be acquired that the
average classification accuracy of the BPNNmodel with four
neural nodes is highest when other model parameters re-
main unchanged. +erefore, four neuron nodes as the op-
timal parameter selection for the proposed model were
structured in the hidden layer.

3.2.2. Transfer Function Selection. Transfer functions as the
local computing function map the output of neurons to the
input of neurons in the adjacent network layers. +e transfer
functions determine the weights and thresholds of the whole
neural network and have an important influence on the
prediction results. Some transfer functions such as hyper-
bolic tangent function Tansig and linear function Purelin
which are denoted by (8) and (9) have been used in the three-
layer neural network in the field of image processing [37],
water quality treatment [38], and environmental engineer-
ing [39]. And these corresponding models have achieved
prominent prediction effects. +erefore, all the training
functions were used to train BPNN 10 times, respectively;
then, one of them would be selected as the optimal model
function based on the prediction accuracy and training time.

tansig(N) �
2

1 + exp(−2N)
− 1, (8)

purelin(N) � N, (9)

where N is the input vector of the characteristic indicators of
PT commuter travel behaviour.

+e indicators of prediction accuracy and convergence
rate of the model with different training functions were se-
lected to evaluate model efficiency, respectively. Analogously,
the runtime was adopted to investigate the model perfor-
mance with respect to different thresholds [40]. Figure 7
shows the results of prediction accuracy and training time
for diverse training functions. From the relative perspective, it
can be acquired from the figure that the training function
Trainrp which is developed based on the elastic gradient
descent method develops the BPNNmodel to achieve the best
prediction accuracy. Besides, the training time of trainrp is
only 18.6% lower than that of the function traingd and 41.7%
faster than that of the function traincgf. What is more, the
advantage of the training functions will be further highlighted
if a larger scale of data is calculated. +erefore, we adopted
trainrp as the model training function considering the
comprehensive performance of the transfer functions.

3.2.3. Learning Rate Selection. Another key hyperparameter
of the BPNN model is the learning rate for gradient descent.
+is parameter scales the magnitude of our weight updates to

minimize the network’s loss function, affects the stability and
training time of the model, and determines the weight change
in each cyclical training. If the values of the learning rate are too
small, model training would progress very slowly due to very
tiny updates to the weights in the network. Inversely, if the
value of the learning rate is set too large, that could cause
undesirable divergent behaviour in loss function and lead to
the instability of the neural network. Substantial studies suggest
that the learning rate of 0.01 has made the neural network
model achieve salient prediction performance [40–42].
+erefore, we adopted the value of 0.01 as the learning rate of
the BPNN model considering these previous achievements.

+rough the aforementioned parameter adjustment and
optimization, a stable PT commuter identification model
proposed in the paper is finally constructed through the
foregoing discussion on the parameters and structure of the
model. Figure 8 shows the conceptual structure of the PT
commuter identification model based on the three-layer
neural network model.
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4. Empirical Results

In this section, we describe empirical analysis using the
method proposed in Section 2, and the identification model
was built and tested by using the travel chain data of re-
spondents harvested from Beijing. To train and complete the
proposed BPNNmodel, we randomly selected the datasets of
145 respondents as the training datasets and 44 respondents’
datasets as verification datasets. +us, there forms a 145∗ 7
matrix from the training dataset and a 44∗ 7matrix from the
verification dataset.

Figure 9 illustrates the feature dataset processing flow-
chart for PT commuter identification by the BPNN model.
Firstly, the training data containing the characteristic in-
dicator data derived from individual travel chain datasets
and the category attribute information of passengers
extracted from the survey data are input into the BPNN
model. +en, the identification model is trained through the
iterative adjustment of weight and parameters based on the
error backpropagation and self-learning mechanism.
+ereafter, the verification dataset is fed into the trained
model developed in the previous step. +us, the input data
are computed and transmitted at each layer of the BPNN
model, and the passenger categories could be predicted and
estimated by the model.

+e model performance depends on whether the het-
erogeneity in the attributes accurately indicates the differ-
ence in the passenger categories. +erefore, to evaluate the
predicted classification accuracy and validity of the PT
commuter identification model and data fusion approach
proposed in this paper, we adopted the evaluation indicators
of overall accuracy (OA) and kappa coefficient (Kappa)
which have been successfully applied in the previous studies
[43–45]. Although the model validation method is relatively
simple, it is very effective and clear, and also easy to compare
with other model results. +en, these two indicators were
applied in evaluating the PT commuter identification model
proposed in this paper, and the OA and Kappa are estimated
by equations (10) and (11):

OA �
􏽐 aii

N
, (10)

Kappa �
N × 􏽐 aii − 􏽐 T∗j × Ti∗􏼐 􏼑

N
2

− 􏽐 T∗j × Ti∗􏼐 􏼑
, (11)

where OA indicates the ratio of the number of correctly
classified passengers to the total number of passengers,
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Figure 8: Conceptual structure of PT commuter identification model.
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Kappa represents the reduced error percentage of predicted
classification results compared with the random classifica-
tion, aij is the diagonal elements of the confusion matrix, N
is the overall sample size, T∗j is the sum of the jth column
values of the confusion matrix, and Ti∗ is the sum of the ith

row of the confusion matrix.
We note that the two evaluation indicators are calculated

based on the confusion matrix, which is commonly used to
compare the errors between ground truth and predicted
values in the field of artificial intelligence, especially su-
pervised learning.+erefore, the confusion matrix regarding
the passenger category was constructed. +en, seven char-
acteristic indicators in Table 3 derived from the verification
dataset were input into the identification model to estimate
the categories of the samples. Table 5 shows the estimation
results of the PTpassenger category in the confusion matrix.

+us, the evaluation indicators of OA and Kappa can be
calculated based on the above confusion matrix and equa-
tions (10) and (11). +e calculated results of these two values
are 95.4% and 87.9%, respectively. +e classification accu-
racy of the model can be considered almost identical to the
ground truth when the value of Kappa is between 0.81 and
1.00 [46]. +e good model accuracy also means that the
model-overfitting problem is not prominent.+emajority of
commuters have high values in the indicators of ATD, ANT,
and RC, and they travel by PT at least 3 days per week.
However, the commuters who are not correctly identified
travel by PTonly once or twice a week and have few PT trips
because they shift to PTfor commuting only when their trips
by car are limited by the motor vehicle restriction policy, and
adverse weather or major events occurred. +ese PT pas-
sengers have the commuting purpose while they do not show
the spatiotemporal characteristics of typical commuting
travel. Fortunately, these passengers are not the focus of
traffic regulators and policymakers because their trips do not
have much impact on PT network planning and traffic
demand forecast. Regarding the group of noncommuters, it
is also worth noting that though all noncommuting pas-
sengers are identified correctly in this experiment, the
noncommuters with similar commuting travel characteris-
tics are likely to be identified as commuters. Particularly, the
aforementioned two groups of passengers were not expected
to be identified and were in small proportion; thus, such
identification errors can be ignored.

In addition, the accuracy and performance of the trained
BPNN model in this paper are compared with those of the
previous studies further [9, 22]. +e method of comparative
analysis is a common technique to highlight the advantages
of models more or less, though different methods have their
characteristics under certain conditions. For example, the
existing literature verified the better performance of the
proposed model in automatically identifying a pilot’s brain
workload compared with its seven peers including the
Gaussian mixture model, infinite student’s t-mixture model,
and DBSCAN model [47]. +e involved models are gradient
boosting decision tree (GBDT), Bayes, decision tree (DT),
random forest (RF), and Näıve Bayes probabilistic model
(NBPM), respectively. Figure 10 presents the compared
results of these models. +e results show that the BPNN

model constructed in this paper has high prediction accu-
racy and is appropriate to identify the categories of PT
passengers. And the indicators described in Section 3.1.1 are
effective to distinguish the commuters and noncommuters
in terms of these characteristics. In addition, the differences
between the results of alternative methods in Figure 10 are
not so prominent, which was caused partially by the limited
data. With the increase of sample scale, the accuracy and
superiority of the proposed model would improve further.
Furthermore, the mixed data learning approach based on the
BPNN model achieves the transit market segments of PT
passengers including the commuter, noncommuter, student,
senior, and staff who contribute to the changes in the transit
demand. In addition, the results suggest that the proposed
PT passenger category identification method can help the
transport operators to analyze the travel behaviour differ-
ences during the monitoring of travelers. +at enables them
to analyze the relationship between the originally observed
attributes of the integrated trip data and the estimated at-
tributes that are originally unobserved [9].

5. Conclusions and Discussion

In this paper, the individual travel chains reflecting the
whole travel process of PT passengers were exacted through
the correlation and matching method based on the multi-
source PTdata collected in Beijing, China. +en, the field of
card type in smart card transaction data was applied to
analyze the day-to-day changes in passenger flow of PT
passengers. +ereafter, the multimode travel knowledge
graphs were constructed for extracting the characteristic

Table 5: Confusion matrix of estimated PT passenger category.

Ground truth
Estimated value

Commuter Noncommuter Total
Commuter 32 2 34
Noncommuter 0 10 10
Total 32 12 44
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Figure 10: +e comparison results of model performance.
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indicators including ATD, ANT, ODCN, RC, DTC, TPF,
and TSE hierarchically from multiple perspectives. Besides,
the multimode travel knowledge graphs also contribute to
understanding the travel habits and travel features of in-
dividuals. +e control variable method and the comparative
analysis method were applied to fit the optimal parameters
of the BPNN model to identify the PT commuters more
accurately.

+e evaluation indicators of OA andKappa are adopted to
verify the model identification accuracy, as shown in equa-
tions (10) and (11), demonstrating that the proposed method
correctly estimated 95.4% of the passenger categories while
the incorrect estimations were caused by residents’ non-
commuting trips with similar commuting travel character-
istics and residents’ commuting trips with similar
noncommuting travel characteristics. For example, some
noncommuters regularly take PTto go shopping or exercise in
parks every day, while some commuters rarely use PTto travel
only under some special conditions. +e model results in-
dicate that the BPNN model proposed in this paper can ef-
fectively realize the identification of PT commuters. Also, the
relatively good model predictive power shows that the pa-
rameter selection process is effective and scientific. Consid-
ering that BPNN is a deep learning algorithm, the accuracy of
the model would increase with the increase of training
samples. In addition to the parameter selection and calcu-
lation principle [48], the recognition accuracy of the esti-
mation model is also related to the selected characteristic
indicators and the data features and size of the selected sample
due to the random selection effect of samples. +e results
indicate the different features in each travel purpose [9]. +is
reflects the necessity of individual travel chains and multi-
mode travel knowledge graphs which conduce to capturing
and extracting the travel characteristics. Moreover, similar to
other inference models, researchers should consider the
overfitting properties normally caused by using a large set of
features, and cross validation is necessary to prevent over-
fitting [15]. +e empirical data mining analysis in Section 3
showed that the proposed method is capable of helping us to
find the behavioural features and illustrate the share of travel
purposes and the relationship between the travel character-
istics and the passenger categories observed in the smart card
data. In addition, the multilayer BP neural network owns
good adjustability and adaptability for different types of data,
which means that the proposedmethodology can also be used
to explore the travel demands of passengers using shared
travel, taxi, and intercity transportation.

+is study aims to propose a systematic modelling
procedure to set up the BPNN model with optimal pa-
rameters to identify the PTcommuters based on mixed data,
which contributes to refining passenger travel demands and
helping transport operators to grasp and capture behav-
ioural features of different travel groups observed in the
smart card data. Some studies, such as the study proposed by
Guo et al. [49], also have adopted similar ideas. Besides,
comprehensive indicators of the spatiotemporal travel
modes and travel choice characteristics were extracted to
depict PT-commuter travel behavior. +e relationships
between the travel characteristic indicators and the

passenger categories were captured through the proposed
method at the individual level. Additionally, exploring the
categories of PT passengers is especially conducive to the
traffic management department to carry out targeted re-
search on PT services and increase the attraction of the PT
system. And the findings of this paper have been useful to
augment the passenger characterization and to better cater
to individual transit passengers.

+ere are also some limitations in this paper. +e
heterogeneity and categories of PT passengers were iden-
tified in this paper, but the causes and mechanisms of
passengers’ behavioural differences have not been revealed.
In addition, the sample size is not enough due to the low
matching rate of smart card and survey data to mine deeply
the self-learning ability of the BPNN model, which limits
the further optimization of the accuracy of the model.+us,
the travel behavior analysis of PT passengers based on
traffic big data is the next work. +ough the results have
some boundedness due to the data sample size, this re-
search provides a feasible method and process for identi-
fying the PT commuters. In addition, the computational
complexity that is associated with the model structure and
parameters is an issue worth discussing, especially in a big
data environment. +e more complex the model structure
and parameters are, the higher the calculation complexity
is, which is reflected in the longer calculation time.
However, the sample size is limited due to the lowmatching
rate of smart card and survey data, so the computational
complexity is not a prominent problem in this manuscript,
while this issue will be concerned further when the travel
demands of PT passengers were identified based on large-
scale data in the next work.

In the future, the travelers’ dependence on PT will be
studied based on the achieved research basis in this paper.
+en, various travel service modes for different types of
passengers will be developed, such as bus rapid transit
(BRT), customized bus, demand response bus, and minibus,
to provide support for the refined traffic demand scheduling
of operating management departments. Besides, the travel
choice behaviour and the behavioural influence mechanism
of PT commuters with different travel dependence on PT
could be studied further.
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