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With the advent of the data-driven era, deep learning approaches have been gradually introduced to short-term traffic flow
prediction, which plays a vital role in the Intelligent Transportation System (ITS). A hybrid predicting model based on deep
learning is proposed in this paper, including three steps. Firstly, an improved Complete Ensemble Empirical Mode Decom-
position with Adaptive Noise (CEEMDAN) method is applied to decompose the nonlinear time series of highway traffic flow to
obtain the intrinsic mode function (IMF). *e fuzzy entropy (FE) is then calculated to recombine subsequences, highlighting
traffic flow dynamics in different frequencies and improving prediction efficiency. Finally, the Temporal Convolutional Network
(TCN) is adopted to predict the recombined subsequences, and the final prediction result is reconstructed. Two sensors of US101-
S on the main road and on-ramp were selected to measure the prediction effect. *e results show that the prediction error of the
proposed model on two sensors is notably decreased on single-step and multistep prediction, compared with the original TCN
model. Furthermore, the proposed improved CEEMDAN-FE-X framework can be combined with prevailing prediction methods
to increase the prediction accuracy, among which the improved CEEMDAN-FE-TCN model has the best performance and
strong robustness.

1. Introduction

With the development of the social economy, the existing
transportation supply has gradually been unable to meet the
increasing traffic demand. Urban traffic congestion is con-
tinuously aggravated, resulting in economic losses, envi-
ronmental pollution, and energy waste [1]. Intelligent
Transport System (ITS), as an essential part of traffic
management, combines the advanced technology of com-
munication, information, and artificial intelligence. ITS aims
to deliver real-time traffic information accurately to help
travelers better route planning. At the same time, it can also
improve the identification ability of traffic evolution trends
and particular traffic situations, support the traffic man-
agement department to give early warning and command of
emergencies, and effectively reduce casualties and economic
losses [2–4]. Specifically, one of the critical technologies of
ITS is short-term traffic prediction, which is the core of the
active control of urban traffic systems [5]. *rough the deep
excavation of big data, the inherent evolution law of traffic

flow can be mastered to achieve accurate and real-time
prediction, which provides precise travel information for
travelers and policy suggestions for managers to control
beforehand. Traffic prediction of different periods has its
application value. Short-term traffic flow prediction is es-
sential for the traffic control department and travelers. For
the traffic management department, short-term traffic flow
prediction can help identify the evolution of traffic flow to
formulate short-term traffic control measures such as lane
closure and ramp control in advance, effectively alleviating
potential traffic congestion. Besides, it can help travelers
better understand the operation condition of the road
network and make path planning accordingly [6–9].
*erefore, short-term traffic flow prediction is of practical
significance and worth studying.

Two methods have dominated traffic forecasting re-
search in the existing literature: statistical methods and
machine learning methods [10]. Statistical methods based on
linear statistics include the ARIMA method [11], Kalman
filter method [12], Markov chain method, etc. [13], which is
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more suitable for the road section with stable traffic con-
ditions. However, the traffic flow nonlinearity is prominent
when the prediction interval becomes smaller, resulting in
low accuracy. Because of the fluctuation of traffic flow, the
prediction method based on machine learning has drawn
increasing attention, through which the inherent law of
traffic data is excavated to capture the dynamics of traffic
flow. For example, Wu et al. applied Support Vector Re-
gression (SVR) to predict travel time andmapped the data to
a high-dimensional space for regression, achieving good
prediction results [14]. *e SVR model is robust to noisy
data and is more suitable for a small sample size. Cai et al.
introduced K-Nearest Neighbor (KNN) model to realize
multistep prediction on space and time, but the time
complexity of calculation was high [15]. Besides, Csikos et al.
constructed Artificial Neural Network (ANN) to learn the
traffic speed dynamics through traffic speed samples in a
month for prediction [16]. In recent years, with big data
acquisition, deep learning models can capture more complex
traffic features and have prospective applications [17, 18]. As
one of the most typical methods, the Recurrent Neural
Network (RNN) has a circular structure different from
ANN. By feeding back the hidden layer information of the
last moment to the input of the current moment, the
temporal correlation of the traffic flow can be captured [19].
Traditional RNN mainly includes three structures: Elman
Neural Network [20], Time-Delay Neural Network (TDNN)
[21], and Nonlinear Autoregressive with Exogenous inputs
Neural Network (NARX NN) [22]. Unfortunately, they all
result in gradient vanishing and explosion problems, making
it challenging to capture long-term information.

Nevertheless, it is shown that the traffic events that
occurred in the previous period usually impact the predicted
time, so RNN forecasting methods need to be further im-
proved. Ma et al. firstly applied Long Short-Term Memory
Neuron Network (LSTM NN) to predict traffic speed, which
realized the memory of helpful information in a short and
long time through the gate units and overcame the defect of
traditional RNN. *e results showed that the prediction
performance was significantly better than other prevailing
methods [23]. As the variant of LSTM, Gated Recurrent Unit
(GRU) simplifies the structure, improving the prediction
efficiency. Gao et al. combined GRU with MFD to forecast
the traffic speed [24]. Other improved models like Atten-
tion-Based LSTM [25, 26] and BiLSTM [27, 28] achieved
high accuracy on traffic prediction.

However, the process of RNN models is serial, meaning
that later timesteps must wait for their predecessors to
complete. For long-term sequence features capturing, RNNs
use up much memory to store the partial results for their
multiple cell gates. Convolution Neural Network (CNN) can
extract the information of the long-term sequence parallelly
because of the shared weights of the kernel [29]. As the
length of the sequence increases, the network is deepened to
learn the features, making it challenging to train. With the
causal and dilated convolution, Temporal Convolution
Network (TCN) achieves a flexible receptive field size,
capturing the long-term historical information by a simple
structure [30]. Zhao et al. improved the residual block of

TCN for faster training speed and applied it to traffic flow
prediction [31]. Zhang et al. used the genetic algorithm to
optimize the hyperparameters of TCN. *e results showed
that the prediction performance was significantly better than
other prevailing methods [32].

*e inherent changing law of traffic flow is complex,
consisting of various dynamics on different temporal scales.
Although the deep learning models can capture long-term
historical information, they need a deep network and take up
much training time and memory. *us, it is necessary to
decompose the traffic flow time series, which simplifies the
structure of prediction models and extracts features thor-
oughly and effectively. Huang et al. proposed Empirical
Mode Decomposition (EMD), which decomposed the trend
or fluctuation of different scales in signals consecutively to
generate a series of IMF with different frequencies [33, 34].
Unlike wavelet transform, it is an adaptive and data-driven
method without a defined wavelet basis. *eoretically, sig-
nals with nonlinearity and randomness can be decomposed.
However, the conventional EMD decomposes the signal
incompletely, causing mixing and false modes. *us, several
improved models were proposed to solve these problems
[35–38]. In recent years, EMD related methods have been
gradually introduced to traffic prediction. For instance, Wei
et al. combined EMDwith BackpropagationNeural Network
(BPNN) to predict the subway passenger flow, which showed
notable performance. Only modes highly correlated with the
original data were selected to improve the prediction effi-
ciency [39]. Likewise, Chen et al. applied Ensemble Em-
pirical Mode Decomposition (EEMD) to decompose the
traffic flow time series, removed the high-frequency mode,
and introduced LSTM NN to predict the left reconstructed
modes [40]. However, what cannot be ignored is that each
IMF plays an essential part in the time series, and the im-
mediate abandonment of some modes will lead to the lack of
detailed information on traffic flow features. Lu et al. applied
the XGBoost method to predict the traffic flow intrinsic
mode function (IMF) of each lane after Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN) [41]. Wang et al. combined CEEMDAN with
LSSVM to predict highway traffic flow [42]. Huang et al.
introduced K-means to cluster the traffic flow IMF
decomposed by CEEMDAN and predicted by BiLSTM [43].
However, the value of K has not been chosen with a the-
oretical basis, and the BiLSTM may take up much memory
usage.*oughmixingmodes were solved to some extent, the
residual noise and spurious modes remained. Also, the
prediction on every IMF resulted in poor efficiency.
Moreover, the in-depth change features of traffic flow may
not be captured because of the small training data size or
high memory usage.

*e existing research on the decomposition prediction of
traffic flow time series is insufficient and remains prelimi-
nary. Such problems as incomplete decomposition, low
prediction efficiency, high storage of memory, and the deep
capture of traffic flow dynamics need further investigation.
*erefore, in this paper, an improved CEEMDAN-FE-TCN
model is proposed to forecast highway traffic flow. First, the
improved CEEMDAN method decomposes the nonlinear
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highway traffic flow into IMF and residual with different
frequencies. Next, the fuzzy entropy (FE) of each mode is
calculated. IMF and residual with similar chaos are
recombined, highlighting the traffic dynamics. Finally, the
TCN is applied to predict the different recombined subse-
quences. After reconstructing the output of TCN submodels,
the predicted traffic flow is obtained. *e contributions of
the paper can be summarized as follows:

(i) *e improved CEEMDAN method is first used for
highway traffic flow decomposition. *e changing
features are decomposed to different temporal
scales, making TCN extract the dynamics
thoroughly.

(ii) *e FE difference of different modes decomposed
from the original data is calculated. On this basis,
the modes are recombined as subsequences, which
highlights the primary trend of traffic flow changes
and retains specific fluctuations. *e computational
complexity is reduced, and the forecasting efficiency
and accuracy are further improved.

(iii) *e proposed improved CEEMDAN-FE-X frame-
work can be applied to decrease the prediction error
of prevailing models notably. Moreover, the im-
proved CEEMDAN-FE-TCN model outperforms
other models compared in this paper, which has
strong robustness.

*e rest of the paper is arranged as follows: In section 2,
an improved CEEMDAN-FE-TCN model is proposed for
traffic flow prediction. Section 3, Section 4, and Section 5
introduce the improved CEEMDAN, FE, and TCN, re-
spectively. *e prediction effects of the proposed model are
verified on two sensors in Section 6. Finally, Section 7
summarizes the conclusions and future directions.

2. The Improved CEEMDAN-FE-TCN Model

In this paper, an improved CEEMDAN-FE-TCN model is
constructed for highway traffic flow prediction, which
contains three modules: improved CEEMDAN decompo-
sition, FE calculation, and TCN prediction.

TCN is applied as the core module to predict the
highway traffic flow. As a new neural network with a
convolutional structure, TCN has the advantages of large-
scale parallel processing of CNN and integrates themodeling
ability of sequential tasks, which makes up for the long-term
dependence problem of RNN [44]. *e RNN variants like
LSTM and GRU memorize part of the information through
the gated unit, while TCN can capture all the historical
information with better prediction and faster training speed
[30].

However, the traffic flow time series consists of different
temporal scaled changing features, causing fluctuation and
nonlinearity. It is challenging for TCN to extract the mixed
dynamics thoroughly. So, the improved CEEMDAN model
is adopted to decompose the sequence to IMF and residual,
making TCN capable of capturing the features on every
single temporal scale.

*e modes decomposed by improved CEEMDAN have
physical significance. Nevertheless, from the traffic point of
view, some IMF may be part of traffic flow dynamics on a
specific time scale. Besides, each IMF needs a corre-
sponding TCN submodel for training and predicting,
causing complex computation. *erefore, FE is introduced
to calculate the complexity of every IMF decomposed by
the traffic flow time series. *e sequences with close FE
have similar temporal scales and stationarity, indicating
that TCN will have the same feature extracting ability on
the recombined sequence as every single sequence. *e
recombination will highlight the changing features of traffic
flow and eliminate the accumulated error on multiple
similar sequences prediction. *us, the modes with similar
FE are recombined as the input of TCN, reducing calcu-
lation complexity and improving prediction efficiency and
accuracy.

*e output of every TCN submodel is the predicted
traffic flow on different time scales. After reconstruction, the
final predicted traffic flow is obtained.

*e framework of the proposed model is shown in
Figure 1.

*e procedures in specific are expressed as follows:

Step 1: the improved CEEMDANmethod is introduced
to decompose the original traffic flow time series to
obtain k IMF and residual with different frequencies.
Step 2: the FE of each mode is calculated. According to
the difference between the modes, the IMF and residual
with similar chaos are recombined to subsequences
(RS).
Step 3: the TCN submodules are adopted to train and
predict RS (1)-RS (n), respectively; then the prediction
results are reconstructed to obtain the predicted
highway traffic flow.

3. Improved Complete Ensemble Empirical
Mode Decomposition with Adaptive Noise

3.1. CEEMDAN Algorithm. *e CEEMDAN algorithm can
eliminate the mixing modes to some extent. Each IMF is
calculated through the residual signal by adding white noise
adaptively in the IMF decomposition process, reducing the
reconstruction error. *e method has good integrity and
reduces the number of integrations. *e specific steps are
shown as follows [37]:

Step 1: a series of Gaussian white noise is added
adaptively to the original signal x:

x
(i)

� x + β0ω
(i)

, i � 1, . . . , I. (1)

x(i) denotes the time series after adding white noise for
the ith time; β0 denotes the noise factor;ω(i) denotes the
white noise added for the ith time; I denotes the
number of integrations.
Step 2: the EMD algorithm is used to decompose x(i),
and the first EMDmode d

(i)
1 is averaged to calculate the

first CEEMDAN mode as follows:
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d̃1 �
1
I
∑
I

i�1
d(i)1 . (2)

Remove d̃1 from x to obtain the �rst residue as in

r1 � x − d̃1. (3)

Step 3: decompose r1 + β1E1(ω(i)) by the EMD algo-
rithm to obtain the second CEEMDAN mode:

d̃2 �
1
I
∑
I

i�1
E1 r1 + β1E1 ω(i)( )( ), (4)

where Ek(·) denotes the kth mode decomposed by the
EMD algorithm.
Step 4: repeat the following process to calculate the
remaining modes until the remaining residual cannot
decompose.

rk � r(k− 1) − d̃k, k � 2, . . . , K,

d̃(k+1) �
1
I
∑
I

i�1
E1 rk + βkEk ω(i)( )( ),

(5)

where K denotes the number of the CEEMDANmodes.

 e �nal residual is calculated as

rK � x − ∑
K

k�1
d̃k. (6)

 e original x can be expressed as

x � ∑
K

k�1
d̃k + rK. (7)

Original time series of traffic flow

Improved CEEMDAN

...

...

...

...

Time series reconstruction

Predicted time series of traffic flow

Fuzzy Entropy

Step 1

IMF(1)

Recombined
subsequence

(1)

Input

Output

Input

Output

Input

Output

Input

Output

Predicted time
series of RS(1)

Predicted time
series of RS(2)

Predicted time
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Predicted time
series of RS(n)
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(2)
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(n-1)
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Figure 1:  e framework of the proposed model.
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3.2. Improvements on CEEMDAN. Although the CEEM-
DAN method has overcome mode mixing, residual noise
and spurious modes remain. On this basis, the improved
CEEMDAN algorithm was proposed, which has two per-
fections: One is to estimate the local mean of the signal plus
noise and define the difference between the current residue
and the average of its local means as the primary mode,
which reduces the residual noise existing in the decompo-
sition mode. *e other is to extract the kth mode by using
Ek(ω(i)) to replace white noise, reducing mode overlap.
*erefore, the improved CEEMDAN method is adopted to
decompose the original traffic flow time series. *e steps can
be described as follows [38]:

Define operator Ek(·) as the kth mode decomposed by
EMD, operator M(·) as the local mean of the mode, and
operator · as mean operation. *en, E1(x) � x − M(x).

Step 1: x(i) � x + β0E1(ω(i)) is constructed to calculate
the first residue:

r1 � M x
(i)

 . (8)

Step 2: the first mode can be calculated as
d1 � x − r1. (9)

Step 3: the second residue is estimated as the mean of a
series of r1 + β1E2(ω(i)) and the secondmode is defined
as

d2 � r1 − r2

� r1 − M r1 + β1E2 ω(i)
  .

(10)

Step 4: for k � 3, . . . , K, the kth residue is expressed as

rk � M rk− 1 + βk− 1Ek ω(i)
  . (11)

Step 5: the kth mode of the improved CEEMDAN can
be obtained:

dk � rk− 1 − rk. (12)

Step 6: go to Step 4 for next k.

4. Fuzzy Entropy

Fuzzy entropy (FE) measures the complexity of time series
and the probability of generating new patterns when the
dimension changes. *e higher the time series complexity,
the higher the entropy [45]. *e fuzzy membership function
is introduced to make the fuzzy entropy continuous and
smooth with the change of parameters, reducing the sen-
sitivity dependence on parameters, and the statistical results
are stable [46]. *e process of FE calculation is shown as
follows [47]:

Step 1: the dimension is set for the IMF of traffic flow
time series X � [x(1), x(2), . . . , x(N)], and the m-
dimension vector is constructed as follows:

Xm(i) �
x(i), x(i + 1), . . . ,

x(i + m − 1)
  − u(i). (13)

i � 1, 2, . . . , N − m + 1; then, u(i) can be expressed as

u(i) �
1
m



m− 1

j�0
x(i + j). (14)

Step 2: the distance dm
ij of vectors Xm(i) and Xm(j) is

calculated as

d
m
ij � max

k�1,...,m− 1

(x(i + k) − u(i))

− (x(j + k) − u(j))




 . (15)

i, j � 1, 2, . . . , N − m + 1, and i≠ j.
Step 3: introduce the membership function:

A(x) �

1, x � 0,

exp − ln(2)
x

r
 

2
 , x> 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)

r denotes the similarity tolerance parameter, which
means R times the standard deviation of the original
one-dimensional time series, namely, r � R × SD.
*e similarity between vectors Xm(i) and Xm(j) is
defined as

A
m
ij �

1, d
m
ij � 0,

exp − ln(2)
dm

ij

r
 

2
⎡⎣ ⎤⎦, d

m
ij > 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

Step 4: define function

C
m
i (r) �

1
N − m



N− m+1

j�1,j≠i
A

m
ij . (18)

*en,

ϕm
(r) �

1
N − m + 1



N− m+1

i�1
C

m
i . (19)

Step 5: go to Step 1 for next m.
Step 6: the fuzzy entropy of traffic flow time series can
be expressed as

FuzzyEn(m, r, N) � ln ϕm
(r) − ln ϕm+1

(r). (20)

5. Temporal Convolutional Network

TCN combines the advantages of CNN and RNN, which
capture the global information and process parallelly. It
contains three main modules: causal convolution, dilated
convolution, and residual block.
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5.1. Causal Convolution. When processing sequential tasks,
TCN needs to generate outputs with the same length as the
input. All data in causal convolution strictly follow the causal
relationship in time order, meaning that the value at time t
only depends on the information before time t. Because of
the strict time-constrained nature of causal convolution,
TCN ensures causality and prevents future data leakage.

5.2. Dilated Convolution. With the increasing length of the
sequence, the network is deepened to extract more features
of historical time, making it hard to train. In order to
simplify the network structure, the dilated convolution is
adopted, which enables an exponentially sizeable receptive
field. For a 1D sequence input x ∈R and a filter f: {0, . . .,
k − 1} ⟶R, the traffic flow F at time s is defined as

F(s) − x∗df( (t) � 
k− 1

i�0
f(i) · xs− d·i, (21)

where d is the dilation factor, k is the filter size, and s− d·i
indicates the past direction. *e structure of the causal and
dilated convolution is shown in Figure 2. With the dilated
convolution, the receptive field size of TCN is flexible,
making it easy to capture the features of the global long
sequence by a few hidden layers.

5.3. Residual Block. By learning the identity mapping
function, residual connection enables the network to
transfer information in a cross-layer way, increasing net-
work depth, improving accuracy, and simplifying network
training.

X is set as the input value of the residual module, and the
potential identity mapping function for cross-layer is F (·),
the result of which will be added to the input value X, so the
output value o of the residual module can be expressed as

o � Activation(X + F(X)). (22)

*e structure of a residual block is shown in Figure 3.

6. Empirical Study

6.1.DataDescription. In this paper, two sections on US101-S
in California were selected as examples to verify the effec-
tiveness of the proposed model. *e section where VDS No.
717490 locates is on the mainline, and the section where
VDS No. 718462 locates is on the on-ramp.*e locations are
shown in Figure 4, and the detailed information of the two
sensors is shown in Table 1.

*e datasets were collected by Caltrans PeMS (https://
pems.dot.ca.gov/) from 2018/8/1 to 2018/8/31.*e flow of all
lanes was aggregated into 5-minute intervals to reduce the
volatility of the data and ensure real-time prediction. *ere
were 8928 samples in each group of datasets. *e error and
loss rate was less than 2%, making it proper to be trained and
tested. *e training and testing datasets were divided by
2018/8/27. *ere were 7488 samples trained and 1440
samples tested in each group, as shown in Figure 5.

*e autocorrelation of the traffic flow data obtained by
VDS No. 717490 and VDS No. 718462 is shown in Figure 6.
As the time lag increases, the autocorrelation of both se-
quences decreases slowly. *erefore, they are nonstationary
time series with nonlinear changes which should be
smoothed. In addition, when the time lag increases to 40, the
autocorrelation is still over 0.3, indicating that the sequences
have a long-time dependence, so TCN is suitable for the
traffic flow prediction.

*e datasets were processed by TensorFlow2.0.0 and
Keras 2.3.1 and compiled by Python3.6. Four indexes were
introduced to measure the prediction accuracy: Mean Ab-
solute Error (MAE), Root Mean Square Error (RMSE),
R-squared, and Geoffrey E. Havers (GEH). *ey are cal-
culated as follows:

MAE �
1
n



n

i�1
yi − yi


,

RMSE �

�����������

1
n



n

i�1
yi − yi



2




,

R
2

� 1 −
i yi − yi( 

2

i yi − yi( 
2,

GEH �

���������

2 yi − yi( 
2

yi + yi



.

(23)

6.2. Traffic Flow SequenceDecomposition andRecombination.
*e improved CEEMDAN algorithm was adopted to de-
compose the traffic flow time series obtained by VDS No.
717490 and VDS No. 718492, respectively. *e 11 IMF and
one residual were arranged with different frequencies, as
shown in Figure 7.

*e IMF and residual with similar FE were recombined
to reduce the calculation complexity and increase the
forecasting efficiency and accuracy. *e mode FE and the FE
difference between different modes of the traffic flow se-
quences obtained from the two sensors were calculated, as
shown in Table 2, and the changing trend of FE is shown in
Figure 8. For VDS No. 717490, modes with FE differences
less than 0.1 were recombined. Similarly, for VDS No.
718462, 0.05 was the difference threshold of recombination.
*e recombined subsequences of the two sensors are plotted
in Figure 9.

Figure 9 shows that each recombined subsequence re-
flects part of traffic flow dynamics. For VDS No. 717490,
IMF1, IMF2, and IMF3 are high-frequency modes with high
FE and chaos. Although they are noise with poor predict-
ability, reflecting the randomness and nonlinearity of traffic
flow, the detailed information is contained. *erefore, they
need to be predicted, respectively.

*e FE of IMF4 is close to that of IMF5 and IMF6. *e
recombined subsequence reflects the specific daily change
characteristics of traffic flow. *ere are two peaks every 288
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data points, representing the morning and evening peaks of
tra�c �ow which have apparent di�erences. It is shown that
the morning peak �ow is higher than that of the evening on
weekdays, while on weekends, the two peaks are similar and
lower than those on weekdays.

 e FE of IMF7 is quite di�erent from IMF6 and IMF8,
re�ecting that the overall trend of daily tra�c �ow increases

�rst and then decreases. Together with IMF4, IMF5, and
IMF6, they are median-frequency modes with solid pre-
dictability and are the core of time series prediction.

IMF8, IMF9, IMF10, and IMF11, together with the re-
sidual, constitute the trend mode, re�ecting the weekly tra�c
�ow dynamics. It is shown that the tra�c �ow on weekdays is
relatively stable and higher than that on weekends.  e FE and
the chaos of the trend mode are low, and the predictability is
�rm.  e trend mode is the essential component of time series
prediction. It is worth noting that the data on 2018/8/21 were
unstable and �uctuant, so the corresponding subsequences of
IMF7 and IMF8+ IMF9+ IMF10+ IMF11+Residual changed
apparently on that day, causing disturbance to the original
changing cycle.

 e tra�c �ow obtained from VDS No. 718462 shows
similar changing characteristics to VDS No. 717490.
However, because the on-ramp only has one lane with more
unstable tra�c �ow, the �uctuation frequency is higher than
that of the mainline, resulting in weaker periodicity.

6.3. Highway Tra�c Flow Prediction

6.3.1. Hyperparameter Optimization.  e accuracy of each
prediction model is a�ected by various hyperparameters,
which should be optimized before the prediction. For TCN,
the number of �lters, time lag, kernel size, and dilation
factors are the crucial hyperparameters a�ecting the per-
formance.  e number of �lters determines whether feature
extraction is complete, the others a�ect the size of the re-
ceptive �eld, and all hyperparameters jointly in�uence the
prediction accuracy of TCN. GridSearchCV in the Scikit-
learn was imported to score the performance of di�erent
hyperparameters combinations of each prediction model
and search for the best hyperparameters by 10-fold cross-
validation.  e data range of di�erent hyperparameters of
each TCN module is shown in Table 3.

6.3.2. Results and Comparison.  e prediction e�ect can be
divided into vertical and horizontal comparisons.  e

Output
Dilation=8

Hidden Layer
Dilation=4

Hidden Layer
Dilation=2

Hidden Layer
Dilation=1

Input

Figure 2: A dilated causal convolution with dilation factors d� 1, 2, 4, 8 and �lter size k� 2 [48].

Dropout

Dropout 1×1 ConV

Relu

Relu

WeightNorm

WeightNorm

Dilated Causal Conv

Dilated Causal Conv

Residual block (k,d)

Figure 3: TCN residual block.

Figure 4:  e locations of VDS No. 718462 and VDS No. 717490
for testing.

Table 1: Detailed information on the two sensors.

Sensor ID Freeway Sensor position Lane number
717490 US101-S Mainline 5
718462 US101-S On ramp 1
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vertical comparison measures the e�ect of di�erent variants
of the TCN model, while horizontal comparison compares
di�erent baseline models for tra�c �ow prediction. Both
comparisons were analyzed to verify the superiority of the
proposed model. In addition, our experiment platform is a
personal computer with Core (TM) i3-8100 CPU@3.60GHz
and 8GB RAM. Python 3.6, TensorFlow 2.0.0, and Keras
2.3.1 are used to realize the models.

(1) Vertical Comparison of Di�erent Models Based on TCN.
 e modes and the recombination subsequences decom-
posed by VDS No. 717490 and VDS No. 718462 tra�c �ow
time series were predicted.  e error and training time is
shown in Tables 4 and 5, respectively.

 e results show that the recombined subsequences have
higher accuracy and less training time than the single IMF.
With recombination, the number of training models is re-
duced, and the computational complexity is decreased.

Despite the improved CEEMDAN algorithm, other methods
based on EMD are introduced to optimize the prediction
performance of TCN.  e results are shown in Table 6 and
Figure 10.

As shown in Figure 10, compared with the direct pre-
diction, the accuracy of decomposition prediction is notably
increased. With the improvement of EMD, the performance
of forecast is promoted. Speci�cally, for VDSNo. 717490, the
error of ICEEMDAN-TCN is reduced by 69% compared
with TCN. For VDS No. 718462, it is decreased by 59%.
Furthermore, recombining similar modes according to FE
can ulteriorly improve e�ciency and accuracy with less
calculation complexity. In terms of prediction e�ciency, the
training time of the model after the recombination is re-
duced by 34%–49%. From the perspective of prediction
accuracy, for VDS No. 717490, the error of ICEEMDAN-FE-
TCN is further reduced by 3% compared with ICEEMDAN-
TCN, and for VDS No. 718462, it is decreased by 5%.
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Figure 5: Training and testing datasets of (a) 717490 and (b) 718462.
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Figure 6: Autocorrelation of (a) 717490 and (b) 718462.
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Overall, the proposed model has the lowest error and the
least training time (except original TCN) on both sensors,
indicating the best goodness of �t. Aug 31, 2018, was taken as
an example to visualize the prediction performance of each
model, as shown in Figure 11. Since there is little di�erence

in visualization between X-TCN and X-FE-TCN, the X-FE-
TCN is representative.

 e prediction performance of the original TCN model
is approximately �tted to the actual data but has an apparent
time delay.  e reason is that the tra�c �ow time series
consists of changing features with multiple frequencies.
TCN cannot accurately capture the multiple-scaled dy-
namics, causing prediction error.  e EMD-based models
can decompose the sequence to di�erent IMF, making it
easier for TCN to learn the characteristics of every scale so
that the prediction performs better than the original model,
and the hysteresis can be e�ectively eliminated. Among all
the models compared, the improved CEEMDAN-FE-TCN
achieves the best performance because of the extraordinary
ability of decomposition. Besides, the �uctuation of ramp
�ow is more potent than that of the mainline �ow; the
proposed model also performs well on the ramp tra�c �ow
prediction, which appears to have strong robustness.

(2) Horizontal Comparison of Eight Di�erent Models.  e
tra�c �ow of VDS No. 717490 and VDS No. 718462 was
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Figure 7: IMF and residual of (a) 717490 and (b) 718462.

Table 2: IMF FE and the FE di�erence of 717490 and 718462.

717490 718462
i FEi FEi+1–FEi i FEi FEi+1–FEi
1 1.5412 0.4153 1 0.9249 0.3501
2 1.1259 0.5193 2 0.5748 0.2381
3 0.6066 0.2099 3 0.3367 0.0357
4 0.3967 0.0541 4 0.3010 0.0509
5 0.3426 0.0097 5 0.2501 0.0250
6 0.3329 0.1236 6 0.2251 0.0717
7 0.2093 0.1627 7 0.1534 0.0352
8 0.0466 − 0.0075 8 0.1182 0.1039
9 0.0541 0.0363 9 0.0143 0.0073
10 0.0178 0.0128 10 0.0070 0.0054
11 0.0050 0.0036 11 0.0016 0.0013
12 0.0014 12 0.0002
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predicted single-step and multistep ahead by TCN, LSTM,
GRU, SVR, and HA algorithms and their improved models
under the framework proposed in this paper.  e hyper-
parameters optimization method was mentioned in 6.3.1.
 e prediction error of each model is shown in Table 7 and
Figure 12.  e visualization is shown in Figures 13 and 14.

 e results above show that the tra�c �ow predicted
single-step and multistep ahead by di�erent algorithms
approximately �ts with the original data, and the prediction
accuracy obtained by decomposition forecasting is signi�-
cantly improved compared with the direct prediction.

From the perspective of one-step-ahead prediction, for
VDS No. 717490, the prediction accuracy of TCN is higher
than that of LSTM, GRU, SVR, and HA. Under the
framework of the improved CEEMDAN-FE-X, the pre-
diction error of TCN, LSTM, GRU, and SVR is sharply
decreased by 69%, 64%, 67%, and 44%, respectively. Among
all the models compared, the improved CEEMDAN-FE-
TCNmodel obtains the lowest MAE, RMSE, GEH average at
7.36, 10.34, and 0.39, respectively, and the highest R-square
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Figure 8: IMF FE of (a) 717490 and (b) 718462.
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Figure 9: Recombined subsequences of (a) 717490 and (b) 718462.

Table 3: TCN hyperparameters.

Hyperparameters Range
nb_�lters 16, 32, 64, 128
time_lag 10, 20, 30, 40
kernel_size 2, 3, 4, 5
dilation_factors {1, 2}, {1, 2, 4}, {1, 2, 4, 8}, {1, 2, 4, 8, 16}
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at 0.997. For VDS No. 718462, the prediction accuracy of
TCN is higher than that of LSTM, GRU, SVR, and HA.
Under the framework of the improved CEEMDAN-FE-X,
the prediction error of TCN, LSTM, GRU, and SVR is
sharply decreased by 59%, 55%, 54%, and 51%, respectively.
Among all the models compared, the improved CEEMDAN-
FE-TCN model obtains the lowest MAE, RMSE, GEH av-
erage at 2.10, 2.96, and 0.39, respectively, and the highest
R-square at 0.968. *ough the error of all models increases
with the prediction step prolonging, the proposed model
performs best on two-step and three-step ahead predictions,
indicating its goodness of fit on long- and short-term
predictions.

TCN, LSTM, and GRU all realize the memory of the
long-term changing features. *erefore, they appear to be
more accurate with the extensive training samples by
extracting deeper traffic dynamics than the SVR and HA
models, reducing the prediction error. However, unlike
the RNN models, TCN can capture the whole long-term
sequence features by convolving parallelly. So, it takes up
less memory and avoids forgetting information, which
thoroughly learns the global time series characteristics
and achieves more accuracy than RNN. Furthermore,
under the framework of the improved CEEMDAN-FE-X,
the TCN RNN and SVR models all perform better than the
direct prediction, which means the decomposition

Table 6: Prediction error and training time of different models based on TCN of 717490 and 718462.

Sensor ID Model MAE RMSE GEH (Average) R-Square Training time (s)

717490

TCN 24.98 34.33 1.31 0.9668 96∗
EMD-TCN 15.62 20.17 0.82 0.9885 450

EMD-FE-TCN 15.33 19.96 0.80 0.9888 262
EEMD-TCN 9.71 13.01 0.51 0.9952 467

EEMD-FE-TCN 8.76 12.07 0.45 0.9959 241
CEEMDAN-TCN 8.93 12.16 0.47 0.9958 413

CEEMDAN-FE-TCN 8.12 11.31 0.42 0.9964 231
ICEEMDAN-TCN 7.61 10.54 0.41 0.9969 364

ICEEMDAN-FE-TCN 7.36∗ 10.34∗ 0.39∗ 0.9970∗ 194
Sensor ID Model MAE RMSE GEH (Average) R-square Training time (s)

718462

TCN 5.31 7.01 1.00 0.8203 71∗
EMD-TCN 3.64 4.73 0.69 0.9180 455

EMD-FE-TCN 3.63 4.72 0.69 0.9186 298
EEMD-TCN 2.52 3.40 0.48 0.9577 464

EEMD-FE-TCN 2.49 3.38 0.47 0.9583 262
CEEMDAN-TCN 2.31 3.13 0.44 0.9642 446

CEEMDAN-FE-TCN 2.28 3.10 0.43 0.9649 236
ICEEMDAN-TCN 2.22 3.05 0.42 0.9660 380

ICEEMDAN-FE-TCN 2.10∗ 2.96∗ 0.39∗ 0.9681∗ 205
Note. ∗indicates the best results; ICEEMDAN means improved CEEMDAN.

Table 4: Prediction error and training time of TCN in different IMF of 717490.

IMF MAE RMSE Training time (s) IMF MAE RMSE Training time (s)
1 7.409 10.492 34.792 7 0.476 0.945 22.534
2 2.834 3.877 48.228 8 0.209 0.563 28.836
3 0.802 1.095 32.179 9 0.109 0.238 22.735
4 0.612 1.063 44.084 10 0.003 0.007 20.575
5 1.079 1.201 40.480 11 0.005 0.006 22.510
6 0.544 1.064 32.451 12 0.003 0.011 14.848
4 + 5 + 6 0.646 1.150 31.249 8 + 9 + 10 + 11 + 12 0.251 0.549 24.654

Table 5: Prediction error and training time of TCN in different IMF of 718462.

IMF MAE RMSE Training time (s) IMF MAE RMSE Training time (s)
1 2.088 2.981 33.178 7 0.063 0.108 30.771
2 0.596 0.817 42.502 8 0.063 0.119 36.728
3 0.207 0.257 44.560 7 + 8 0.049 0.077 32.792
4 0.046 0.107 38.292 9 0.001 0.002 14.703
3 + 4 0.172 0.241 44.404 10 0.001 0.001 20.681
5 0.056 0.072 42.712 11 0.001 0.001 30.917
6 0.017 0.025 30.733 12 0.001 0.001 14.653
5 + 6 0.054 0.092 29.380 9 + 10 + 11 + 12 0.001 0.003 22.835
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Figure 10: Prediction performance of di�erent models based on TCN: (a) 717490 and (b) 718462.
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Figure 11: Prediction performance comparison on Aug 31, 2018, of di�erent models based on TCN: (a) 717490 and (b) 718462.
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Figure 12: Prediction performance of di�erent algorithms: (a) 717490 and (b) 718462.
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Table 7: Prediction error of di�erent algorithms of 717490 and 718462.

717490 718462

Model Evaluation
criterion

One-
step

Two-
step

 ree-
step Model Evaluation

criterion One-step Two-step  ree-step

TCN

MAE 24.98 27.00 28.59

TCN

MAE 5.31 5.41 5.41
RMSE 34.33 36.79 38.75 RMSE 7.01 7.11 7.16

GEH (Average) 1.31 1.43 1.52 GEH (Average) 1.00 1.02 1.01
R-square 0.967 0.962 0.958 R-square 0.820 0.815 0.812

LSTM

MAE 26.22 27.56 28.80

LSTM

MAE 5.35 5.52 5.58
RMSE 35.83 37.74 38.91 RMSE 7.02 7.28 7.34

GEH (Average) 1.39 1.47 1.54 GEH (Average) 1.01 1.04 1.05
R-square 0.964 0.960 0.957 R-square 0.820 0.806 0.803

GRU

MAE 25.06 27.23 28.10

GRU

MAE 5.34 5.50 5.58
RMSE 35.03 37.88 38.99 RMSE 7.02 7.24 7.37

GEH (Average) 1.30 1.42 1.45 GEH (Average) 1.01 1.03 1.05
R-square 0.965 0.960 0.957 R-square 0.820 0.808 0.801

SVR

MAE 30.30 32.69 33.80

SVR

MAE 5.41 5.55 5.64
RMSE 39.33 42.53 44.15 RMSE 7.17 7.31 7.42

GEH (Average) 1.69 1.87 1.94 GEH (Average) 1.02 1.05 1.07
R-square 0.956 0.949 0.945 R-square 0.812 0.804 0.799

HA

MAE 31.92 33.70 35.55

HA

MAE 5.69 5.83 5.96
RMSE 44.89 47.70 50.66 RMSE 7.55 7.76 7.95

GEH (Average) 1.66 1.75 1.85 GEH (Average) 1.07 1.09 1.12
R-square 0.943 0.936 0.928 R-square 0.792 0.780 0.769

ICEEMDAN-FE-
TCN

MAE 7.36∗ 11.57∗ 13.87∗
ICEEMDAN-FE-

TCN

MAE 2.10∗ 2.97∗ 3.39∗
RMSE 10.34∗ 16.93∗ 19.09∗ RMSE 2.96∗ 3.99∗ 4.36∗

GEH (Average) 0.39∗ 0.60∗ 0.73∗ GEH (Average) 0.39∗ 0.56∗ 0.66∗
R-square 0.997∗ 0.992∗ 0.990∗ R-square 0.968∗ 0.942∗ 0.927∗

ICEEMDAN-FE-
LSTM

MAE 9.32 13.37 14.66
ICEEMDAN-FE-

LSTM

MAE 2.34 3.09 3.49
RMSE 12.61 18.25 19.71 RMSE 3.10 4.08 4.48

GEH (Average) 0.50 0.74 0.79 GEH (Average) 0.47 0.61 0.72
R-square 0.996 0.991 0.989 R-square 0.965 0.939 0.927

ICEEMDAN-FE-
GRU

MAE 8.41 12.32 14.91
ICEEMDAN-FE-

GRU

MAE 2.39 3.45 3.49
RMSE 11.68 17.26 20.12 RMSE 3.14 4.33 4.51

GEH (Average) 0.43 0.64 0.80 GEH (Average) 0.49 0.74 0.70
R-square 0.996 0.992 0.989 R-square 0.964 0.931 0.925

ICEEMDAN-FE-
SVR

MAE 17.13 26.08 28.95
ICEEMDAN-FE-

SVR

MAE 2.60 3.54 3.85
RMSE 22.31 33.57 36.40 RMSE 3.55 4.79 5.16

GEH (Average) 0.92 1.49 1.67 GEH (Average) 0.51 0.69 0.74
R-square 0.986 0.968 0.963 R-square 0.954 0.916 0.903

Note. ∗indicates the best results; ICEEMDAN means improved CEEMDAN.
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Figure 13: One-step ahead prediction performance comparison on Aug 31, 2018, of di�erent algorithms of 717490.
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prediction has the universality on di�erent prediction
models. What should be mentioned is that the proposed
framework has the best optimization e�ect on the TCN
model and has a better e�ect on the RNN model than on
the SVR model for both the mainline and the ramp �ow.
In conclusion, under the reasons mentioned above, the
improved CEEMDAN-FE-TCN outperforms the other
models compared in this paper on the highway mainline
and ramp tra�c �ow prediction.

7. Conclusions

In this paper, an improved CEEMDAN-FE-TCN model is
proposed to forecast highway tra�c �ow. First, the improved
CEEMDAN method decomposes the nonlinear highway
tra�c �ow into IMF and residual with di�erent frequencies.
 en, the FE of each mode is calculated, and the modes with
similar chaos are recombined as subsequences, highlighting
the tra�c dynamics. Finally, the TCN is applied to predict
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Figure 14: One-step ahead prediction performance comparison on Aug 31, 2018, of di�erent algorithms of 718462.
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the different recombined subsequences. After reconstructing
the output of TCN submodels, the predicted traffic flow data
is obtained. *e data of two sensors on US101-S: VDS No.
717490 and VDS No. 718462 collected from PeMS were
tested. Compared with other models, the following con-
clusions are drawn:

(1) *e improved CEEMDAN algorithm can decom-
pose the traffic flow time series with different fre-
quencies. *e accuracy of time series prediction after
decomposition and reconstruction is notably higher
than direct prediction. Compared with conventional
EMD-based models, the improved CEEMDAN-FE-
TCN obtains the lowest prediction error.

(2) *e FE algorithm can calculate the chaos of the
modes decomposed by the original data. By
recombining the modes with similar FE, the main
dynamics of traffic flow are highlighted while am-
plifying the details of fluctuations. *e prediction
efficiency and accuracy would be further improved.

(3) *e improved CEEMDAN-FE-X framework has
remarkable effects on single-step and multistep
traffic flow prediction. Under this structure, the
prediction accuracy of the TCN, LSTM, GRU, and
SVR models is significantly increased. *e proposed
model outperforms the other models in this paper on
the highway mainline and ramp traffic flow pre-
diction, confirming the robustness.

Studies can be combined with other aspects in future
work, such as adding spatial factors into the time series
prediction. Decomposing the spatiotemporal graph and
selecting suitable models for the subgraphs of different
frequencies to make predictions may improve accuracy.
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