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Improving traffic efficiency and safety is the goal of all countries due to the increasingly congested road environment worldwide.
%e progress of intelligence has promoted the development of the transportation industry. As the first step to intelligence,
perception technology is an important part to realize intelligent transportation. Accurate and efficient traffic management
systems, such as the automatic control of traffic lights at urban intersections or highway emergency disposal, need the support of
advanced environmental sensing technology. In the application of traffic perception, millimeter wave radar and camera are two
important sensors. Radar has been widely used in traffic incident perception due to its all-weather working capability; however,
there are problems such as inability to detect stationary targets and poor target classification performance. Camera has the
advantages of accurate target angle information measurement and rich details, but there are problems of inaccurate ranging and
speed measurement and performance degradation in harsh weather conditions. Considering the complementary characteristics of
the two sensors in information, an improved incident detection method based on radar-camera fusion is proposed. %is method
combines the advantages of millimeter wave radar and camera and improves the robustness of the traffic incident detection
system.%e detection performance is verified in the real experiment. %e results show that the detection accuracy of the proposed
fusion system is better than that of a single millimeter wave radar in all scenarios, and the accuracy is improved by more than 50%
in some cases.

1. Introduction

With the rapid growth of vehicle numbers worldwide [1],
the urban traffic system is facing more and more chal-
lenges such as traffic congestion, low traffic efficiency,
and traffic accidents [2–4]. %ese traffic problems will be
more serious in some emerging market countries whose
construction of transportation infrastructure cannot
keep up with the growth of the car numbers. %erefore,
the demand for efficient, intelligent transportation sys-
tem becomes urgent. In recent years, with the devel-
opment of information science especially machine
learning technology, the intelligence degree of the
transportation system is rapidly improved [5–9]. With

the introduction of intelligent technology, the trans-
portation system can reduce road congestion and im-
prove traffic efficiency, which has important social and
economic value.

In intelligent transportation system, efficient traffic
flow planning and control depends on sufficient and
reliable traffic perception data [10–12]. In the congestion
scenario, the dense traffic targets pose a challenge to the
perception techniques. Traffic jams generally occur in
areas with heavy traffic flow, such as intersections and
highways. Taking the intersection as an example, the
transportation department wants to know the real-time
situation of traffic flow and traffic incidents in order to
accurately allocate traffic light time, improve traffic
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efficiency, and reduce response time in case of traffic
accidents [13]. Generally, the categories of traffic inci-
dents include speeding, retrograde vehicle (i.e., vehicle
reverse traveling), illegal lane change, abnormal stop,
occupation of emergency lane, lane queuing, and in-
trusion in forbidden area, etc. [14, 15]. %e detection of
these traffic incidents needs the sensor to continuously
track the traffic target, obtain the change of the target
state over time, and then detect the possible incidents
according to the target state. %is requires the sensor to
have the ability to track the target within a certain range.

Traditional traffic sensing equipment such as geo-
magnetic coil [16] can sense the real-time traffic flow of a
road cross section; however, the sensing approach of the
geomagnetic coil obtains the limited amount of traffic
information and has the disadvantages of high con-
struction and maintenance cost, which makes less cost-
performance ratio. Moreover, coil solution cannot be
used for traffic incident detection which requires mon-
itoring large scenarios. %e new video perception tech-
nology [11, 17–19] can obtain the traffic state of a certain
area on the road, which is suitable for incident detection
at intersections and highways. Compared with the coil,
video greatly increases the amount of traffic information
available and then can detect traffic incidents. Research
on cameras has focused on vehicle detection [20–23] and
distance estimation [24–27], including optimization of
computational complexity and robustness. Because the
camera has rich image details, it has good performance
for target detection. However, it is difficult to accurately
estimate the specific location and speed of the vehicle for
traffic camera due to the lack of depth information. In
addition, video-based methods are more vulnerable to
weather and have poor performance over long distances.
In recent years, with the development of millimeter wave
(mmWave) chip technology, the difficulty of radar design
is reduced. More and more radar sensors are used in
intelligent transportation systems because of their good
all-weather working ability. In transportation applica-
tions, radar technology has evolved from a traditional
single velocity measurement function to a tracking
function for multiple traffic targets in a large area. It can
track traffic targets on the road in real time and obtain
accurate range information through direct measurement
and accurate velocity information by using the Doppler
principle, which provides the necessary information to
detect traffic incidents. Despite its advantages in ranging
and velocity measurement, radar still needs to face the
problems of low angular resolution, unable to detect
stationary targets and poor target classification ability.

In terms of the respective characteristics of camera
and radar, it can be found that their perception infor-
mation is complementary. Camera has absolute advan-
tages in angle resolution and target detail information,
and radar has advantages in depth information, harsh
environment, and long-distance perception. In order to
make up for the limitations of a single sensor, the fusion
algorithm of radar and camera sensors has been widely

studied [28–34]. For example, a simple coordinate
transformation calibration method of radar and camera
is proposed in [28], which marks the beginning of the
research on radar-camera fusion. Gao et al. [29] shows
the position information of each sensor on the grid cell of
the aerial view and obtains the vehicle position by
superimposing the information from radar and camera,
but the vehicle position may appear on multiple adjacent
grids in real application due to measurement error, so it
will produce uncertainty. Feng et al. [30] introduce
Kalman filter to improve this issue. In addition, some
studies try to improve the radar accuracy through the
symmetry of the rear [31], but these methods are easily
affected by occlusion or different viewing angles. In
general, most sensor fusion research focuses on im-
proving the detection performance through cross veri-
fication or reducing the computational load; the
weakness of each single sensor has not been funda-
mentally solved.

In this paper an incident detection approach is proposed
via the fusion of traffic environment perception data in-
troduced by mmWave radar and camera. %e incident
detection performance of radar sensors is analysed, and a
method based on the fusion of radar and camera is intro-
duced.%e fusion of the sensors can improve the accuracy of
incident detection in real traffic scenarios. Experiments with
measured data show the effectiveness of the proposed
method.

%e rest of this paper is organized as follows. %e
signal model and target tracking flow of frequency
modulated continuous wave (FMCW) mmWave radar is
introduced in Section 2. Traffic incident detection
method based on radar sensing data is introduced in
Section 3, followed by the fusion implementation of
radar-camera in Section 4. Experimental results in terms
of real scenario data and corresponding discussion of
performance are given in Section 5. Finally, some con-
clusions are drawn in Section 6.

2. FMCW Radar Signal Model and Target
Tracking Flow

In transportation perception, mmWave radar is usually used
for sensing the surrounding environment by emitting linear
frequency modulation (LFM) wave which is defined as

st(t) � Atsin 2π fc +
1
2

kt t , (1)

where t is the time, At is the transmitted signal amplitude
measured in units of volt, fc is the carrier frequency in
Hertz, and k is the frequency modulation slope measured in
units of Hertz per second. When the transmitted signal
encounters the target, it is scattered by the target to generate
echo signal which is received by the radar. %en the received
signal will be dechirped; i.e., the received signal is mixed with
a reference signal, to obtain the baseband signal which is
defined as
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where Ar is the amplitude of the echo signal measured in
units of volt, fb is the beat frequency in Hertz between the
transmitted signal and the echo, R0 is the target distant from
radar, v is the target radial velocity, c is the speed of light, λ is
the wavelength of the transmitted signal which equals
λ � fc/c, and fd is the Doppler frequency. It should be
noticed that tk is fast time which relates to the sampling time
inside the pulse and tm is the slow time which relates to the
pulse repetition interval (PRI), and τ is the propagation time
of the signal, caused by the target distance. According to (2),
the range and velocity of the target can be obtained by
performing 2-dimensional fast Fourier transform (FFT)
processing on the echo signal [33]. In the detection stage, the
radar equation can be used to calculate the signal-to-noise
ratio (SNR) of the target of interest, i.e., a specific radar cross
section (RCS) target such as vehicle or pedestrians. When
the SNR of the target echo in the received signal exceeds the
detection threshold, it is confirmed that the target exists.
Usually, the detection threshold is determined by the
constant false alarm rate (CFAR) method to ensure that the
false alarm is at a certain level [35].

When the radar has multiple antennas, supposing the
echo signal returned from the direction θ as shown in
Figure 1, considering antenna 0 as a reference, the signal
received by the nth antenna is

srn(t) � Arsin 2π fbtk − fdtm +
2R0 +(n − 1)dsinθ

λ
+ φ  ,

(3)

where n � 1, . . . , N is the antenna index in the array. %e
echo signal received by the antenna array is

sra(t) �

sr1

⋮

srN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

%en, the third FFTwill be applied to the received signal
along with the array, and the angle information of the target
is obtained. After obtaining the target’s range, velocity, and
angle information, Kalman filter is used to track the target
[36]. %e processing flow is shown in Figure 2 and the
following steps are performed:

(1) Cluster the detection points to merge multiple
scattered points of the same target

(2) Associate detections and tracking trajectory to make
sure the detection and trajectory from the same
target are matched

(3) Use Kalman filter to update the status of the tra-
jectory and the target information including filtered
range, angle, velocity, and target length are obtained

A typical protocol of radar output information is shown
in Table 1. In traffic applications, the data reporting period of
radar is about 100ms, which ensures the real-time per-
ception of traffic scenario.

3. Millimeter Wave Radar Traffic Incident
Detection Method

After obtaining the tracking result of the traffic targets, the
radar output information can be used for traffic incident
detection. %e incident detection can be divided into the
following categories according to the implement mechanism
and the type of used information.

Target direction

Radar normal direction

d sin θ

θ

0 1 2
d d

k N–1

Figure 1: Angle measuring diagram of antenna array.

Detection
results

Clustering

Track management

Detection-
Track association
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Target information

Figure 2: FMCW radar signal processing flow.
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(1) Trajectory-based incident detection.%is approach is
mainly using the target trajectory to determine
whether an incident has occurred, for example,
whether the trajectory deviates from the lane.

(2) Inference-based incident detection. When the target
is stationary, the target velocity is 0. In this case, the
target cannot be distinguished from the ground by
the difference in speed or distance. As a result, radar
cannot reliably detect the stationary target. %ere-
fore, incidents related to parking cannot be directly
detected. A feasible way is to conduct indirect de-
tection through the historical information of the
target, such as the relationship between trajectory
and velocity.

(3) Target classification-based incident detection. For
example, the detection of pedestrian entering the
highway is based on the results of radar target
classification.

%e traffic incidents to be detected in this work are
shown in Table 2. %ere are a total of three categories in-
cluding seven incident types.%ese incidents have important
reference value in law enforcement at intersections and
highway scenarios. For each incident, the application sce-
narios and sensor detection capabilities are given. For radar,
due to the inability of stationary targets detection, inference-
based incidents related to parking cannot achieve good
performance. As for the camera, the velocity measurement
of the target is less accurate due to the lack of depth in-
formation. It can be seen that the two sensors are com-
plementary in event detection capability.

Specific incident detection methods based on radar
tracking results are described in the rest of this section.

3.1. Lane Alignment. After obtaining the target tracks by
radar, it needs to map the target to the correct lane. %is
involves calibrating the position of the lanes relative to the
radar. %e typical installation of radar on roads is shown in
Figure 3. %e local coordinate system of the radar is XYZ,
where the radar is located at the origin O. Radar antenna
locates in XOZ plane, X is to the right, Y is the normal of the
radar antenna, and Z-axis, X-axis, and Y-axis meet the right-
hand rule.

Due to the existence of errors, after the radar is installed,
the normal direction and the road direction are not parallel,
which makes the target trajectory not in the correct lane. To
get the correct lane information output by radar, it is
necessary to offset the angle difference between the direction

of radar antenna normal and the road. %e calibration
process is shown in Figure 4 and implemented as follows.

(1) Set a test vehicle to drive a straight distance along the
lane line

(2) Record the trajectory of the test vehicle in the radar
local coordinate system, as shown by the green point
in Figure 4

(3) Use a straight line to fit the trajectory, as shown by
the red solid line in Figure 4

(4) Calculate the angle α between the trajectory line
(parallel to the red dotted line) and the Y-axis
(parallel to the solid blue line with arrow), which is
the correction value of the radar’s normal direction

(5) Correct the radar normal direction to parallel the
lane direction according α

3.2. Traffic Incident Detection by Radar Output. After lane
alignment, the lane label of each vehicle can be obtained by
the x value of the radar output, that is, the lateral position of
the target in the radar local coordinate system as shown in
Figure 3. Based on lane information and vehicle trajectory,
incident detection can be achieved.

3.3. Trajectory-Based Incident Detection. Trajectory-based
incidents mainly include speeding, retrograde vehicle, oc-
cupation of emergency lanes, and illegal lane changes. %e
detection approaches of these incidents are implemented as
follows:

(1) Speeding and retrograde vehicle. For a vehicle target,
when the current velocity is greater than the lane
speed limit, the target is considered to be over speed.
When the current velocity direction of the vehicle
target is opposite to the lane direction, the target is
considered to be retrograde.

(2) Occupy the emergency lane. As shown in Figure 3,
the emergency lane is on the left side of the road.
When the x coordinate of a certain vehicle is in the
emergency lane, it is considered that the vehicle
occupies the emergency lane.

(3) Illegal lane change. In this incident detection, the
lane change prohibited section is set up firstly. In the
process of radar tracking, if the lane label of a target
changes within the area where lane change is pro-
hibited, it is considered that an illegal lane change

Table 1: Radar output data format.

Data type Description
ID Target indication number
Velocity Radial velocity of target
Range Radial distance between target and radar
Azimuth %e angle between the target bearing and the radar normal
Length Radial length of target
SNR Signal-to-noise ratio
RCS Measure of a target’s ability to reflect electromagnetic wave
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incident has occurred, and the target ID, current
coordinates, and current time are recorded.

3.4. Inference-Based Incident Detection. Due to the limita-
tion of detection, i.e., radar cannot detect stationary targets
effectively, radar can only detect incidents related to sta-
tionary targets indirectly through inference. Inference-based
incidents include lane queuing and abnormal stop. %e
detection approaches of these incidents are implemented as
follows.

(1) Vehicle stop detection. %e detection of queuing and
abnormal parking depends on the historical infor-
mation of the target. Before incident detection, radar
needs to judge whether the target changes from a
moving state to a stopped state. To detect the stop
state, radar tracking data is recorded for a certain
period of time. When the target decelerates con-
tinuously over time and the target speed is below the
stop threshold at a certain time, the target can be
considered stopped.

(2) Lane queuing detection. During the tracking of
vehicle targets in a lane, the radar updates the state of
the vehicle in real time. When more than one vehicle
stops behind the stop line in a lane and the spacing
between the vehicles is below a distance threshold, it
is considered that there was a queue phenomenon.
%en the radar records the coordinates of the first/
last car and calculates the current queue length from
the position of the two cars. A schematic diagram of
vehicles queuing is shown in Figure 5.

(3) Abnormal parking. For a certain vehicle, if the fol-
lowing conditions are met at the same time, it can be
determined that abnormal parking occurs. %e three
conditions are as follows: (a) %e target vehicle is
stopped and the parking time exceeds a time
threshold. (b) Space occupancy rate of the lane,
where the parked vehicle is located, is less than a
threshold. In this case, it indicates that the lane is not
congested. (c) Other lanes in the same direction are
not congested.

3.5. Target Classification-Based Incident Detection

(1) Intrusion into the forbidden area: It is generally
considered the situation that pedestrians or non-
motorized vehicles enter the highway lanes. %e

X

Az

Target

Z

B

Y

Road lane

Radar installation height: h

O

Radar projection on the ground: A

Figure 3: Schematic diagram of radar installation position.

Table 2: Introduction to traffic incidents, application scenarios, and sensor detection capabilities.

Category Incident Radar Camera Applicable roadway

Trajectory-based

Speeding Excellent Fair City crossroads, highway
Retrograde vehicle Excellent Excellent City crossroads, highway

Occupation of emergency lanes Excellent Excellent Highway
Illegal lane changes Excellent Excellent City crossroads, highway

Inference-based Lane queuing Fair Excellent City crossroads
Abnormal stop Fair Excellent City crossroads, highway

Target classification-based Intrusion in forbidden area Fair Excellent City crossroads, highway

Vehicle

Y

Road 
lane

RadarO

X

α

Figure 4: %e schematic diagram of lane calibration.
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performance of such incident detection depends on
the target classification results. At present, the radar
classification performance of traffic participants does
not meet the demand [37].

4. Improved Radar Incident Detection Based on
Vision Fusion

In the traffic perception, the characteristics of radar and
camera are shown in Table 3. As mentioned in the previous
section, the shortcomings of radar in incident detection
include the following: (1) %e radar cannot distinguish
stationary targets from ground objects, so the detection of
stationary targets is limited. When detecting incidents based
on stationary targets, the effect will degrade. (2) %e amount
of information obtained by the radar is limited; thus the
target classification is not accurate enough.

As a complementation, camera can make up for the
shortcomings of radar [32, 38]. Due to rich details of targets,
camera has advantages in target classification and stationary

object detection. However, video-based traffic incident de-
tection is sensitive to the environment. When the weather or
light conditions are not good, the performance degrades
seriously. In addition, the measurement of target distance
and speed is also a weakness of video perception due to lack
of depth information.

Overall, the camera and radar can form a good com-
plement. Combining the two sensors, it is possible to obtain
higher traffic incident detection performance.

%e process of radar-camera fusion is shown in Figure 6,
and the method details are described in the rest of this
section.

4.1. Calibration of Coordinate between Radar and Camera.
In real scenario deployment, radar and camera are usually
mounted in the same location. %erefore, the radar coor-
dinate and the camera coordinate can be considered to
coincide at the origin. %e radar-camera coordinate system
is shown in Figure 7. %ere are three coordinate systems;
namely, radar coordinate system (RC) is XYZ, camera

Road lane

Stop line

d1

(x0, y0)

(xn, yn)

Y

X

O

Q
ue

ue
 le

ng
th

...
Figure 5: Schematic diagram of radar installation position.

Table 3: A comparison of camera and radar sensors [38].

Sensor characteristic Camera Radar
Range resolution Fair Excellent
Velocity detection Limited Excellent
Angle resolution Excellent Fair
Boundary Excellent Limited
Night operation Fair Excellent
Adverse weather Limited Excellent
Classification Excellent Fair
Stationary target detection Excellent Limited
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Figure 6: Radar-camera incident detection system flow.
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coordinate system (CC) is UVW, and image coordinate
system (IC) is uw. During installation, the horizontal error of
the sensors can be compensated by the level meter; namely,
the XOY andUOV planes are overlapped. As a result, the RC
and the CC only deviate in the azimuth angle; i.e., there is a
fixed angle between Y and V axis. When this angle error is
calibrated, the radar and camera have the same coordinate to
detect traffic targets.

Assuming there is a target at point P as shown in Fig-
ure 7, its coordinates is (uc, vc, wc) in CC and is (ui, wi) in
IC. According to the triangle relationship, uc, wc are

uc � vc

ui

f
,

wc � vc

−wi

f
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where f is the focal length of the camera. For traffic appli-
cation, the height of the radar above the ground can be
measured.%erefore,wc is known in CC.%e target position in
IC can be determined according to the computer vision
methods. For example, we use the YOLO algorithm to detect
the vehicle target in the video, and then the target position
(ui, wi) in IC is defined as the center position of the lower
frame of the target bounding box. %us the unknowns of the
equation set in (5) are uc and vc. %rough the above equation
set in (5), the target position in CC can be solved. Rewrite (5) as
follows; we can get uc and vc,

uc � ui

wc

wi

,

vc � −f
wc

wi

.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

In order to calibrate the azimuth angle between the radar
and the camera, the steps are implemented as follows:

(1) Set a testing vehicle traveling in a straight line, the
tracking results of radar and camera are recorded at
the same time as shown by the yellow and blue point
for radar and camera, respectively, in Figure 8

(2) Map the camera tracking trajectory to the radar local
coordinate system according to (6)

(3) straight line fitting to the trajectory of radar and
camera, respectively, as shown by the yellow and blue
dashed line in Figure 8

(4) Calculate the angle β between the two fitted lines
(5) Compensate the output target position of the camera

by β to obtain the spatially aligned data to radar

4.2. Traffic Incident Detection by Radar-Camera Fusion.
After calibration, the CC and the RC system coincide, and
the detection results of the radar and the camera are spatial
alignments. In a unified coordinate system, the fusion

Yes

No

Association
successful?

Radar
detection

Camera
detection

Yes

NoDoes the target state
satisfy the stop condition?

In the target information,
the X coordinate is taken
from the camera, the Y
coordinate is taken from
the radar, the speed is
taken from the radar,
and the target type is
taken from the camera.

No Yes

Is the radar target
extrapolated?

The target position
information of the
camera is used to update
the radar tracker, and
the filtered target
information is output

Output camera
target

Output radar
target

Figure 9: Radar-camera fusion flow.
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process of radar and camera is implemented as shown in
Figure 9, and the details are described as follows.

(1) Record the track list of radar targets. %e target track
results of radar are obtained by the Kalman filter as
described in Section 2, and the output data format is
shown in Table 1.

(2) Record the track list of camera targets. %e target
track results of camera are realized by the SORT
algorithm which uses a rudimentary combination of
the Kalman filter and Hungarian algorithm [39, 40].
%is tracking process is very similar to that of radar
and the performance is good enough in general
traffic scenario, in which vehicles and pedestrians are
usually in regular motion. %e output of the target
track includes the horizontal and vertical pixel lo-
cation of the center of the target, the scale (area) and
the aspect ratio of the target’s bounding box in IC,
and the target category. Correspondingly the target
position in unified coordinate can be obtained by (5)
and (6).

(3) Associate and match the radar target position with
the camera target position. Due to the difference
between the track results of the two sensors, target

association is required. Hungarian algorithm is used
to match the camera target to the radar target [41].

(4) According to the assignment results, the target in-
formation of the radar and the camera is fused
according to the process shown in Figure 9.

When the fusion information is obtained, the incident
detection can be achieved by the method proposed in
Section 3. Unlike the single radar detection, the target in-
formation at this time already includes the camera infor-
mation, such as the location of the static target and the target
category label. For the three types of incident detection
mentioned in Section 3, the benefits of sensor fusion are as
follows. (1) Trajectory-based incident detection: After the
fusion of target position from camera and radar, the target
track will be more robust, and the problem of target tra-
jectory interruption is reduced. As a result, the reliability of
incident detection is improved. (2) Inference-based incident
detection: Due to camera’s excellent detection performance
for stationary targets, the information fusion can greatly
improve the performance of inference-based detection; thus
better accuracy for queued and parking incidents detection
is obtained. (3) Target classification-based incident detec-
tion: Intrusion targets can easily be identified now due to

Figure 10: Crossroad scenario in day time.
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accurate classification performance of camera, and the in-
cident detection performance is improved.

5. Experimental Results

%e real scenario experiment is used to verify the traffic
incident detection performance proposed in this paper. Two
scenarios are selected for incident detection validation. %e
first scenario is a daytime crossroad, in which there is a
queue of vehicles due to traffic lights. Incidents related to
urban traffic are verified in this scenario. %e second sce-
nario is chosen at night, on a long road. It mainly verifies the
incident detection performance over long distances under
low light conditions, which simulated the incident detection

scenario of highway. In each scenario, a radar and a camera
installed at the same location are used for traffic data
collection.

%e relative accuracy rate (RAR) is used to evaluate the
performance of incident detection. In this experiment, for
each type of incident, more than 300 incidents are recorded,
and the RAR is calculated by the following formula:

RAR � 1 −
|n − N|

N
  × 100%, (7)

where n is the number of detected incidents, and N is the
number of incidents that actually occurred, i.e., the ground
truth. As can be seen from (7), the RAR is a description of

Radar-Camera
Set

40
 m

14
0 

m

Figure 11: Crossroad typology.

Table 4: Incident detection results in crossroad scenario.

Category Incident Radar Camera Radar-camera
fusion

Ground
truth

RAR of
radar

RAR of
camera RAR of fusion

Trajectory-based

Speeding 370 340 370 378 97.88 89.95 97.88
Retrograde vehicle 399 399 399 399 100 100 100
Occupation of
emergency lanes 351 369 369 370 94.86 99.73 99.73

Illegal lane changes 343 350 352 370 92.70 94.59 95.13

Inference-based Lane queuing 237 380 380 385 61.56 98.70 98.70
Abnormal stop 210 375 375 380 55.26 98.68 98.68

Target classification-
based

Intrusion in forbidden
area 531 374 374 380 60.26 98.42 98.42
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how similar the estimated value is to the true value, and it is
equal to 1 minus the relative error. %e relative error is the
ratio of the absolute error to the true value, describing the
difference between the estimated value and the true value.
When the relative error is equal to 0, it means that the
estimated value is equal to the true value, and the RAR is
100% in this case, which indicates that the system detects all
incidents that occurred. %erefore, through RAR, we can
quantitatively obtain the accuracy for traffic incident de-
tection. %e closer the RAR is to 100%, the higher the ac-
curacy of event detection is.

5.1. Incident Detection Performance in Real Crossroad
Scenario. %e test scenario is selected at a real crossroad as
shown in Figure 10 and the corresponding road topology is
shown in Figure 11. %ere are a total of nine lanes in the
scenario, of which five are coming direction and four are
going directions. We chose one direction of the intersection
as our test scenario. Along the radar line of sight, it is 140m
from the stop line to the farthest end of the road that can be
detected, which is a typical urban intersection. Traffic signal
lights are installed at the intersection. When the red light is
on, cars will queue up from the stop line. Besides vehicle
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Figure 12: Tracking result of radar.

Figure 13: Tracking result of camera. Incident detection performance for long road scenario in night.
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targets, there are other traffic targets such as motorcycles,
bicycles, and pedestrians. In this experiment, radar and
camera are installed on the overbridge facing the test road
and deployed at the same location as shown in Figure 10.

Total seven traffic incidents are evaluated, which include
speeding, retrograde vehicle, emergency lane occupation,
illegal lane changes, queuing, abnormal stop, and illegal
intrusion.

For speeding, retrograde vehicle, emergency lane oc-
cupation, and illegal lane changes, which are judged by target
trajectory, we manually configure certain thresholds to make
the targets meet the incident detection conditions to count
the detection accuracy. For example, we set the speed
threshold to 20 km/h; then the most of the vehicles on road
can be considered above the threshold. For retrograde, we
set the direction of one lane to be opposite to the real di-
rection, so that all the targets in this lane meet the retrograde
condition. For the emergency lane occupation, we set a
certain lane as the emergency lane, so that the targets in this
lane meet occupied condition. Similarly, for illegal lane
changes, setting a certain lane as the attribute that does not

allow lane change, then the lane-changing vehicle in that
lane can be regarded as the illegal lane change target.

For inferred-based incidents such as queuing and ab-
normal stops, we use real incidents to test. Every time the
traffic light turns to red, there may be car queuing on the
corresponding road and this queuing incident is used to
evaluate the detection performance. Unlike queuing inci-
dents, the abnormal stops are not common on actual roads,
so we use the bus station on the right side of the scenario
shown in Figure 10 to test abnormal stops. We set a short
time threshold of abnormal stops, so that the detection
condition can be met when the bus stops.

For illegal intrusion incident based on target classifi-
cation, we use pedestrians on the road for testing. %e
sidewalk area at the intersection is set as a forbidden area,
and the pedestrians crossing the street meet the incident
detection condition.

We counted the incident detection results of radar only
and camera only, respectively, and the incident detection
results of radar-camera fusion. %e results are shown in
Table 4.

Figure 14: Long road scenario in night.
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Since radar has better tracking accuracy for targets,
incident detection based on trajectory has achieved better
accuracy when using radar only. After fusion with video, the
accuracy of incident detection is slightly improved com-
pared to single radar. %is is due to the limited information
increment that video brings in terms of target trajectory. It
should be noticed that the accuracy of speeding detected by a
single camera is not high, since the camera has low accuracy
of target velocity measurement due to the lack of depth
information.

For the inference-based methods, the incident detection
performance of the fusion system is more greatly improved
than that of radar only in queuing and parking, since the
camera has a good detection effect on stationary targets. %e
tracking results of radar and camera on the targets are shown
in Figures 12 and 13, respectively. We manually marked the
tracking results of the radar with rectangular boxes of dif-
ferent colours as shown in Figure 12. It can be seen that the
radar has a better tracking effect for moving targets (red
boxes) on the lane. But for stationary targets (green boxes),
the radar did not output the corresponding trajectory. In
addition, it can be seen that the camera has a good tracking
effect on the targets as shown in Figure 13, including the
parking targets to be turned at the intersection.

As to target classification-based detection, such as pe-
destrian intrusion, due to the limited amount of information
obtained by the radar, the performance of target classifi-
cation is poor, and the false alarm rate for pedestrian in-
trusion incident is high, i.e., some left-turn vehicles with
lower radial speed were identified as pedestrians by radar.
After fusion with the camera, the accuracy of pedestrian
intrusion is greatly improved. %e same result can be seen
from Figure 13. Due to the advantages of video in the in-
formation of target details, the traffic target category can be
well recognized. Pedestrian and nonmotor vehicle targets are
marked as red boxes by the YOLO algorithm, while vehicles
are marked as green.

In order to simulate the highway scenario, a long road
without traffic lights is selected. In addition, considering
verifying the system’s working ability throughout the day,
the experiment is tested at night. In this scenario, the farthest
point of the road is 200m, and the location about 180m is
used for performance evaluation, which is shown by the red
line in Figure 14. %e topological structure of the long
straight road is shown in Figure 15. %ere are a total of four
lanes with a coming direction. %e system is installed on an
overpass, facing the middle of the road. Since there are no
traffic lights and no pedestrians on this road, we do not
evaluate the inference-based and classification-based inci-
dent detection performance in this experiment.

%e experiment results are shown in Table 5. Because of
the poor lighting conditions, the backlight effect caused by
car light, and the reduction of pixels of long-distance targets,
the target detection performance of camera degrades
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0 
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Figure 15: Long straight road typology.
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significantly, which further affects the incident detection
performance. In this case, the performance of the fusion
system is approximately equal to that of a single radar, that
is, the camera does not bring more performance
improvement.

6. Conclusions

In this paper, a traffic incident detection method based on
radar-camera fusion is proposed to improve the reliability of
traffic incident detection in urban intersection and highway
scenarios. To the shortcomings of radar perception, the
detection accuracy of lane queuing, abnormal stop, and
intrusion in forbidden area are improved by the fusion
system, since the lack of radar’s inability to detect stationary
targets and weak target classification capabilities are made
up. In the real scenario experiment, the RAR of lane queuing
detection was increased from 61% of single radar perception
to 98%, the RAR of abnormal stop detection was increased
from 55% of single radar perception to 98%, and the RAR of
intrusion in forbidden area detection was increased from
60% of single radar perception to 98%. To the shortcomings
of camera perception, the fusion system improves the speed
measurement accuracy of the target, which makes up for the
disadvantage that the camera cannot obtain depth infor-
mation. Meanwhile, the ability to work all day is obtained by
the fusion process compared to that of single camera, which
makes up for the problem of camera performance degra-
dation at night. In the real scenario experiment, the RAR of
speeding detection is increased from 52% of single camera to
94%. %e fusion incident detection system combines the
advantages of radar and camera, which can provide more
stable and reliable perception data and improve the safety of
the intelligent transportation system.

%e experimental results based on the real scenario show
the performance improvement of the fusion system in traffic
incident detection compared with the single sensor ap-
proach. However, in the scenario with large traffic flow and
dense target, there will be target matching error during the
fusion process. In response to this, we will study the accuracy
of target association in the future. In addition, the process
proposed in this paper is the fusion of two sensors at the
target trajectory level. In the future, we will explore the
process of fusing information at more primitive levels, such
as at sensor detections level or at digital signal level. %is
allows more useful information about the target to be
preserved and fused before tracking processing, so as to
further improve the performance of incident detection.
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