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Crack is a common concrete pavement distress that will deteriorate into severe problems without timely repair, which means the
automated detection of pavement crack is essential for pavement maintenance. However, automatic crack detection and seg-
mentation remain challenging due to the complex pavement condition. Recent research on pavement crack detection based on
deep learning has laid a good foundation for automated crack segmentation, but there can still be improvements. )is paper
proposes an automatic concrete pavement crack segmentation framework with enhanced graph network branch. First, the nodes
of the graph and nodes’ attributions are generated based on the image dividing. )e edges of the graph are determined based on
Gaussian distribution. )en, the graph from the image is input into the graph branch. )e graph feature map of the graph branch
output is fused with the image feature map of the encoder and then enters the decoder to recover the image resolution to obtain the
crack segmentation result. Finally, the method is tested on a self-built 3D concrete pavement crack dataset. )e proposed method
achieves the highest F1 and IoU (Intersection over Union) in the comparison experiments. And the graph branch addition
improves 0.08 on F1 and 0.06 on IoU compared with U-Net.

1. Introduction

Road infrastructure is an essential asset for a country, and it
can contribute to the economic development and bring
significant social benefits. Road density is adopted as a rating
criterion by the World Bank to evaluate low-income,
middle-income, and high-income economies [1]. Concrete
pavement is one of the main pavement types. )e concrete
pavement in the United States highway network accounts for
about 49 percent, and in Belgium they occupy 50 percent.
However, due to the severe traffic loading and the variable
environment, concrete pavement distress always appears
over the road operation time. Maintaining an acceptable
level of service for the whole road network is a challenge to
the transportation agency officials.

Pavement distress evaluation is the essential work for
pavement maintenance. )e transportation agency officials
regard pavement data collection as a regular work to grasp
the evolution of road conditions and make opportune work
to stop the deterioration of the distress. Efficient pavement
condition inspections and reasonable repair strategies can

lead to a significant reduction in life-cycle pavement
maintenance cost [2].

Pavement distress evaluation has undergone a long
period of development with the continuous advancement of
computer technology. Traditional distress inspections are
based on the manual visual survey, which is time-con-
suming. After that, a collection vehicle equipped with a high-
speed digital camera is invented to acquire the pavement
surface images at a high speed [3, 4]. )is method causes
little influence on traffic operation and is widely accepted by
the transportation agency officials. Recently, 3D technology
has attracted much attention. Compared with the 2D
technology, the pixels in the image captured by 3D tech-
nology describe the depth change relative to the reference
surface. )erefore, the 3D images of concrete pavement can
reduce the influence of surface oil and lighting conditions
and present more information on pavement distress [5–7].

Once the concrete pavement surface images are ob-
tained, the processing can be conducted to detect pavement
distress using various algorithms. Over the past decade,
there have been sufficient methods based on computer vision
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proposed to detect pavement distress automatically and
achieve excellent results, such as methods based on
threshold [8, 9], methods based on edge detection [10, 11].
However, the effects of most methods are easily influenced
by different pavement detection environments due to the
feature extraction based on manual design. )erefore,
semiautomatic pattern to pavement crack detection is in
current practice. In the semiautomatic approach, crack
detection algorithms are applied first, and then a series of
human interventions are conducted to manually adjust the
crack information and incorrect results. It is also time-
consuming.

Recently, with the success of deep learning methods,
especially Convolutional Neural Network (CNN) in com-
puter vision tasks [12], applying deep learning to automatic
pavement distress detection has become a spotlight. CNN
can automatically extract the features of objects in the
images with a structure similar to the human brain com-
pared to manually designed feature extraction in traditional
methods. In the current application, the deep learning based
pavement crack detection method can be divided into three
categories, e.g., patch classification [13], object detection
[14], and semantic segmentation [15]. )e patch classifi-
cation methods divide the pavement image into several
blocks of the same size and then classify each block into the
corresponding category.)e object detectionmethods frame
the crack in the pavement image using a bounding box.
Furthermore, the semantic segmentation methods classify
each pixel in the pavement image. Hence, the semantic
segmentation methods can achieve the pixel-level inspection
result and obtain more detailed characteristics of distress,
such as precise length and area of the crack. However, the
low accuracy and high false positives of the semantic seg-
mentation when the pavement conditions change limit the
promotion in practice.

Concrete pavement is a rigid pavement, while asphalt
pavement is a flexible pavement. Cracks have different
characteristics in different pavements. )e crack on the
concrete pavement has a more obvious and complex
boundary compared to the crack on the asphalt pavement
and often has a jump down in pavement depth changes. And
joints between the concrete blocks and the indentations in
concrete pavement cause the more complex surface texture
than asphalt pavement. )e complex texture will bring in-
terference to the identification of crack. Most of the research
on pavement distress and the pavement datasets constructed
nowadays focus on asphalt pavement distress [16, 17]. )e
effectiveness of transferring the method applied for asphalt
pavement distress detection to the concrete pavement is
substantially reduced. It is necessary to establish a concrete
pavement distress dataset and a method to detect cracks in
the concrete pavement.

In this work, a feature extraction branch based on graph
neural network is added to a typically semantic segmenta-
tion network to form a new end-to-end network structure.
And experiments are conducted on concrete pavement crack
segmentation to evaluate the performance improvement. In
this regard, the main contributions of this work can be
summarized as follows:

(i) A semantic segmentation network framework with
graph neural network branch is proposed to seg-
ment the concrete pavement crack. )e perfor-
mance of crack segmentation is significantly
improved based on the original segmentation net-
work. In addition, the inclusion of the graph branch
improves the continuity of crack segmentation.

(ii) A generation method to convert images into graphs
is designed, which enriches the feature map di-
mension of images.

(iii) A new dataset of 3D concrete pavement crack
images is established and applied to evaluate the
proposed network.

)e rest of this paper is organized as follows. Section 2
describes the related research on pavement crack detection
and the development of graph neural networks. Section 3
introduces the detailed architecture of the segmentation
network with graph neural network branch. Section 4
represents the experiment setting. Section 5 discusses the
experiment results. Finally, Section 6 concludes the work
and presents the findings of this research.

2. Related Work

2.1. Semantic Segmentation. )e semantic segmentation
method is the classification of the category for each pixel in
the image. )e fully convolution network (FCN) proposed
by Long et al. is the milestone for semantic segmentation
based on deep learning [18]. )ey apply a 1 × 1 convolution
layer instead of a fully connected layer as a classifier. Hence,
the output of the network is transformed from a vector to a
matrix, where the value of each pixel represents the prob-
ability that the corresponding pixel of the input image
belongs to a specific class. Moreover, an encoder-decoder
structure is added to the network design for semantic
segmentation [19]. )is structure can improve computa-
tional efficiency and reduce the overfitting problem. In
simple terms, the encoder process extracts the feature of the
input image by convolutional computation and pooling, and
the decoder process restores the feature map to a matrix with
the same size as the input by upsampling.

)e semantic segmentation method used in pavement
crack detection is to classify each pixel of the image into two
categories, crack pixel and none crack pixel. Due to the easy
obtaining of pavement crack’s geometric characteristics such
as length, area, and bounding box, semantic segmentation is
widely popular. Yang et al. offer an FCN-based method to
segment crack pixel in the pavement image and acquire the
length, width, and mean width of crack [20]. Liu et al.
develop a U-Net based model to segment concrete cracks
[15]. Qu et al. improve crack segmentation performance
with attention mechanism and apply their model in asphalt
pavement and concrete pavement crack segmentation [21].

2.2. Graph Neural Network. Graphs are all around us. )e
graph has two elements consisting of nodes and edges, which
represent a set of objects and the connection between them,
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respectively [22]. Anything with a connection relationship
can be described as a graph, e.g., image, text, and social
network. Motivated by the neural network and deep
learning, new significant operations have rapidly developed
over the past few years to handle the complexity of graph
data. Compared to the other networks, the graph neural
networks (GNNs) need two vectors or matrices as input,
representing the node and the edge attributes of the graph.
Sanchez-Lengeling et al. propose the Spectral network and
use a learnable diagonal matrix as the filter to process graph
[23]. However, the operation is computationally inefficient
and the filter is nonspatially localized. Inspired by the 2D
convolution in image computing, Kipf and Welling develop
the graph convolution operation to alleviate the overfitting
problem and promote the computationally efficiency [24].
To address the large-scale graph computation problem,
spatial approaches based on the graph convolution are
developed to adjust to different sized neighborhoods and
maintain the local invariance [25–27]. Zhang et al. improve
the graph network’s ability to extract node relationships by
adding a cross attention module and apply the graph net-
work to metro passenger flow prediction, achieving state-of-
the-arts performance [28, 29].

2.3. 3D Technology in Pavement Detection. )e 2D images
describe the grey-scale feature of the pavement surface,
which is the most used method in traditional pavement
distress detection. However, detection on 2D images is
susceptible to surface oil, pavement texture, lighting con-
dition, etc. 3D images describe the depth changes of pave-
ment surface, which can overcome the shortage above and
usually present more detail of distress like depth. With the
development of 3D sensors and image processing technol-
ogy, the potential of 3D measurement in pavement detection
has earned widespread attention. 3D technologies applied in
pavement inspection include 3D structure light [30, 31], laser
scanning [32], and binocular stereo vision [33]. )ere have
been attempts to combine 3D techniques and deep learning
methods for pavement inspection. Zhang et al. propose a
model called CrackNet based on a convolution neural
network to detect crack on 3D asphalt pavement image and
significantly outperforms the traditional approaches in terms
of F-measure [34]. Lang et al. develop a multiscale clustering
model for detecting different types of cracks, including linear
and netted types on the 3D pavement surface [35]. However,
most of the existing studies have focused on detecting asphalt
pavements and less on the detection of concrete pavement
distress. In this work, a concrete pavement dataset with 3D
images is built for pavement crack detection and validates
the accuracy of our proposed method.

3. Methodology

In this section, the graph neural network feature extraction
branch and the main body of semantic segmentation are first
introduced, respectively. )en, the proposed network
structure for crack detection on the concrete pavement is
described.

3.1. Graph Neural Network Branch. Adding new feature
extraction branches to enrich feature map information is a
common approach to improving the accuracy of semantic
segmentation networks. Image is similar to graph data, and
each pixel in the image can be regarded as a node in the
graph. )e relationship between every pixel can be con-
sidered as an edge in the graph, as shown in Figure 1. Note
that the generation of nodes and edges in a graph is designed
according to the realistic task. In this work, the node and its
attribute generate from a group of pixels in a region. )e
image with the size of 512 × 512 is divided into 1,024 (32 ×

32) patches with 16 × 16 size. Each patch forms a node, and
the mean value of the pixels in the patch is calculated as the
attribution of the node. In general, the neighbors of a node
can be the nearest neighbor node or the node in the interval,
even all other nodes. In this work, we assume that each node
connects to the node with the interval of D. )e connection
means that the nodes attribution can be transferred by the
edge in the graph neural network. )ere is an instance to
describe the neighbors of a node when the D is 2, as il-
lustrated in Figure 2. )e edge information will be respected
by the adjacent matrix as the input to the graph neural
network.

)e transform methods from image to graph including
the node generation and the edge generation are determined.
)en, the feature extraction branch is described. )is part of
the work is related to the GraphSAGE (Graph SAmple and
aggreGatE) method proposed by Hamilton et al. [25].
GraphSAGE is an inductive learning framework that can use
the vertice attribution to generate unknown node embedding.
)e feature extraction based on GraphSAGE can be divided
into three steps as illustrated in Figure 3. In the first step,
sample the local neighborhood and generate the embeddings
for nodes. Considering the computing efficiency, sampling
range K is proposed to control the number of neighboring
nodes sampled. According to the edge generation, a node has
at least 5 neighbors, and at most 12 nodes in this work. When
K is larger than the number of node neighbors, the sampling
with put-back is completed until K nodes are sampled, when
not, the sampling without put-back is used. In the second step,
choose an aggregator and aggregate feature information from
neighbors. Since the neighbors of the node in the graph are
disordered, the aggregator function needs to be symmetric,
whichmeans that the output of the function remains the same
when the order of the inputs changes. A mean aggregator is
applied in this step to connect the node and its neighbors and
calculate the mean value of each dimension of the node at-
tribution vectors. )rough an activate function layer, the
target representing vector of node is obtained. )is step is
equivalent to the convolutional computing for feature ex-
traction in a convolutional neural network. In the third step,
the aggregate information output from step 2 can be applied
to the downstream tasks such as classification and prediction.

3.2. Semantic Segmentation Main Body. )e semantic seg-
mentation task acquires a combination of local information
based on high-resolution images and global information
based on low resolution to classify each pixel. Common
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segmentation networks utilize an encoder-decoder frame-
work to obtain the features of different levels of different
scales. )e main body of the network structure proposed in
this work is related to U-Net with an encoder and decoder
framework [19]. )e U-Net structure is simple and easy to
modify, as shown in Figure 4. Symmetry is one of the
characteristics of U-Net. )e left of Figure 4 is the encoder,
while the right is the decoder. )e encoder is responsible for
the extraction of the image feature and the decoder is re-
sponsible for recovering the image resolution. In the en-
coder, there are five encoding blocks. Each encoding block
consists of one convolutional layer with kernel size of 3 × 3
(deep blue arrow) and one maximum pooling layer (red
arrow). )e rotated numbers represent the width and the
height of the images or the feature maps, while the normal
number represents the number of channels. )e convolu-
tional layers do not change the sizes and channel numbers,
but the maximum pooling layers do. After the maximum
pooling layer, the output is halved in width and height but
doubled in the number of channels compared to the input.)e
flow of the size and channel number is listed in order, 512×

512 × 16, 256 × 256 × 32, 128 × 128 × 64, 64 × 64 × 128, 32 ×

32 × 256, 16 × 16 × 512 (weight × height × channel number).
In the decoder, there are five decoding blocks correspondingly.
Each decoding block consists of one convolutional layer and
one deconvolution layer (light blue arrow). )e effect of the
convolutional layer in the decoder is the same as in the encoder.
)e deconvolution layer is to recover the image resolution in
the contrast to the pooling layers. After the deconvolution
layer, the output is doubled in width and height but halved in
channel number compared to the input. )e flow of the size
and channel number in 'decoder is list in order, 16 × 16 ×

512, 32 × 32 × 256, 64 × 64 × 128, 128 × 128 × 64, 256 × 256 ×

32, 512 × 512 × 16 (weight × height × channel number).
Different from the encoding block, the input in the decoding
block is not only the output of the upper decoding block but
also includes the output from the encoding block at the same
level. )is design facilitates the integration of high-resolu-
tion detailed features and the low-resolution semantic fea-
ture to promote performance. And the ReLu activate

function is added after each convolutional layer to boost the
nonlinearity of the network. In the end, a convolutional layer
with a kernel size of 1 × 1 is applied to classify the pixel into
the corresponding class. )e size of the output is 512 × 512
the same as the input.)e number of channels is 2.)e value
of each pixel in output represents the probability of the
corresponding pixel in the input belonging to a certain
category.

3.3. Network Structure. By integrating the graph network
branch in the U-Net, the network is developed, namely, GA-
Unet (Graph branch Added Unet). )e network structure is
illustrated in Figure 5. Firstly, the input image is processed
through the encoder in semantic segmentation main body

Node
Edge

Figure 1: Schematic of transforming an image into a graph.

Center node

Neighbor node with
connection to the center node
Node without connection
to the center node

Figure 2: Nodes and neighbor nodes. Blue represents the node has
edge to the red node. White represents the node has no edge to the
red node.
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and the graph network branch, respectively. In graph net-
work branch, the image input with 512 × 512 size is
transferred into a graph with 1024 (32 × 32) nodes and 5,174
edges. )rough sampling, aggregating, and predicting in the
graph network branch, the feature map with the size of 32 ×

32 is obtained at the graph level. )en, the feature maps
obtained by the graph branch and by the encoder are fused
after the first decoding block and input to the subsequent
decoding blocks.

4. Experiments and Results

)e proposed method was evaluated on the self-captured
concrete pavement crack dataset, namely, the CPC dataset.
)e performance of the proposed graph network branch was
evaluated by comparing it with U-Net methods.

Furthermore, the proposed network was implemented using
Pytorch on a personal computer with an Intel i7-11700K
CPU @3.60GHz, 64GB memory, and an NVIDIA RTX3090
GPU with 24GB memory.

4.1. CPC Dataset. )e CPC dataset consisting of 3D con-
crete pavement crack images is built to train and test the
proposed network in this work. )e detection vehicle can
scan the pavement at different collection speeds ranging
from 35 to 100 km/h (20 to 60mi/h). )e pixel resolutions of
the 3D pavement data are both 2048 × 2048, covering
pavement surfaces of more than 2m in width and 2m in
length. Moreover, the CPC dataset contains images with
various changes in pavement conditions aiming at the ac-
curacy of crack recognition.)ere is no overlap between any
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2 images, and no more than 50 images are from the same
pavement section. )e 3D pavement image input into the
network will be resized into 512 × 512 to reduce the
computational effort. )e final dataset consists of 1,452
images. After collection, the labeling work is conducted.
)e ground truth of cracks on all pavement images is
manually labeled on pixel level by our research team. To
ensure the accuracy of the ground truth, three rounds of
labeling work were applied. In the first round, several
well-trained operators label cracks manually on the
pavement image. In the second round, the operators in the
first round exchange their labeling results and check them.
In the third round, the experts further confirm the
availability of ground truth in each pavement image of the
entire dataset. And finally we get accurate ground truth
images. )e ground truth image is a binary image, in
which 0 represents the pavement background pixel and 1
represents the crack pixel. )en, the CPC dataset with
ground truth is divided into two parts, 1,352 images for
training and 100 images for testing.

4.2. Training Settings. )e input image size of the network is
resized into 512 × 512.)e epoch number is 300. And Adam
[36] is chosen as the optimizer with a batch-size of 1 and
weight decay of 0.00001. Training is started with a learning
rate of 0.00005. )e cross-entropy loss function is chosen as

the loss function in training, and the definition is shown in
the following equation

loss function � −
1
N



N

i

Yilog yi( , (1)

where N means the category number which is 7, Yi is the
ground truth representing whether the pixel belongs to
category i, 1 for yes and 0 for no. And yi is the prediction
probability that the pixel belongs to category i.

4.3. Evaluation Criteria. Four metrics are introduced to
evaluate the performance of crack semantic segmentation,
Precision (Pr), Recall (Re), F1, and Intersection over Union
(IoU). Precision describes the ratio of all pixels predicted to
be the crack type that is actually positive. Recall shows the
completion of crack prediction, which is a ratio of all crack
pixels in the image which is predicted to be crack. F1 is the
metric combining precision and recall. IoU calculates a ratio
between the number of true positives and the sum of the true
positives, false negatives, and false positives. )e definition
of Pr, Re, F1, and IoU are as follows:

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F1 � 2 ×
Precision × Recall
Precision + Recall

,

IoU �
GroundTruth∩Prediction
GroundTruth∪Prediction

,

(2)

where TP (True Positive) means the number of crack pixel
predicted to be cracks, FP (False Positive) means the number
of pavement pixel wrongly predicted to be cracks, FN (False

(a)

(b) (c) (d) (e) (f)

Figure 6: )e result of GA-Unet and U-Net at different epoch. (a) original pavement image. (b) ground truth. (c) the results at epoch 50.
(d) the results at epoch 100. (e) the results at epoch 200. (f ) the results at epoch 300. In (c), (d), (e), (f ) images, the upper line is the result of U-
Net, and the down line is the results of GA-Unet.

Table 1: )e comparison of the test results on the concrete
pavement image dataset.

Precision Recall F1 IoU
AutoEncoder 0.38 0.53 0.42 0.28
PSPNet [37] 0.65 0.44 0.52 0.35
U-Net [19] 0.67 0.37 0.45 0.31
KiU-Net [38] 0.38 0.69 0.46 0.31
GA-Unet(ours) 0.63 0.49 0.53 0.37
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Negative) means the number of crack pixel wrongly pre-
dicted to be pavement pixel.

5. Results and Discusses

To evaluate the performance of the proposed GA-Unet, the
test dataset selected from the CPC dataset is applied to

evaluate the network. )e following are the results and
discussion of the experiment.

5.1. Learning Process Experiment. Figure 6 shows the result
of U-Net and GA-Unet at different epochs. )e effort of
concrete pavement crack segmentation is improving and the

(a) (g)(c) (d)(b) (e) (f)

Figure 7:)e segmentation results. (a) the original image, (b) the results of AutoEncoder, (c) the results of PSPNet, (d) the results of U-Net,
(e) the results of KiU-net, (f ) the results of GA-Unet, (g) ground truth of crack in pavement image.
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results become closer to the ground truth with the epoch
increasing regardless of the U-Net or GA-Unet. However,
the GA-Unet is more accurate than U-Net for the same
training epoch. )e addition of the graph branch can im-
prove the learning ability, enhance feature extraction ca-
pability, and boost the convergence speed.

5.2. Comparison Experiment. )e comparison experiment
between the AutoEncoder, PSPNet [37], U-Net [19], KiUnet
[38], and GA-Unet is conducted, and the results are illus-
trated in Table 1 and Figure 7. AutoEncoder is the simplest
segmentation network with only an encoder and decoder
structure. U-Net is the segmentation backbone in KiU-Net
and GA-Unet. KiU-Net adds an over-complete represen-
tation branch based on U-Net to promote the performance.
GA-Unet adds the graph network branch to enrich the
feature represents.)e U-Net can be regarded as the original
semantic segmentation network compared to the GA-Unet.
)e comparison result between U-Nnet and GA-Unet can
verify the validity of graph network branch. )e perfor-
mance is represented by fourmetrics, and the optimal results
have been highlighted in bold in Table 1. GA-Unet achieves
the optimal results in the metrics of F1, and IoU, which are
0.53 and 0.37, respectively. In addition, GA-Unet has a
significant improvement in Recall, F1, and IoU metrics
compare to the U-Net, which is increased by 0.12, 0.08 0.06.
Although GA-Unet is weaker than U-Net in terms of

Precision and KiU-Net in terms of Recall, GA-Unet achieves
better performance in segmenting cracks in concrete
pavement in general. Figure 7 shows the comparison be-
tween the segmentation image of PSPNet, U-Net, and GA-
Unet. )e quality of the crack segmentation conducted by
GA-Unet achieved better results than U-Net under different
conditions.

5.3. Discussion. Convolutional computation is a common
image processing method widely used in computer vision as
a feature extractor for images. However, the convolutional
network often uses the convolutional kernel with a small size
(usually 3 × 3), which may lead to the problem of large and
long object detection such as crack. )e graph represents the
relationship between nodes. Transforming the image into a
graph can generate the connection between every region of
the image. )en, the feature maps processed by the graph
branch represent the relationships between regions and
describe the characteristic of cracks at large scales, such as
whether the cracks span multiple regions. )is design is
validated in Figure 7. Note the first four images are typical
cases of single long crack segmentation, including transverse
cracks and longitudinal cracks. )e segmentation results by
GA-Unet are more continuous than the U-Net model, which
means the relationship between the regions extracted by the
graph branch can enhance the detailed segmentation of
continue cracks.

(a) (b) (c)

Figure 8: Typical errors resulting from PDSNet. (a) pavement images, (b) GA-Unet, and (c) ground truth.
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Moreover, it is impressive that adding a graph branch
can improve the robustness of the network.)e fifth and last
two images show the results in light crack segmentation and
the multiple cracks segmentation. )e result of GA-Unet is
significantly outstanding than the other methods. Although
there is a disparity between the results of GA-Unet and the
ground truth, the potential of adding graph branches has
been validated experimentally.

However, compared to the ground truth, the GA-Unet
can still be improved. In the first row of Figure 8, the
concrete joints are identified as cracks, due to the similar
feature between joint and crack. )e joints can be con-
sidered as a separate category for detection to reduce the
mistake of cracks. In the second row in Figure 8, the pixels
of the shallow crack are ignored by GA-Unet method, and
the same situation appears in the left crack in the last row.
)is indicates that the feature extraction branch in the GA-
Unet is not effective enough in extracting shallow cracks,
and the next step can be considered to enhance the feature
of shallow cracks and improve the feature extraction
branch. In the last row of Figure 8, the performance of GA-
Unet is worse at the junction of shallow and heavy cracks
and inside the severely broken area, which may be influ-
enced by the deeper crack, and the accuracy of the sur-
rounding shallow crack is inhibited, so we can consider the
post-processing methods to make corrections, for example,
using the CRF (Conditional Random Field) method to
cluster the surrounding pixel with similar feature to im-
prove the effect.

6. Conclusion

In this work, an end-to-end concrete pavement crack
segmentation network called GA-Unet is proposed, for
which a graph feature extraction branch is developed. )e
image can be processed as a graph through the graph
generation method. )e graph branch extracts the detailed
graph features of the concrete pavement crack. )e graph
feature is fused with the image feature extracted by encoder
structure, which is helpful to improve the continuity of
crack segmentation. After the feature fusion, the new fea-
ture map is applied to the decoder to complete the
segmentation.

)e crack segmentation methods based on deep learning
need sufficient data to support training. Hence, a concrete
pavement 3D image dataset has been built. Furthermore, we
evaluate our method on the dataset. )e results of experi-
ments prove that the graph branch can significantly improve
the performance of crack segmentation based on the existing
network.
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