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With the rapid development of artificial intelligence and big traffic data, the data-driven intelligent maritime transportation has
received significant attention in both industry and academia. It is capable of improving traffic efficiency and reducing traffic
accidents in maritime applications. However, video cameras often suffer from severe haze weather, leading to degraded visual
data and ineffective maritime surveillance. It is thus necessary to restore the visually degraded images and to guarantee
maritime transportation efficiency and safety under hazy imaging conditions. In this work, a contrastive learning framework is
proposed for haze visibility enhancement in intelligent maritime transportation systems. In particular, the proposed learning
method could fully learn both local and global image features, which are beneficial for visual quality improvement. A total of
100 clean images containing water traffic scenes were selected as the synthetic test dataset, and good dehazing results were
achieved on both visual and indexing results (e.g., peak signal to noise ratio (PSNR): 23:95 ± 3:48 and structural similarity
index (SSIM): 0:924 ± 0:065 for different transmittance and atmospheric light values). In addition, extensive experiments on
real-world 100 water hazy images demonstrate the effectiveness of the proposed method (e.g., natural image quality evaluator
(NIQE): 4:800 ± 0:634 and perception-based image quality evaluator (PIQE): 46:320 ± 10:253). The enhanced images could be
effectively exploited for promoting the accuracy and robustness of ship detection. The maritime traffic supervision and
management could be accordingly improved in the intelligent transportation system.

1. Introduction

The visual perception system is a fundamental means of
environmental perception for intelligent ships and intelli-
gent surveillance systems [1]. In good weather conditions,
the visual perception system can obtain high-quality images
of the surface traffic scene, which can assist intelligent ships
and intelligent supervision systems in completing their mis-
sions. In hazy conditions, however, the images collected by
the visual perception system are typically blurry, making it
difficult to distinguish targets such as ships and bridges on
the water, which has a severe negative impact on the devel-
opment and application of intelligent shipping technologies.
In recent years, several image dehazing algorithms have been
proposed in response to the problem of image quality degra-
dation in hazy scenes. Image enhancement-based, physical

model-based, and deep learning-based methods make up
most of the currently available algorithms for image dehaz-
ing tasks both domestically and internationally.

To more accurately and systematically describe the
imaging principle in hazy scenes, Narasimhan et al. [2] pro-
posed a well-known atmospheric scattering model. The pro-
posed model considers that the scene information collected
by visible light imaging equipment in a hazy scene consists
of two parts, i.e., the attenuated part of the incident light
obtained by the attenuated light reflected from the object
and the atmospheric light imaging part caused by the scat-
tering of other light. The mathematical expression of the
hazy imaging model is as follows:

I xð Þ = J xð Þt xð Þ + A 1 − t xð Þð Þ, ð1Þ
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where I represents the hazy image collected by the imaging
device, J denotes the potential haze-free image, x is the
image pixel, t represents the transmission, and A denotes
the atmospheric light value.

When collecting images in hazy water surface traffic
scenes, the abundant water vapor and particulate impurities
on the water surface will cause serious scattering and refrac-
tion effects on light. Therefore, the reflected light on the water
surface target will be severely attenuated during the propaga-
tion of the light path to the image acquisition device. As the
scene distance increases and the hazy concentration increases,
the attenuation phenomenon becomes more and more obvi-
ous, which is named the incident light attenuation phenome-
non. In addition, in a hazy environment, some reflected light
(e.g., light sources and atmospheric light) also enter the imag-
ing device due to the scattering of water vapor and particles,
making the scene blurred and the details of distant objects
unclear. This part of the imaging content is atmospheric light
imaging. Under the dual influence of incident light attenua-
tion and atmospheric light imaging, the images collected by
smart ship vision sensors in hazy scenes often have problems
of low contrast in distinguishing surface targets.

Deep learning has yielded positive results in the field of
dehazing and has significant potential for future research.
As a result of the influence of abundant water vapor on the
water surface, the image with haze on the water surface is
more likely to lose image structure and detail information,
and the existing land dehazing algorithms are applied
directly. It is often difficult to obtain the desired effect on
images with haze on the water surface. Therefore, the dehaz-
ing network for water surface hazy images must be rede-
signed in accordance with the characteristics of water
surface traffic scenes. This paper focuses on developing an
image dehazing model for water surface traffic scenes using
contrastive learning. We take into account the characteristics
of a single water scene and a small number of targets, and
the dehazing model uses both hazy and clear images during
training to extract image features from a comparative learn-
ing network framework. Then, the clear image correspond-
ing to the extracted image features and the hazy image is
restored. The main contribution of our method differs from
others in the following aspects:

(i) We propose a contrastive learning-based framework
to improve the visibility of intelligent maritime
transportation systems in hazy environments

(ii) We propose a global feature comparison module, a
local feature comparison module, a feature fusion
module, and a hybrid loss function to improve the
dehazing performance based on contrastive learning
models

(iii) Extensive experimental results show that our
method has advanced performance compared to
state-of-the-art methods in image dehazing perfor-
mance and ship detection tests

The remaining portions of this article are organized as
follows. Section 2 introduces related work on image dehaz-

ing. The majority of Section 3 introduces the framework
for enhancing the visibility of hazy images that utilize
CNN. Experiments on both synthetic and real-world hazy
images are implemented in Section 4. In Section 5, we con-
clude our primary contributions.

2. Related Work

In this section, we briefly review the research on dehazing
methods, including image enhancement-based, physical
model-based, and deep learning-based methods.

2.1. Image Enhancement-Based Methods. The dehazing algo-
rithm based on image enhancement employs the conven-
tional digital image enhancement technology to improve
image quality by increasing the contrast of the haze image,
thereby achieving the purpose of image dehazing. Mean-
while, these methods ignore the physical imaging model of
image quality degradation in the haze environment. In par-
ticular, histogram equalization (HE) [3] and Retinex [4]
are the most widely used image dehazing algorithms, which
are both computationally efficient and effective.

Histogram equalization [3] refers to an image enhance-
ment technique that adjusts image pixels based on image
histogram information. After histogram equalization, the
image’s pixel gray value range is expanded, and the gray
value distribution is uniform, enhancing the contrast of the
hazy image, enhancing the image’s visual quality, and
achieving the image dehazing. According to the different
scopes of histogram equalization, the corresponding dehaz-
ing algorithms can be divided into global and local histo-
gram equalization dehazing algorithms. The dehazing
algorithms based on global histogram equalization [4–7]
use the entire hazy image as a pixel adjustment unit, convert
its pixel grayscale to a state of uniform distribution, enhance
the global contrast of the hazy image, and thus achieve the
dehazing effect. However, it is easy for the global equaliza-
tion process to ignore the local details of the image, and it
is easy to lose the local details of an image scene with uneven
haze density. Local histogram equalization is an adaptive
method for HE. Perform histogram equalization processing,
and then superimpose the equalization results of each local
area, to improve the visual quality of hazy images. The local
histogram equalization methods [8–11] can pay greater
attention to the image’s finer details, but it will also increase
the amount of calculation required. Kim et al. [8] proposed a
subblock stacking algorithm to improve local histogram
equalization while avoiding the problem of information loss
caused by local division to reduce the amount of computa-
tion required. However, HE-based methods may increase
the contrast of the background and decrease the contrast
of the useful signal; the gray level of the transformed image
is decreased, some details are lost, and the contrast is unnat-
urally heightened. Retinex [3] is a color theory proposed by
Land et al., which has been validated by a large number of
experiments, simulates the retinal cortex of the human
brain, and has attracted a large number of researchers con-
ducting in-depth studies. According to the Retinex theory,
Jobson et al. [12] proposed a single-scale Retinex algorithm
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that used a Gaussian function and a low-pass filter to extract
the illumination component of the image and had a good
effect on image restoration. The multiscale Retinex algo-
rithm [13] and its extension [14] employ RGB channel color
information to prevent color loss. The enhancement-based
method optimizes the image’s contrast and color using the
image enhancement technique. The final enhanced image
has a wide dynamic range and distinct details, which can
enhance the visual quality to some degree. However, these
methods do not consider the physical process of image deg-
radation in hazy weather, resulting in the loss of image back-
ground information. They cannot effectively remove the
influence of haze, typically leading to issues such as detail
distortion and insufficient dehazing.

2.2. Physical Model-Based Methods. Aiming to address the
issue of insufficient hazy removal based on the enhancement
approach, researchers have constructed mathematical
models imaging according to the causes of hazy weather.
Then, the mathematical model is determined in reverse,
and the clear image’s solution formula is obtained. These
algorithms are known as physical model-based dehazing

approaches, and they consist mostly of picture dehazing
techniques based on image depth of field and prior knowl-
edge. Dehazing based on image depth of field utilizes mostly
professional equipment or specialized algorithms to extract
the depth information of the image, calculates the parame-
ters in the hazy imaging model, and then derives the formula
to restore the hazy image. Oakley et al. [15] used the data
collected by the radar sensor on the aircraft to determine
the image’s depth of field information and then estimated
the transmittance to restore the image’s clarity. By analyzing
the link between light wavelength and picture contrast loss,
Tan et al. [16] optimized the technique described by Oakley
et al. and effectively used it to color haze image restoration.
Narasimhan et al. [17] investigated multiangle photographs
of the same scene in different weather conditions, calculated
the depth information of the image using the information
difference between the images, and then restored the haze-
free image. Kopf et al. [18] directly employed 3D technology
to determine the image’s depth of field to estimate the
image’s transmittance and restore its clarity. The method
based on prior information involves doing statistical analysis
on the image data, combining certain physical models to
propose some prior knowledge or assumptions, and then
using these priors and assumptions to dehaze the image.
He et al. [19] conducted statistical research on a large num-
ber of natural photos and discovered that in a limited local
region of RGB color photographs, there must be a specific
pixel in a specific channel whose pixel gray value is exceed-
ingly low, even approaching zero. This concept is known
as dark channel prior (DCP). Combining DCP and an atmo-
spheric scattering model, He et al. introduced a picture
dehazing technique based on DCP, which has a pronounced
dehazing impact and is recommended by a large number of
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Figure 1: The flowchart of our contrastive learning-based dehazing model, which consists of two encoders and one decoder, named Q, K ,
and D, respectively.
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Figure 2: The pipeline of multilayer perceptron (MLP).
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researchers. Additionally, several related better algorithms
are regularly proposed. However, the color of the image
dehazed by the DCP algorithm is typically dark. Due to the
flaws of the previous theory, the DCP method frequently
experiences distortion while dealing with clear sky and sea
surface regions. These methods begin with the principle of
dehazing, build a physical model to replicate the image deg-
radation process, and then use the model to restore a clear
image. The restored image created by adopting this method
for image dehazing appears more natural and retains more
of the original scene information. Due to the complexity of
the image dehazing problem and the imaging variations
between land and water scenes, the image dehazing algo-
rithm based on a physical model [15–22] has difficulties
for hazy water traffic scenes.

2.3. Deep Learning-Based Methods. Deep learning methods
have been successfully used in different fields based on com-
puter vision [23–36]. To distinguish the main core of the
dehazing method, we still list the methods involving learning
as a separate category, but the inclusion of enhancement-
and physics-based modules in the deep model will be
detailed. Cai et al. [23] employed convolutional neural net-
works for the first time in the task of image dehazing and
proposed the DehazeNet network model. This network
model estimates image transmission. The network model
outputs the transmittance corresponding to the hazy image,
then uses prior knowledge to estimate the atmospheric light
value, and finally uses the atmospheric scattering model to
restore the haze-free image. Ren et al. [24] developed a mul-
tiscale convolutional network model MSCNN for estimating
the transmittance of hazy image data. The MSCNN model
consists of two parts. The first part employs a larger convo-
lution kernel to extract image features to generate a coarse
transmittance map, while the second part employs a smaller

convolution kernel to optimize the coarse transmittance
map generated in the first part. Using a model based on
atmospheric scattering, a haze-free image is reconstructed.
The DehazeNet and MSCNN network models share a char-
acteristic. To train the neural network, it is necessary to pre-
estimate the transmittance of the training set images and
then use the estimated transmittance map to restore clear
images; however, multiple processing is susceptible to error
superposition. Li et al. [25] disregarded the global atmo-
spheric light and transmittance parameters in the atmo-
spheric scattering model, directly used convolutional
neural networks to learn the mapping from hazy images to
clear images, and trained an end-to-end image dehazing net-
work AODNet, as well as a network for image dehazing in
the cloud. It has been demonstrated that dehazing images
with the AODNet model can enhance the performance of
advanced vision tasks, such as object detection algorithms.
However, AODNet’s single network structure makes it chal-
lenging to deal with complex water hazy scenes, resulting in
subpar image performance after haze removal. Chen et al.
[26] proposed a model for dehazing the GCANet network
from end to end. In GCANet, smooth dilation is used to
improve the atrous convolution, which eliminates the image
grid artifacts that are easily generated during atrous convo-
lution, and a gated fusion subnet is employed to weight
and fuse the hazy image features extracted from different
layers of the network model. Although atrous convolution
improves the receptive field of the network, it also brings
additional computational effort. Zhang et al. [27] proposed
an end-to-end densely connected pyramid dehazing network
DCPDN by fusing a pyramid pooling module with a densely
connected module. Using dense connection blocks and a U-
Net structure, the network learns the transmittance and
atmospheric light value of hazy images and then outputs
the corresponding clear images. However, water hazy imag-
ing is complex and lacks reference depth information com-
pared to land. It makes it difficult to deploy DCPDN in
maritime intelligent supervision. The joint learning process
can ensure that the dehazing results learned by the network
model are more congruent with the physical model in use. Li
et al. [28] designed a generative adversarial network model
for image dehazing based on the concept of the conditional
generative adversarial network [29] and introduced VGG
image feature perception loss commonly used in image

Figure 4: Comparison of original image and image gradient.
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Figure 3: The pipeline of local feature comparison module.
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dehazing to the original GAN loss function and L1 gradient
loss to improve the effect of image dehazing. But it still
highly relies on paired data, resulting in poor robustness
and generalization ability. Ren et al. [30] first utilized image
white balance, contrast enhancement, and gamma correc-
tion digital image processing techniques to preprocess the
original hazy image, which can extract various color or con-
trast features within the image, and then input it as input. In
a network model with an encoding-decoding structure, the
network model estimates the weights of various transforma-
tions of the hazy image before outputting the corresponding
haze-free image via weighted fusion. However, when the
hazy imaging environment is complex, the weight distribu-
tion is difficult to balance the advantages of different image
processing techniques, and the generated dehazing images
are visually unnatural. Yang et al. [31] argue that different
statistically based priors are not applicable in all circum-
stances, but physical models can accurately describe hazy
images. Therefore, Yang et al. proposed the disentangled
dehazing network model, which directly designs different
modules in the network model to simultaneously estimate
the transmittance, atmospheric light value, and haze-free
images in the atmospheric scattering model without requir-
ing training with matching datasets. One can achieve a satis-
factory image restoration effect. There is the same limitation
as with DCPDN; the difficult-to-estimate depth information
on the water will cause the image after dehazing to display
excessive or insufficient dehazing. Engin et al. [32] proposed

an image dehazing model cycle-dehaze that is based on
cycle-consistent generative adversarial networks and does
not rely on estimates that are independent of atmospheric
light values and throw rates during training. When dehazing
high-resolution images, the image fusion technology based
on the Laplacian pyramid is utilized, which yields more
effective clear and haze-free images. However, the image
after cycle-dehaze dehazing will exhibit local color distortion
and abnormal contrast changes.

3. Contrastive Learning-Based Image
Dehazing Model

The abnormally dense water vapor in the water surface traf-
fic scene causes the water surface hazy image to be more dis-
torted than the land scene. The proposed contrastive
learning-based dehazing network framework can use both
hazy and clear images to train the network model, as both
positive and negative samples have been thoughtfully
designed. By comparing positive and negative samples, our
model can improve its ability to extract image features and
restore high-quality images of the water’s surface.

Contrastive learning first learns a general representation
of images from an unlabeled dataset, which is then fine-
tuned with a small number of labeled images to enhance
dehazing performance. Simply put, contrastive representa-
tion learning can be viewed as comparison-based learning.
Contrastive learning is acquired by simultaneously
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Figure 6: Examples of synthetic hazy images. (a) Original. (b) Synthetic hazy.
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Figure 7: Continued.
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maximizing the consistency between transformed views of
the same image (e.g., cropping, flipping, and color transfor-
mations) and minimizing the consistency between trans-
formed views of different images. In contrast, generative
learning is a discriminative model that learns a mapping of
certain (false) labels and then reconstructs the input sam-
ples. In contrastive learning, representations are acquired
through the comparison of input samples. Contrastive learn-
ing does not learn the signal from a single data sample, but
rather by comparing multiple samples. Through such com-
parative training, the encoder can learn image-level repre-
sentations as opposed to image-level generative models.

As shown in Figure 1, the contrastive learning-based
dehazing model proposed in this paper consists of two
encoders and one decoder (i.e., Q, K, and D). In the training
phase, the encoders Q and K, respectively, receive the hazy
image and the clear image as input, and then compare the
local and global features of the image features extracted by
the encoder based on the idea of contrastive learning. Fea-
ture maps are added to the feature queue, loss function com-
putation for contrastive learning, and gradient updates for
the encoder. Finally, the extracted features are converted
back to RGB images by the encoder D. In the inference test
phase, encoder K is no longer used, and only the combina-
tion of encoder Q and decoder D is used as the image dehaz-
ing model.

The contrastive learning-based image dehazing model
proposed in this paper is a typical encoder-decoder model.
The encoder accepts RGB images as input and extracts fea-
tures from the input images via a series of downsampling
and feature fusion modules. Typically, the image features
extracted by the encoder are more complex and abstract
expressions of the image that can represent the image’s most
essential characteristics. The model proposed in this chapter,
which introduces the concept of contrastive learning, utilizes
two encoders with the same structure to extract the features
of different samples. Encoders are used to extract the fea-
tures of the water surface hazy image and the water surface
clear image, respectively. If the hazy image and the clear
image on the water surface are from the same scene, then
the image features extracted by the encoder should be simi-

larly based on the concept of contrastive learning, and vice
versa. The encoder’s extracted features will be added to the
feature queue, which is used to compare the loss function
calculation and gradient update of the encoder. We use
two encoders to extract the features of clear and hazy images
that can assist the encoder in learning and expressing the
true scene information of the images. The decoder’s struc-
ture is the inverse of the encoder’s, and its purpose is to
restore the image features extracted by the encoder to a clear
image. Due to the multilayer feature fusion module, the
image features extracted by the encoder are more complex
and abstract. Residual connections are used to connect the
shallow output of the model to the decoder to better restore
low-level image characteristics such as texture and shape.

3.1. Global Feature Comparison. To maintain the consis-
tency of image feature distribution in the queue, it is neces-
sary to extract image features using a stable encoder.
Encoder Q is the model’s primary encoder and is influenced
by the gradient update. The change of encoder Q during
each iteration is uncontrollable, and encoder parameters
with significant changes will be incapable of producing
image features with consistent distribution. Consequently,
this model utilizes the momentum update method to update
the encoder K based on the encoder Q model’s parameters.
Compared to the encoder Q, the change in the encoder K
is more subtle and stable, and it can provide image features
with a consistent distribution when the number of iterations
is relatively similar. The mathematical representation of the
momentum update is as follows:

θK =m · θK + 1 −mð Þ × θQ, ð2Þ

where θK is the model parameter of the encoder K , Q is the
model parameter of the encoder Q, and m ∈ ½0, 1� is the
parameter of controlling the update speed, which is usually
set to a number close to 1 to control the slow change of
the encoder K .

The global feature comparison of the model in this chapter
is to use all the features of the extracted images for compari-
son. Suppose f q and f k are the encoder Q and the sample

(i)

Figure 7: Comparison experiment of different methods on synthetic hazy images in surface ship images. From top-left to bottom-right: (a)
synthetic hazy image and restored images, generated by (b) DCP [19], (c) nonlocal [37], (d) F-LDCP [20], (e) AODNet [25], (f) GCANet
[26], (g) MSCNN [24], (h) ours, and (i) ground truth, respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Continued.
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features extracted by the encoder K , respectively. Global fea-
ture comparison does not directly use f q and f k for feature
comparison, but first uses MLP (multilayer perceptron) to
remap the feature f q and f k to obtain new feature hq and hk
and then use hq and hk as a new feature for comparison loss
calculation and gradient return. Experiments show that by
nonlinearly transforming the features extracted by the encoder
through MLP, more advanced and abstract image features can
be extracted, and the performance of contrastive learning can
be improved. The image features extracted by the original
encoder are more suitable for image restoration tasks in addi-
tion to retaining the characteristics of contrastive learning.
The MLP network structure used in this chapter is shown in
Figure 2. We employ two “linear” and two “ReLU” operations
in the MLP to increase its ability to map the learning data. The
experimental results show that the nonlinear transformation
of the features extracted by the encoder through MLP can
extract more advanced and abstract image features and
improve the performance of contrastive learning.

3.2. Local Feature Comparison. Most existing dehazing tech-
niques only uniformly process the image as a whole, even
though land scenes typically contain a wealth of scene infor-
mation. Typically, images of water surfaces include expansive
views of the sky and the water’s surface. Scenes depicting water
surface traffic emphasize waterborne objects, such as ships and
shore structures. Different regions of the image contain dis-
tinct content and exhibit distinct properties. Therefore, using
only global features as the target of contrastive learning is
likely to result in insufficient dehazing of ships and other
image targets, resulting in the loss of local detail information.
The dehazing model for water surface images of water surface
traffic scenes proposed in this paper includes a local feature
comparison module to address the aforementioned problems.

This chapter proposes a local feature comparison mod-
ule that operates on the encoder’s initial two downsampling
modules. Since the pixel blocks in the same position of the
clear image and the hazy image of the same scene should
have the same texture features, the local feature comparison
module uses the pixel blocks in the same position of the clear

image and the hazy image of the same water scene as the
positive sample pair. As negative samples, pairs of pixel
blocks at distinct positions are used. According to the prop-
erties of the convolutional neural network, the features
extracted by the deeper network are more abstract, whereas
the shallower network can readily extract shallow features
such as texture, shape, and color. Therefore, the local feature
comparison module proposed in this chapter will operate on
the first two downsampling modules of the encoder. Figure 3
depicts the local feature comparison process within the out-
put features of the first downsampling module. Similar to the
global feature comparison module, MLP is used to remap
the output features before the local feature comparison, with
the remapped features serving as the comparison features for
calculating the loss function.

We use a randommethod to select pixel blocks guarantees
that each location within an image has an equal opportunity to
participate in local feature comparison. Due to the large pro-
portion of sky and water surface areas in the water surface traf-
fic scene, it is simple to randomly extract multiple sky area or
water surface area pixel blocks at once. According to the sam-
ple pair design of the local feature comparison module, pixel
blocks that belong to the sky area or the water surface area
(the characteristics can be considered consistent) will become
negative sample pairs, which does not meet the definition of
positive and negative samples and will impact the contrastive
learning model. To address this issue, this chapter uses the
gradients of the original image input as selection weights for
pixel blocks. As depicted in Figure 4, the sky area and water
surface area of the water surface image are typically flat, the
change in the picture is relatively gradual, and the gradient is
small, whereas the ships and other targets relevant to the water
surface traffic task exhibit a significant change in the image
and containmore images. The gradient is comparatively steep.
Assuming that the image contains a total of pixel blocks, the
gradient sum of the pixel block and its probability of being
selected for feature comparison are

p ið Þ = Ω ið Þ
∑N

l=1Ω lð Þ
: ð3Þ

(i)

Figure 8: Comparison experiment of different methods on synthetic hazy images in Inland waterway. From top-left to bottom-right: (a)
synthetic hazy image and restored images, generated by (b) DCP [19], (c) nonlocal [37], (d) F-LDCP [20], (e) AODNet [25], (f)
GCANet [26], (g) MSCNN [24], (h) ours, and (i) ground truth, respectively.
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(a) (b)

(c)

(d)

Figure 9: Continued.
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(e)

(f)

Figure 9: Continued.
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3.3. Feature FusionModule.The encoder-decoder of the image
dehazing model proposed in this chapter contains three fea-
ture fusion modules, respectively. As shown in Figure 5, the
feature fusion module includes a residual connection and a
feature attention module, in which the feature attention
includes a channel attention layer and a pixel attention layer,
which can more flexibly deal with haze in images on the water
surface areas with different concentrations. Residual learning
bypasses less important information such as mist or low-
frequency regions of the image through multiple residual con-
nections, allowing the model to focus on more effective infor-
mation, further improving network performance and training
stability. Due to the complex water surface meteorology and
the inconsistent effects of haze on different channels and dif-
ferent pixel positions, the use of channel attention layer and
pixel attention layer can guide the network to pay attention
to the information features of denser haze and high-
frequency areas of the image in the water surface image.

The flowchart of our contrastive learning-based dehaz-
ing model, which consists of two encoders and one decoder,
is named Q, K , and D, respectively.

3.4. Loss Function. The loss function L total of the image
dehazing model proposed in this chapter consists of four
parts, which can be given by

L total = ω1LG + ω2LL + ω3LM + ω4LP , ð4Þ

where LG is global feature contrast loss, LL is local feature
contrast loss, LM is mean square error loss, LP is percep-
tual loss, and ω1−4, respectively, represent the weight of each
loss function. We conduct multiple experiments to deter-
mine the weights of each loss function. The weights of ω1,
ω2, ω3, and ω4 are 0.5, 0.5, 0.05, and 0.01, respectively.

3.4.1. Global Feature Comparison Loss. To constrain the
model to learn image features better, this chapter uses the
InfoNCE loss function to calculate the global contrast loss.
According to the design of the positive and negative sample
pairs in this paper, the expression of the global feature con-

trast loss function is

LG = − log exp h xð Þ × h yð Þ/τð Þ
exp h xð Þ × h yð Þ/τð Þ +∑s

i=0exp h xð Þ × h yið Þ/τð Þ ,

ð5Þ

where x and y represent the hazy image and the correspond-
ing clear image, respectively, ð·Þ present the global image fea-
tures extracted by the encoder and MLP, τ is a constant and
is used to adjust the distribution of the loss, and s is the
number of image features contained in the feature queue.

3.4.2. Local Feature Contrast Loss. Since the water surface
traffic scene has few targets and a single scene, to make the
model better learn the information of the salient target area
in the image, this chapter proposes a local feature compari-
son module. Unlike the global feature comparison, which
uses the entire image as a comparison feature, the local fea-
ture comparison module focuses on the features of local
areas of the image and extracts features from the shallow
network of the encoder for comparative learning, which
can better learn the details and textures of the image struc-
tural information. The expression of the local feature con-
trast loss function proposed in this chapter is

LL = 〠
L

l=1
〠
N

i=0
− log

exp hl xi
� �

× hl yi
� �

/τ
� �

∑N
j=0exp hl xið Þ × hl yjð Þ/τ

� � , ð6Þ

where L represents the number of layers of the local feature
comparison module, and in this chapter L = 2. N is the num-
ber of pixel blocks of the local feature comparison module.
hlðaiÞ represents the local feature of the image extracted by
the ith pixel block of the image a in the local feature compar-
ison module through the encoder l layer and MLP.

3.4.3. Mean Square Error Loss. Mean squared error loss, also
known as L2 loss, is a commonly used loss function in image
restoration tasks. In the image dehazing task, the square sum

(g) (h)

Figure 9: Comparison experiment of different methods on real hazy images in marine ports. From top to bottom: (a) real hazy image and
restored images, generated by (b) DCP [19], (c) nonlocal [37], (d) F-LDCP [20], (e) AODNet [25], (f) GCANet [26], (g) MSCNN [24], and
(h) ours, respectively.
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(e) (f)

(g) (h)

Figure 10: Comparison experiment of different methods on real hazy images in maritime surveillance. From top to bottom: (a) real hazy
image and restored images, generated by (b) DCP [19], (c) nonlocal [37], (d) F-LDCP [20], (e) AODNet [25], (f) GCANet [26], (g)
MSCNN [24], and (h) ours, respectively.
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of the difference between the restored image and the clear
image is used as the error value, which can better constrain
the clear image restored by the model to be close to the real
image at the pixel level. The expression for the mean squared
error loss is

LM = y − x̂k k22, ð7Þ

where x̂ represents the clear water surface image finally out-
put by the model in this chapter.

3.4.4. Content-Aware Loss. Unlike the mean squared error
loss, which calculates the gap between the restored image
and the clear image, the perceptual loss calculates the high-
level perceptual and semantic difference between the
restored image and the clear image. We suggest perceptual
loss to constrain the high-level features of the image can bet-
ter preserve the image content and overall spatial structure
and generate images with good visual perception effects.
The content-aware loss proposed in this chapter uses a
VGG-19 network pretrained on the ImageNet dataset to
extract image features. The expression for the content-
aware loss is

LP = ϕ yð Þ − ϕ x̂ð Þk k22, ð8Þ

where ϕð·Þ represents the image features extracted by the
11th convolutional layer of the VGG-19 network.

4. Experiments

In this section, we conduct comparison experiments with six
classical dehazing algorithms to verify the effectiveness of
the proposed image dehazing model, including the physical
model-based (i.e., DCP [19], nonlocal [37], and LDCP
[20]) and the deep learning-based methods (i.e., AODNet
[25], GCANet [26], and MSCNN [24]). The results are then
evaluated in terms of both visual and quantitative metrics.

4.1. Dataset. The proposed contrast learning-based image
dehazing network enhances the hazy images on the water
surface by learning the transformation between hazy and
clear images, which requires a large number of paired water
surface images for network training. However, it is extremely
difficult to capture the paired hazy and corresponding clear
images of the same scene, which leads to a lack of real water
surface image dehazing datasets. To tackle this problem, we
employ synthetic methods to form a paired dehazing image
dataset artificially. The basic clear images are mainly
obtained from the OverwaterHaze dataset [38], the SeaShips
dataset [39], Singapore Maritime dataset [40], and newly
collected water surface traffic scene images.

To increase the diversity of data samples and improve
the robustness of the network, we employ deep learning
models and traditional methods to synthesize the hazy
images simultaneously. Some of the synthesized images are
shown in Figure 6.

4.2. Dehazing Performance. In this section, we select some
competitive and classic dehazing methods and test them

Table 1: Quantitate comparison on synthetic hazy images.

Metrics PSNR SSIM FSIM FSIMC VSI

DCP [19] 17:26 ± 3:70 0:818 ± 0:080 0:926 ± 0:040 0:922 ± 0:041 0:973 ± 0:015
Nonlocal [37] 17:62 ± 3:15 0:793 ± 0:111 0:905 ± 0:076 0:898 ± 0:077 0:964 ± 0:023
F-LDCP [20] 18:96 ± 4:79 0:860 ± 0:123 0:939 ± 0:078 0:933 ± 0:077 0:977 ± 0:031
AODNet [25] 18:09 ± 3:62 0:800 ± 0:133 0:883 ± 0:080 0:881 ± 0:083 0:968 ± 0:027
GCANet [26] 18:35 ± 4:60 0:823 ± 0:096 0:930 ± 0:037 0:920 ± 0:043 0:973 ± 0:020
MSCNN [24] 16:59 ± 4:36 0:809 ± 0:114 0:923 ± 0:059 0:920 ± 0:061 0:975 ± 0:019
Ours 23:95 ± 3:48 0:924 ± 0:065 0:980 ± 0:018 0:977 ± 0:020 0:992 ± 0:007

Table 2: Quantitate comparison on real hazy images.

Metrics BRISQUE BTMQI NIQE PIQE

DCP [19] 0:517 ± 0:153 4:216 ± 1:187 5:178 ± 1:363 53:251 ± 16:278
Nonlocal [37] 0:498 ± 0:090 2:940 ± 0:808 4:936 ± 1:680 53:986 ± 15:663
F-LDCP [20] 0:517 ± 0:120 3:451 ± 1:174 5:111 ± 1:686 54:715 ± 15:805
AODNet [25] 0:519 ± 0:153 4:945 ± 1:289 5:324 ± 1:505 48:814 ± 12:024
GCANet [26] 0:472 ± 0:119 3:547 ± 1:118 5:240 ± 0:949 49:630 ± 12:061
MSCNN [24] 0:492 ± 0:065 3:659 ± 1:490 5:565 ± 1:492 53:663 ± 12:747
Ours 0:536 ± 0:121 2:942 ± 1:097 4:800 ± 0:634 46:320 ± 10:253
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Figure 11: Examples of detection results on the dehazed synthetic hazy images. From top to bottom: (a) clear image, (b) synthetic hazy
images, and restored images, generated by (c) DCP [19], (d) nonlocal [37], (e) F-LDCP [20], (f) AODNet [25], (g) GCANet [26], and
(h) ours, respectively.
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on both synthetic and real images for comparison and then
analyze the experimental result from visual and quantitate
perspectives separately.

4.2.1. Visual Comparison. The comparison of synthetic hazy
images between the proposed and other methods is shown in
Figures 7 and 8. The output images of DCP, nonlocal, and
GCANet look a little dark and inaccurate, the sky areas suf-

fer from color deviation, and details are loss when the haze is
thick. AODNet and MSCNN keep the most details, but
when the haze becomes relatively thick, they cannot enhance
the images with excellent restoration. F-LDCP successfully
restores the hazy images with significant detail preservation,
but the image becomes too bright. Compared with these
methods, our proposed method dehazes the synthetic hazy
images naturally with closer results to ground truth.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 12: Examples of detection results on the dehazed real-world hazy images. From top to bottom: (a) real hazy images and restored
images, generated by (b) DCP [19], (c) nonlocal [37], (d) F-LDCP [20], (e) AODNet [25], (f) GCANet [26], and (g) ours, respectively.
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In addition to synthetic images, the proposed network is
also tested on real hazy images, the results of which are
shown in Figures 9 and 10. Due to the failure of the dark
channel theory in the sky and water surface regions, the
dehazing results of DCP in the water surface scenes look
dark. Besides, nonlocal and F-LDCP suffer from color dis-
tortion, and the recovered images of AODNet perform badly
in illumination, which leads to the vagueness of the ships.
GCANet suffers from severe noise interference, while
MSCNN is not able to reduce the noise sufficiently. Com-
pared with previous methods, our network has better visual
effects and makes the ships more prominent, which gives the
convenience of following visual tasks.

4.2.2. Quantitate Comparison. To verify the performance of
the proposed method, multiple quality evaluation metrics
are employed in the experiment, including PSNR, SSIM
[41], FSIM [42], FSIMC [42], and VSI [43]. FSIM evaluates
the image quality by calculating the similarity of the image
structure, which is the element that people pay more atten-
tion to in visual observation. FSIMC is the version of FSIM
that takes the color factors into consideration. VSI mainly
evaluates the image quality by comparing the difference
between the saliency feature maps of two images, which pays
more attention to prominent objects such as ships and buoys
in waterborne transportation scenes. The results of the
quantitate comparison are shown in Table 1. It is shown that
the proposed method achieves the best performance on syn-
thetic hazy images.

For testing on real hazy images, we introduced the NIQE
[44], BRISQUE [45], BTMQI [46], and PIQE [47] as quality
evaluation metrics, and the results are shown in Table 2. It
can be seen that our proposed method archived competitive
performance most of the time. The massive experiments
indicate that the dehazed image of our method contains less
noise with better image quality. Moreover, the structures of
the dehazed images are close to ground truth.

4.3. Results on Ship Detection with Synthetic Low-Lightness.
As an important means of waterborne transportation, ships
are the main targets of intelligent ships sensing and intelli-
gent maritime surveillance [47]. The current object detection
algorithms can detect ships accurately based on clear visual
data. However, the detection performance under hazy con-
ditions will be greatly reduced. In this section, we will inves-
tigate the effect on ship detection after dehazing processing.
To ensure the accuracy of the experiment, the experiments
will be conducted using synthetic hazy images and real hazy
images, respectively, and the detection algorithm we employ
is pretrained YOLOv5.

The experimental results are shown in Figures 11 and 12.
The bounding boxes indicate the location and the visual
length of the ship, and the text and numbers on the boxes
are the predicted categories and probabilities, respectively.
In both synthetic and realistic hazy images, the accuracy of
ship detection is greatly reduced, especially when the ships
are far from the camera or too dense to capture the ships
completely. The accuracy is significantly improved after the
dehazing process. Besides, compared with other methods,

the output dehazed images of the proposed method archived
better performance on detection tasks due to the outper-
forming visual effect.

5. Conclusion

In this paper, we first analyze the characteristics of hazy
maritime images and the reasons why existing dehazing
algorithms fail in such scenes. To solve the issue of image
dehazing in water surface traffic scenes, we propose a con-
trastive learning-based image dehazing model. To be special,
the dehazing model consists of a global feature comparison
module, a local feature comparison module, and a feature
fusion module, which can fully utilize the information of
hazy images and clear images to enhance the model’s dehaz-
ing performance. In addition, a hybrid loss function is intro-
duced to direct model training. Then, the water surface
image dehazing experiments using synthetic and real images
demonstrated that our dehazing model is capable of generat-
ing restored images with satisfying visual effects, as well as
having significant advantages in terms of objective evalua-
tion indicators. Experimental results demonstrate the supe-
rior dehazing ability of the proposed method, which
archived competitive performance on both visual and quan-
titative evaluation. Besides, the ship detection experiment
indicates that the dehazing effect of the proposed method
is beneficial for the subsequent visual task in the maritime
transportation system. However, there are still issues with
the visual perception system of water surface traffic scenes
that merit further investigation.

(i) The water surface traffic scenes obtained by intelli-
gent ships and intelligent supervision systems via
visual perception systems are typically in the form
of video media as opposed to still images. When pro-
cessing video dehazing, existing image dehazing
algorithms typically loop a single frame image.
When dealing with high-resolution video, it is diffi-
cult to meet real-time requirements using this tech-
nique. Consequently, research into video dehazing
techniques and the enhancement of video dehazing
performance is of great practical importance for
enhancing the usability of intelligent systems

(ii) Due to the complexity of the water traffic environ-
ment, in addition to haze, the visual perception sys-
tem is susceptible to adverse weather conditions,
such as rain and snow, and low illumination. The
method described in this paper can enhance the per-
formance of the visual perception system to a limited
degree, but it cannot eliminate the impact of harsh
environments. Therefore, studying more visual per-
ception enhancement technologies under the mixed
influence of severe weather conditions can effectively
enhance the visual perception capabilities of intelli-
gent ships and intelligent supervision systems, as
well as advance the development of intelligent ship-
ping technology
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