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Existing traffic flow prediction methods generally only consider the spatiotemporal characteristics of traffic flow. However, in
addition to the spatiotemporal characteristics, the interference of various external factors needs to be considered in traffic flow
prediction, including severe weather, major events, traffic control, and metro failures. The current research still cannot fully use
the information contained in these external factors. To address this issue, we propose a novel metro traffic flow prediction
method (KGR-STGNN) based on knowledge graph representation learning. We construct a knowledge graph that stores
factors related to metro traffic networks. Through the knowledge graph representation learning technology, we can learn the
influence representation of external factors from the traffic knowledge graph, which can better incorporate the influence of
external factors into the prediction model based on the spatiotemporal graph neural network. Experimental results
demonstrate the effectiveness of our proposed model.

1. Introduction

Accurate traffic prediction has become a core component of
intelligent transportation system (ITS) construction, provid-
ing a decision-making basis for traffic management and
helping improve residents’ travel efficiency. Many studies
have shown that there are many external factors (such as
weather, events, accidents, etc.) that have an impact on traf-
fic flow. Different types of POIs around traffic nodes can also
lead to different traffic flow patterns. With the continuous
development of intelligent transportation systems, more
and more factors affecting traffic flow can be collected. How-
ever, existing traffic flow prediction methods generally con-
sider learning spatiotemporal features from traffic data to
predict future traffic flow changes. These methods ignore
the exploitation of the influence of external factors on traffic
flow. Therefore, it is a challenging research problem to con-

sider these factors to obtain accurate traffic prediction results
fully.

The development of deep learning methods brings new
solutions to traffic forecasting. Generally, deep learning-
based methods build deep networks by stacking different
basic modules. Many architectures have been developed to
handle complex spatiotemporal data. Graph convolutional
networks can be used to model data in nonEuclidean space,
which is more suitable for road network structure or metro
structure in traffic flow prediction. Existing GCN-based
methods usually use a purely data-driven approach to learn
the spatiotemporal dependencies of traffic flow. Several stud-
ies attempt to exploit information from external factors in
traffic flow forecasting. However, these methods usually
directly encode external factors into representation vectors.
The representation of the traffic flow is directly concatenated
with the obtained representation vector in the prediction
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model. In large-scale traffic data, there are complex correla-
tions between external factors and the traffic flow of nodes.
Existing representation vectors of external factors are still
deficient in expressing their influence on traffic flow.

In order to deal with the limitations of data-driven fore-
casting models on the utilization of external factors, one
solution is to take a traffic knowledge graph composed of
various traffic factors into account when constructing a pre-
dictive model. Knowledge graphs store real-world concepts
and knowledge in the form of graph structures. The intelli-
gent transportation system has a wide range of data sources
and rich semantic information. The construction of a traffic
knowledge graph can help solve traffic problems by using the
traffic information contained in the data. The external factor
representation obtained by the existing methods cannot fully
express the impact on the traffic flow in the prediction
model. Knowledge graph representation learning provides
a new research direction for obtaining more useful semantic
representations. Knowledge graph representation can obtain
low-dimensional dense vectors, which provide better entity
representation and prior knowledge for machine learning
or deep learning models for downstream tasks.

The metro knowledge graph contains many influencing
factors related to the operation of the metro network, such
as weather, events, and POI (points of interest). We propose
a metro traffic flow prediction method based on knowledge
graph representation learning and spatiotemporal graph
neural network (KGR-STGNN). The knowledge graph rep-
resentation learning technique can be used to obtain the
low-dimensional vector representation of the knowledge
graph, and the representation of the entities and relation-
ships of the entire metro network can be obtained at regular
intervals. These semantic representations can fully represent
the correlation characteristics between external factors and
metro networks. Besides, this method utilizes Graph Neural
Network (GNN) to learn the spatial dependencies between
traffic flow sequences. Temporal Convolutional Network
(TCN) is used to learn the temporal features of traffic flow.
The dynamic semantic representation learned in each time
period is used as a part of the input, which is fused with
the traffic flow representation obtained through the spatio-
temporal learning module. Finally, a traffic flow representa-
tion including the influence of complex external factors is
obtained, to achieve a more accurate metro traffic flow
prediction.

The main goal of this research is to combine a knowl-
edge graph representation containing metro operation infor-
mation with a spatiotemporal traffic flow prediction model.
The main contributions of this study are summarized as
follows:

(i) A metro traffic knowledge graph is constructed, and
we propose a new metro traffic flow prediction
model based on this knowledge graph, which effec-
tively improves the modeling ability of the impact of
traffic events on traffic prediction

(ii) The knowledge graph representation model is used
to obtain the traffic knowledge representation at dif-

ferent times, which is significantly different from the
external factor utilization method in the previous
prediction model

(iii) A new metro traffic flow prediction model KGR-
STGNN based on knowledge graph representation
and spatiotemporal graph network is proposed.
Experimental results demonstrate the effectiveness
of using traffic knowledge in traffic forecasting

2. Related Work

In this section, we review related research on knowledge
graph and traffic flow prediction.

2.1. Traffic Knowledge Graph. In the field of knowledge
graph, early research mainly involves semantic networks
that contain a lot of information, such as WordNet [1], Goo-
gle Knowledge Graph [2], etc. The general knowledge graph
is built on the basis of a large amount of real-world data and
mainly focuses on the modeling and storage of knowledge in
a wide range and multiple domains. Domain knowledge
graph [3] is oriented to a single industry, which can realize
knowledge modeling and reasoning and provide help for
the analysis of industry problems and the formulation of
strategies, such as geographic information graph [4], medical
knowledge graph [5], and so on. In recent years, domain
knowledge graphs for a single industry have emerged con-
tinuously. Grainger et al. [6] automatically and dynamically
build domain semantic networks based on corpus data. Pan
et al. [7] use the linked data of large organizations to build
and deploy industry-oriented data. Li et al. [8] constructed
an e-commerce knowledge graph based on e-commerce data
to help understand user needs and improve recommenda-
tion effects.

The traffic field has a wide range of data sources and rich
semantic information. Building a traffic knowledge graph
can help solve traffic problems by using the traffic informa-
tion contained in the data. Muppalla et al. [9] used traffic
surveillance video data to build a video information graph
to help understand traffic patterns. Zhang et al. [10] pro-
posed an urban knowledge graph neural network model
(Urban Knowledge Graph Neural Network, UKG-NN) to
combine urban knowledge graph and neural network to
solve the problem of traffic accident reasoning and optimiz-
ing cargo storage. Keller [11] builds an air traffic knowledge
graph by fusing various aviation data, which provides help
for air traffic management. Zhou and Chen [12] constructed
an urban traffic knowledge graph containing various types of
urban knowledge, and combined the deep spatiotemporal
convolutional neural network (STCNN) to extract features
from the urban knowledge graph to achieve urban
congestion.

2.2. Precise Prediction of the Area. Zhu et al. [13] proposed a
traffic flow prediction method based on graph convolution
on the basis of knowledge representation driven. By con-
structing a traffic knowledge graph and using an entity-
attribute relation-based knowledge graph representation
model (KR-EAR) combines knowledge graph and
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information in the transportation network, the accuracy of
traffic flow prediction is effectively improved. Sun et al.
[14] constructed a traffic knowledge graph and an affair
graph based on open-source data and further used the traffic
knowledge graph to identify relevant traffic events in social
media data.

In general, the metro knowledge graph is of great signif-
icance to the construction of intelligent transportation sys-
tems, but there are few studies on the metro knowledge
graph, and the application form of the knowledge graph in
the transportation field is simple.

2.3. Knowledge Graph Representation. The purpose of
knowledge graph representation learning techniques is to
express semantic entities and relationships in knowledge
graphs as low-dimensional dense vectors [1]. The vector rep-
resentations obtained through knowledge graph representa-
tion learning can be used to compute complex semantic
associations between different entities and relationships in
the knowledge graph. On the basis of knowledge graph rep-
resentation learning technology, researches such as knowl-
edge graph completion, knowledge reasoning, and link
prediction are developing continuously [15]. Through the
obtained distribution representation, the heterogeneous
information in the knowledge graph can be fused to obtain
a more complex representation, which provides help for
downstream tasks.

Inspired by word embedding techniques in the field of
natural language processing such as word2vec [16], knowl-
edge graph representation learning methods have been
continuously proposed and practically applied. The most
widely used knowledge graph representation learning
direction is the TransE model proposed by Bordes et al.
[17]. The idea of this model comes from word vector rep-
resentation, and words with high semantic similarity also
have a relatively close distance in a low-dimensional vector
space. Bordes et al. project entities and relations into a
low-dimensional vector space and predict new knowledge
entities by summing entity vectors and relation vectors
to obtain new vectors. Although the TransE model has
the advantages of simplicity, effectiveness, and low compu-
tational complexity, it still has shortcomings in the repre-
sentation of complex relationships such as one-to-many,
many-to-one, and many-to-many. In order to improve
the representation of complex semantic relations, many
researchers have proposed a series of improved methods
based on the TransE model. Wang et al. [18] proposed
the TransH model to learn semantic representations of
complex relations between entities and by projecting
knowledge entities onto different planes related to the rela-
tions. Lin et al. [19] proposed the TransR model based on
the TransH model. The core idea of this model is to learn
different types of entity representations and relational rep-
resentations in different types of vector spaces, and then
map the entity vectors to the corresponding relational vec-
tor spaces for computation.

In conclusion, knowledge graph representation learning
provides convenience for the application of knowledge
graphs in downstream tasks. The use of metro traffic knowl-

edge graph also requires the help of knowledge graph repre-
sentation learning.

2.4. Traffic Flow Prediction. Traffic flow prediction is an
important research problem in the intelligent transportation
system. Traditional flow traffic prediction methods are
mainly based on statistical models. HA [20], ARIMA [21],
and VAR [22] are classic time series analysis methods based
on statistical models, widely used in traffic flow prediction.
However, these methods are generally designed for small
datasets and are not suitable for processing time-series data
with complex dynamic characteristics in large-scale datasets.
Machine learning methods such as SVR model [23], Bayes-
ian model [24], and k-nearest neighbor model [25] can deal
with modeling on complex data and can better reflect the
nonlinear and uncertain characteristics of traffic data. How-
ever, traditional machine learning methods usually only
consider the temporal information but ignore the spatial
dependence in the traffic data. Moreover, these methods rely
on the ability to design feature models manually and still
have limitations in modeling complex and dynamic traffic
flows.

Recently, deep learning methods have shown superiority
in traffic flow prediction problems. RNN [26] and its vari-
ants are widely adopted as a component of traffic flow pre-
diction models to capture the temporal dependence of
traffic data. LSTM [27] and GRU [28] further enhance the
RNN’s ability to model long-range time-series traffic data.
In addition, CNN [29] has also been proven to be effective
in time modeling. STGCN [30] uses convolutional networks
to extract temporal features from graph-structured traffic
data. GSTNet [31] and Graph Wavenet [32] use dilated
causal convolution to capture the temporal dependence of
transportation network nodes. Dilated causal convolution
[33] is a special CNN that effectively captures long-term
dependence by changing the size of the receptive field. In
terms of spatial dependency modeling, main studies use
CNN to model spatial correlation, but CNN is mainly
designed for modeling data in Euclidean space. Many
researchers have adopted GCN [34] to effectively handle
traffic data in nonEuclidean space to address this limitation.
For example, STGCN [30] and TGCN [35] use GCN to learn
the topological structure of the traffic road network.

In summary, traditional statistical models and deep
learning models for traffic flow prediction are constructed
based on the analysis of spatiotemporal features of traffic
data. However, the semantic information contained in the
traffic data also reflects the specific laws and patterns of traf-
fic flow, which can be utilized to enhance traffic prediction
results.

3. Traffic Knowledge Graph

The knowledge graph is a semantic structure that can
express entities, concepts, and relationships in the real
world. The knowledge graph can conveniently store data in
a form that is more recognizable to humans, providing a bet-
ter format for data management. The knowledge graph is
developed on the basis of semantic network. In essence, a
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knowledge graph is a more structured and abstract semantic
network. The knowledge graph is mainly composed of enti-
ties and relationships. Entities represent individuals or con-
cepts in the objective world, and relationships represent
various semantic associations between entities.

In order to make more effective use of the semantic
information contained in metro data, we construct a metro
knowledge graph on the basis of processing and analyzing
multisource heterogeneous traffic data. The data sources of
the knowledge graph constructed in this paper are mainly
Beijing metro card data, Beijing metro road network data,
map data, weather data, and social media data. The entities
of the knowledge graph mainly include track sites, routes,
regions, map points of interest (POI), weather, traffic events,
etc. The relationship mainly includes the attribution rela-
tionship between site and line, the spatial positioning rela-
tionship between site and latitude and longitude value, the
attribution relationship between site and area, the attribu-
tion relationship between line and region, the spatial posi-
tioning relationship between POI (points of interest) and
latitude and longitude value, and the influence of site and
weather. Relationships and affected relationships of site-
traffic events, etc.: in addition, the main entity has various
attribute information, such as the site’s passenger flow value,
the traffic event’s time, etc.

3.1. Knowledge Graph Construction. The construction of the
metro knowledge graph mainly includes the following six
steps:

(1) Traffic data acquisition. The sources of traffic data
related to metro network management and opera-
tion are very complex, including metro network
data, metro card swiping data, points of interest data,
weather data, and social media data. Some of the
above data can be obtained through the cooperation
channels with the Beijing Municipal Transportation
Authority or the Metro Operation Department, and
some of the data needs to be obtained through a
given application programming interface

(2) Data processing. The collected data has different for-
mats and organizational structures, so further pro-
cessing the acquired data into structured data is
necessary

(3) Extracting traffic entities and relationships. The key
part of the construction of a metro knowledge graph
requires artificially using professional knowledge to
determine the pattern layer composition of the
knowledge graph, and then extracting metro entities
and relationships from the processed data

(4) Obtaining the attribute value of the traffic entity.
Consistent with the operation in the previous step,
the required attribute value key-value pairs are
extracted from the processed data and filled in as
the attribute value of the knowledge graph entity

(5) Storage in the knowledge graph storage tool. Install
the corresponding knowledge graph storage soft-

ware, store the constructed entities, relationships,
and attributes, and use the graph database as a graph
storage tool

(6) Query usage of traffic knowledge graph. Based on the
storage in the previous step, using the query algo-
rithm, the entities, attributes, and relationships in
the graph can be retrieved

The primary task of metro knowledge graph construc-
tion is to define the mode layer, which is the knowledge
graph’s core part and key content. The first step is clarifying
the metro traffic network’s core elements and knowledge.
The crucial elements in metro traffic system are stations,
routes, and environments. Stations and lines are the metro
network’s basic elements and structural elements. Generally
speaking, stations and lines do not change over a period of
time and belong to the fixed and static part of the knowledge
graph. The environment contains two parts, one part is static
elements related to traffic, such as POI (points of interest),
and the other part is dynamic elements, such as weather
and traffic events. Figure 1 shows the overall process of
building a knowledge graph. We use the “site-belonging-
line” triplet as an example, and show the process of extract-
ing entities, relationships, and attributes from raw data. The
knowledge graph is finally stored in the graph database.

3.2. Main Components of Traffic Knowledge Graph. For the
static part of the metro knowledge graph, its main entities
include stations, routes, regions, and POI (points of inter-
est). Station entities have attributes such as name, number,
latitude and longitude, and transfer information. Line enti-
ties have attributes such as name and number. POI entities
have attributes such as id, name, type, location, latitude
and longitude, and the area to which they belong. The rela-
tionship between entities mainly includes: the adjacent rela-
tionship between stations in space, the attribution
relationship between stations and lines, the adjacent rela-
tionship between station and POI. The upper part of
Figure 1 shows the static entities and relationships of the
traffic knowledge graph.

Unlike the static part, the dynamic part of the metro
knowledge graph is mainly composed of elements that
change over time, such as weather, traffic events, and metro
station passenger flow. The entities in the dynamic part
mainly include weather, events, and passenger flow status.
The weather entity has attributes such as recording time,
temperature, humidity, pollutant indicators, weather condi-
tions, and wind conditions; the event entity has attributes
such as event type, occurrence time, and event location;
and the passenger flow status has attributes such as time
and passenger flow. After realizing the design of the dynamic
part entity and the static part entity, it is necessary to define
the relationship between them further. As shown in the
schematic diagram of the dynamic part of the metro knowl-
edge graph in Figure 2, there is an “affected” relationship
between stations and weather or events.

The traffic knowledge triples in the graph are defined as
ðh, r, tÞ, where h and t represent the head entity and tail
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5. Storage in the knowledge
graph storage tool

6. Query usage of traffic
knowledge graph

1. Traffic data acquisition
2. Data processing

Data: Station: Wukesong line: 
Line 1 Transfer station: 1
Administrative region: Haidian
District longitude: 116.280661
Latitude: 39.913834

Data Source: Beijing municipal 
commission of communications

3. Extracting traffic
entities and relationships

Head entity: Station “Wuke song”

Relation: belongTo

Tail entity: Line “Line 1”

4. Obtaining the attribute
value of the traffic entity

Attribute:
Administrative region: “Haidian
District”
Longitude: “116.280661”
Latitude: “39.913834”

Graph database: neo4j

Graph algorithms: 
Retrieval, reasoning

Figure 1: Knowledge graph construction process (take “station-belongTo-line” as an example).
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Figure 2: The main components of the metro traffic knowledge graph we constructed.

Table 1: Entities and attributes of metro knowledge graph.

Entity Attribute Number

Station
Station name, station id, latitude
and longitude, transfer information

325

Line Line name, line id 13

Region Region name, region id 12

POI Poi id, poi name, poi type, latitude and longitude, poi region 422,000

Event Event type, event location, event time 6,199

Weather
Time, temperature, humidity, pollutants,

weather conditions, wind conditions
52,992
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entity, respectively, and r represents the relationship. The
properties of the entity are defined as ðh, hasproperty, prop
ertyvalue Þ. The entire metro knowledge graph can be
expressed as KG = fðh, r, tÞjh, t ∈ EUP, r ∈ Rg, E represents
the set of knowledge entities, R represents the set of associa-
tion relationships, and P represents the attribute collection.
Table 1 shows the entities and attributes of the metro traffic
knowledge graph, and Table 2 shows the edges in the metro
traffic knowledge graph. Figure 3 shows the constructed traf-
fic knowledge graph stored in the graph database.

4. Methodology

4.1. Knowledge Graph Representation. TransE is the most
representative translation-based knowledge graph represen-
tation learning model. Inspired by the translation-invariant
feature of word vectors in the word2vec model [16], the
TransE model was proposed and used in the representation
learning of knowledge graph entities and relations [17]. Spe-
cifically, for the triple ðh, r, tÞ representing the knowledge
ontology, h and t represent the head entity and the tail
entity, respectively, and r represents the association between
entities. The TransE model has the following settings: the
embedding vector of the tail entity t should be equal to the
sum of the embedding vector of the head entity h and the
embedding vector of the relationship r, that is, h + r ≈ t.
When designing the knowledge graph representation learn-
ing model, the scoring function is used to measure the reli-
ability of the triples, and it is an important tool to measure
the rationality of the representation results. The scoring
function of the TransE model is:

f h, r, tð Þ = h + r − tk k2 ð1Þ

k·k2 indicates that the calculation method of vector dis-
tance is L2 norm. TransE regards entities and relationships
in the knowledge graph as two matrices. The structure of
the entity matrix is n × de, where n represents the number
of entities, de represents the dimension of each entity vector,
and each row in the matrix represents the word vector of an
entity; and the relationship matrix structure is m × dr , where
m represents the number of relationships and dr represents
the dimension of each relation vector. For the knowledge
graph trained by TransE, if two vectors are extracted from
the entity matrix and the relationship matrix, respectively,
and L2 operation is performed on these two vectors, the
obtained result will be similar to the vector of another entity
in the entity matrix. Finally, the existing triples ðh, r, tÞ in the

knowledge graph are represented in the form of word vec-
tors. Figure 4 shows the basic principle of the TransE model.

4.2. Traffic Knowledge Graph Pretraining. The traffic knowl-
edge graph contains a large amount of traffic semantic infor-
mation related to the operation, scheduling, and
management of the metro network, such as traffic events
that affect subway traffic flow, bad weather, and information
about the metro system itself (metro network structure and
POI). This information can be collectively referred to as
external factors affecting subway traffic flow. In order to uti-
lize these external factors in the traffic flow prediction
model, the knowledge graph representation learning method
is adopted to pretrain the traffic knowledge graph, so as to
obtain the traffic semantic representation expressing the
influence of external factors. In the real world, metro traffic
flow will be disturbed by different external factors at differ-
ent times, and the dynamic characteristics of external factors
need to be fully considered in pretraining.

As shown in Figure 5, the TransE model is used to pre-
train the subgraphs at different times. According to half an
hour as a time period, the subknowledge graph under each
time period is extracted from the metro knowledge graph.
Table 3 shows the main entities and relationships in the pre-
trained knowledge graph, which represent the external fac-
tors that we incorporate in implementing traffic
predictions. Each subknowledge graph consists of two parts;
one part is the static road network information and POI.
The other part is dynamic traffic events and weather infor-
mation. Through the representation learning of each sub-
knowledge graph, the semantic representations (KGt) of
325 metro station entities in Beijing under different time
periods are obtained, and the dimension of each semantic
representation is 30 dimensions. When using knowledge
representation technology to obtain the representation of
station entities, the external factors affecting metro opera-
tion will also be mapped to the low-dimensional vector space
at the same time, and the relationship between station enti-
ties and external factor entities also follows the semantic
rules of the TransE model. Therefore, the semantic informa-
tion of external factors is also included in the representation
results. The formula for knowledge graph pretraining is
shown below:

KGt = TransE ht , rt , ttð Þ, ð2Þ

where, KGt represents the semantic representation of
325 metro stations at time t, ht are the station entities, rt
and tt represent relationships and tail entities related to sta-
tion entities at time t.

4.3. Spatial-Temporal Modeling of Traffic Flow.Modeling the
spatiotemporal characteristics of metro traffic flow is a key
task to achieving subway traffic flow prediction. In order to
effectively learn the spatiotemporal characteristics of metro
traffic flow, this paper uses graph convolutional neural net-
works and temporal convolutional neural networks to model
spatial and temporal features, respectively. The specific

Table 2: Edges of metro knowledge graph.

Head entity Relation Tail entity Number

Station closeTo Station 528

Station belongTo Line 381

Station belongTo Area 12

POI closeTo Station 1.258 million

Station influencedBy Weather 1.435 million

Station influencedBy Event 14,000
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usage of graph convolutional neural network is described in
detail below.

Metro networks generally have a graph structure. Con-
volutional neural networks used in the image field are gener-
ally used to extract local spatial features of data in Euclidean
space. Graph Neural Network (GCN) is more suitable for
data in nonEuclidean space, and GCN can capture more
realistic spatial features of metro traffic flow. The frequency
domain-based graph convolution operation requires the use
of the Laplacian matrix of the graph:

L = IN −D−1/2AD−1/2, ð3Þ

where, IN represents the identity matrix of order N , A is
the adjacency matrix of the orbital network graph, and D is
the degree matrix of the orbital graph calculated from the
adjacency matrix. Therefore, the definition of the graph con-
volution operation on the graph signal of the orbital network
using the convolution kernel is:

Θ∗gX =Θ Lð ÞX =Θ UΛUT� �
X =UΘ Λð ÞUTX, ð4Þ

where, ∗g represents the operator of the graph convolution
operation, L is the Laplacian matrix of the orbital graph, U
means the matrix composed of the eigenvectors of the
matrix L, and Λ represents the diagonal matrix composed
of the eigenvalues of L. Due to a large number of metro sta-
tions, the decomposition of the matrix L in the above for-
mula requires a large amount of calculation. Therefore, this
paper uses the Chebyshev polynomial approximation graph

convolution kernel to solve the graph convolution operation:

Θ∗gX =Θ Lð ÞX ≈ 〠
K−1

k=0
θkTk

~L
� �

X: ð5Þ

θk represents the k-dimensional coefficient vector of the
Chebyshev polynomial. The recursive formula of this poly-
nomial is: TkðxÞ = 2xTk−1ðxÞ − Tk−2ðxÞ，T0ðxÞ = 1，T1ðxÞ =
x. In the above formula, ~L = ð2/λmaxÞ L − IN , and λmax is
the maximum value of the eigenvalues of the matrix L. The
Chebyshev polynomial is used to complete the
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approximation of the convolution operation on the graph,
which reduces the computational complexity of the graph
convolution operation. The spatial modeling model used in
this chapter is based on ChebNet [36] simplification to
obtain first-order Chebyshev graph convolution, and its for-
mula is:

_Zt = δ ~D
−1/2~A~D

−1/2
ZtW

� �
0: ð6Þ

In the formula, Zt is the input feature of graph convolu-
tion, the adjacency matrix ~A = A + IN and the degree matrix
~D =∑j

~Aij are added to the node’s own feature.
The recurrent neural network is generally used to model

the traffic flow time series in the traffic flow prediction prob-
lem. However, the prediction of each state in the recurrent
neural network is closely dependent on the previous state,
and the computational complexity is high. In many studies,
time-series data is regarded as one-dimensional structured
data, and it is more computationally efficient to use convolu-
tional neural networks to extract time-series features on
time-series data. This section uses Gated Temporal Convo-
lutional Network (Gated TCN) to extract and model tempo-

ral features in metro traffic flow. A Gated TCN consists of
two layers: a 1D convolutional, gated linear unit GLU that
learns temporal properties. Its calculation formula is as fol-
lows:

Γ∗τ
X = P ⊙ σ Qð Þ ∈ R M−Kt+1ð Þ×Co : ð7Þ

The width of the convolution kernel of the one-
dimensional convolution is Kt , and the temporal convolu-
tion network performs convolution operations on the Kt
neighbors of the input traffic flow, and each operation
shortens the traffic flow sequence by Kt − 1. The input of
each track site is represented as a sequence of length M,
the number of channels is Ci, and the input is denoted as
X ∈ RM×Ci . The convolution kernel is Γ ∈ RKt×Ci×2Co , the
input is convolved to obtain the output ½PQ� ∈
RðM−Kt+1Þ×ð2CoÞ, P and Q are the input of the gated linear unit
(GLU), ⊙ represents the Hadamard product operation, and
σðQÞ is the activation function.

4.4. Traffic Flow Prediction with Knowledge Graph. After
pretraining the traffic knowledge graph to obtain the seman-
tic representation of the metro station, the semantic vector
reflecting the influence of external factors needs to be uti-
lized in the prediction model. As shown in Figure 6, the traf-
fic flow sequence data input passes through the
spatiotemporal feature modeling module in the upper part,
which captures the temporal dynamics and spatial correla-
tion of metro traffic flow. After the knowledge graph repre-
sentation learning pretraining, the dynamic semantic
representation reflecting the influence of external factors is
obtained within a time period of half an hour, and the gated
fusion mechanism is used to fuse the output of the spatio-
temporal feature modeling module with the dynamic seman-
tic representation. Finally, the prediction results of metro

. . . . . . . . . . . . . . .

t0 t1 tT–1 tT

Figure 5: Traffic knowledge graph pretraining.

Table 3: Main entities and relation in the pretrained traffic
knowledge graph.

Core entity Relation Related entity Type

Station closeTo Station Static entity

Station belongTo Line Static entity

Station belongTo Area Static entity

Station closeTo POI Static entity

Station influencedBy Weather Dynamic entity

Station influencedBy Event Dynamic entity
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Figure 6: Metro traffic flow prediction model based on knowledge graph representation learning.

Table 4: Traffic flow prediction results on the BJMF15 dataset.

Baselines
SVR LSTM GCN TGCN STGCN KGR-STGNN

Prediction steps Evaluation indicators

12
MAE 22.280 21.883 21.747 11.827 8.365 8.211

RMSE 48.789 42.368 45.178 20.928 17.326 16.296

15
MAE 25.306 25.753 23.211 12.023 9.632 8.996

RMSE 55.425 47.978 47.284 21.171 20.318 17.568

18
MAE 27.677 27.949 25.110 13.168 11.135 9.624

RMSE 60.380 52.644 51.440 23.107 22.413 18.998

21
MAE 29.832 29.381 26.309 13.113 13.569 11.403

RMSE 64.463 55.423 53.655 23.427 26.988 22.989
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Figure 7: The change of loss function of metro traffic flow prediction model based on knowledge graph representation learning.
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traffic flow under the influence of external factors are
obtained.

The spatiotemporal feature modeling part consists of
two Gated TCN layers and one spatial GCN layer, and the
spatial GCN layer in the middle undertakes two Gated
TCN layers. The calculation formula of this part is as fol-
lows:

Xt′= Γ1∗τ
ReLU Θ∗g

Γ0∗τ
Xt

� �� �
: ð8Þ

Γ0∗τ
and Γ1∗τ

are the temporal convolution kernels of
the two Gated TCN layers, Θ∗g

represents the spatial graph

convolution at the middle layer Convolution kernel, and R
eLUð·Þ is the activation function.

The semantic representation vector obtained every half
an hour is defined as KGt , The gated fusion mechanism is
used in the prediction model to fuse spatiotemporal features
and semantic features. During fusion, the time of the seman-
tic representation vector is guaranteed to be consistent with
the time of the spatiotemporal feature modeling output, and

its calculation formula is as follows:

Yt = Xt′⨂tanh KGtð Þ: ð9Þ

5. Experiment

5.1. Experiment Settings. The experiments in this chapter
need to use the constructed metro knowledge map, so this
chapter conducts experiments on the Beijing metro passen-
ger flow dataset (BJMF15), and the Beijing metro knowledge
graph is also used in the experiment. The experiments eval-
uate the prediction performance of the knowledge graph
representation learning-based traffic flow prediction model
(KGR-STGNN) on the dataset BJMF15.

BJMF15: Passenger flow data collected by Beijing Metro
System in 2015. The unprocessed raw data includes daily
passenger travel record data at 325 stations on 13 lines of
the Beijing Metro in August. The data consists of passenger
travel records, including entry routes, entry stations, entry
times, exit routes, exit stations, and exit times. Taking every
five minutes as a time step, the metro passenger flow data is
obtained by processing the original passenger swiping card
data.
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Figure 8: The change of MAE of metro traffic flow prediction model based on knowledge graph representation learning.
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Figure 9: The change of RMSE of metro traffic flow prediction model based on knowledge graph representation learning.
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In practical experiments, the complete BJMF15 dataset is
divided into training, validation, and test sets. The split ratio
of the dataset is 80%, 10%, and 10%, respectively. Different
from the prediction of short-term traffic flow in Chapter 2,
the impact of external factors on traffic flow needs to be bet-
ter reflected in a longer time. The experiments in this chap-
ter use historical traffic data of 12 consecutive time steps (1
hour) to predict 12-time steps (60 minutes), 15-time steps
(75 minutes), 18-time steps (90 minutes), and 21-time steps
(105 minutes) data.

In the KGR-STGNN model, the learning rate is set to
0.001, the size of each batch of training data, that is, the
batch size is set to 32, and the number of training epochs
is 100. Experiments on graph convolutional layers set a
dropout of p = 0:3. All experiments are performed on an
Nvidia RTX 2080ti server with 11GB of video memory,
and the server operating system is Linux.

5.2. Evaluating Indicator. In order to compare the prediction
accuracy of the proposed model and the basic model, accu-
rate numerical indicators are needed as the evaluation basis.
This chapter evaluates the forecasting accuracy of all
methods using two commonly used traffic forecasting met-
rics, including:

(1) Mean Absolute Error (MAE), which is a basic mea-
sure that reflects the actual situation of prediction accuracy

MAE x, x̂ð Þ = 1
N
〠
i∈N

xi − x̂ij j: ð10Þ

(2) Root Mean Square Error (RMSE), which is used to
measure the deviation of the predicted value from the true
value

RMSE x, x̂ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
iεN

xi − x̂ið Þ2
s

, ð11Þ

where, N represents the number of stations in rail tran-
sit, x represents the actual traffic flow, and x̂represents the
predicted traffic flow.

5.3. Baselines. In order to verify the effectiveness of the
Metro Traffic Flow Prediction Model (KGR-STGNN) based
on knowledge graph representation learning, this paper uses
the following models as benchmarks:

(1) SVR (Support Vector Regression Machine). A method
for predicting future traffic flow using a support vec-
tor machine

(2) LSTM (Long Short-Term Memory Network). A time-
series prediction model that models the long-term
temporal characteristics of traffic-flow sequences

(3) GCN (Graph Neural Network). A prediction method
to mine the spatial correlation of traffic flow

(4) GRU (Gated Recurrent Unit). Similar to the LSTM
structure, part of the structure is optimized, and
the amount of model parameters is reduced

(5) TGCN. The graph convolutional neural network is
used to learn the spatial characteristics of the node
traffic flow. The gated recurrent unit is used to model
the temporal characteristics of the traffic flow
sequence, and then the two are combined to obtain
a spatiotemporal traffic flow prediction model

(6) STGCN. A traffic flow prediction method that uses
convolutional neural networks to learn spatiotempo-
ral characteristics. In terms of spatial characteristics,
a graph convolutional neural network is used to
obtain spatial dependencies between nodes, and
one-dimensional convolution is used to model traffic
flow sequences in terms of temporal characteristics

5.4. Prediction Performance. The traffic flow prediction
model based on knowledge graph representation learning
proposed in this paper is tested on the BJMF15 dataset and
compared with five benchmark methods. In the experiments
where the prediction step size is set to 12 steps, 15 steps, 18
steps, and 21 steps, the experimental results of each predic-
tion method are shown in Table 4. It can be seen from the
results that the traffic flow prediction model (KGR-STGNN)

800
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Predict

400

200

0

0 50 100 150 200 250

Figure 10: Prediction results of Pingguoyuan Station of Metro Line 1 on August 29, 2015.
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based on knowledge graph representation learning proposed
in this paper has better prediction performance. Among
them, the prediction results of TGCN, STGCN, and KGR-
STGNN are quite different from those of SVR, LSTM, and
GCN. The first three models all model the temporal and spa-
tial characteristics of metro traffic flow, proving the spatial
and temporal modeling of traffic flow data effectiveness.
Compared with STCGN, the traffic flow prediction model
(KGR-STGNN) based on knowledge graph representation
learning proposed in this paper has similar spatiotemporal
characteristic learning methods. Compared with STGCN,
KGR-STGNN uses the representation of the influence of
external factors obtained through knowledge graph repre-
sentation learning. With the increase in the prediction step
size, the MAE evaluation indicators of the KGR-STGNN
model are 8.211, 8.996, 9.624, and 11.403, respectively, and
the prediction performance is improved by 1.84%, 6.60%,
13.57%, and 15.96%, respectively, compared with the results
of the STGCN model. The experimental results show that
adding external factor representation can improve the pre-
diction model more and more with the increase in predic-
tion time. As the prediction time becomes longer, the
influence of external factors and traffic knowledge on the
traffic flow becomes more obvious, proving the KGR-
STGNN model’s effectiveness in predicting medium and
long-term metro traffic flow.

Figures 7–9 are the changes of the loss function, MAE,
and RMSE of the metro traffic flow prediction model based
on knowledge graph representation learning during the
training and validation of the model. The red curve in the
figure represents the change curve in the training case, and
the blue curve represents the change curve in the validation
case. It can be seen from the above three figures that the loss
function and prediction result of the subway traffic flow pre-
diction model based on knowledge graph representation
learning can decrease rapidly and stably and finally tend to
be stable and reach the model convergence state. This shows
that the design of the prediction model in this paper is rea-
sonable, which can effectively reduce the prediction error
and achieve good prediction results.

In order to visually show the prediction effect of the
KGR-STGNN model, this paper selects the traffic flow pre-
diction results of Pingguoyuan Station of Metro Line 1 on
August 29, 2015, for visualization to compare the gap
between the actual value and the predicted value. As shown
in Figure 10, the predicted results are very close to the real
values, especially the curves in the peak passenger flow
period have basically overlapped. The prediction results also
prove that the model proposed in this paper can predict the
traffic flow.

6. Conclusions

There are a large number of external factors in traffic data
that affect traffic flow. Using the information contained in
external factors in traffic flow forecasting can effectively
improve the forecasting effect. To this end, this paper pro-
poses a metro traffic flow prediction model based on knowl-
edge graph representation learning to build the model. In

order to model the influence of these external factors, the
model learns the representation of the metro knowledge
graph and obtains a semantic representation that contains
information about the external factors that affect the metro
operation. In addition, the model adopts time-gated convo-
lutional network and graph convolutional network to model
traffic flow’s spatiotemporal features. A gated fusion mecha-
nism is used to fuse the semantic representation of the sub-
way network with the output of the spatiotemporal feature
learning module. Finally, the spatiotemporal feature repre-
sentation of subway traffic flow data considering the influ-
ence of external factors is obtained. Experiments on Beijing
metro traffic flow data show that the prediction model pro-
posed in this chapter outperforms other benchmark models
in metro traffic flow prediction, especially long-term traffic
flow prediction. The experimental results verify that the
knowledge representation obtained through representation
learning can effectively improve the performance of metro
traffic flow prediction.
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