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Highway merging bottleneck is challenged with serious traffic conflicts between on-ramp and mainline vehicles, causing
significant capacity drop and drastic speed changes. The paper proposes an adaptive coordinated variable speed limit model to
manage highway speed of on-ramp and mainline continuous sections without priority to mainline. That helps to remove the
speed difference between the vehicles from on-ramp and mainline flooding into the merging zone, and to sustain actual traffic
density close to critical density to counteract capacity drop as indicated with macroscopic fundamental diagram. The method
of deep reinforcement learning based on deep deterministic policy gradient is employed to solve the proposed model with a
row of continuous control variables. Simulation platform with VISSIM 5.3 is established, and the proposed method can
enhance traffic flow through the merging zone by around 10% and 19% under static and dynamic demand, respectively, in
addition to reduced density and speed variation by around 30%. This research provides insights into the management of
highway capacity so as to secure traffic efficiency and reliability for the merging zone.

1. Introduction

Highway congestion has been increasingly emphasized to
prevent or alleviate its detrimental effect on traffic mobility,
safety, and environment [1]. Highway congestion is mostly
attributed to the merging or diverging around the on-
ramps and off-ramps, traffic speed of which can be much
lower than that of the mainline. Thus drastic speed changes
can be caused, in addition to aggressive lane changing and
weaving. That hinders the traffic flow on highway mainline,
and causes recurrent highway bottlenecks. Considering that
off-ramp are always closely related to the connected surface
road, off-ramp bottleneck can be more complex [2]. There-
fore, this research targets at on-ramp bottleneck, where vehi-
cles frequently decelerate or stop to wait before squeezing
onto the mainline.

Traffic of mainline and on-ramp can be coordinated
with the combined strategies of variable speed limit (VSL)
and ramp-metering so as to adjust highway flow into the
merging zone. VSL issues dynamic speed limit with variable

signs, depending on traffic conditions [3, 4]. Ramp-metering
adjusts vehicle flow rate such that mainline density remains
below the critical value to prevent traffic breakdown [5]. For
example, VSL and ramp-metering are combined into model
predictive control by incorporating dynamic speed limits on
the mainline into the original on-ramp model of METANET
[6], so as to address ramp-metering disadvantage of failing
to prevent congestion upstream of the merging zone [7].
Papamichai et al. [8] combines VSL with ramp-metering in
a discrete optimal control programming, where excessive
on-ramp queue is treated with a penalty added to the objec-
tive. Assuming predetermined ramp-metering rate for on-
ramp, a model predictive control is developed for VSL over
a finite time horizon to address the recurrent highway on-
ramp bottleneck, which is found to enhance traffic flow by
12.8% and reduce total travel time by 31.8% [9]. Then driver
acceptance is taken into the coordination between VSL and
ramp-metering upstream of and at the merging zone, which
enhances bottleneck throughput significantly [10]. Recent
research also attempts to introduce the connected and
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automated vehicles into the traffic control and management
of highway merging zone, where microscopic vehicular tra-
jectory is coordinated to enhance traffic efficiency [11, 12].

Despite rich research on the coordination of mainline
VSL and ramp-metering, the existing study generally assigns
priority to mainline at the cost of delaying or stopping on-
ramp vehicles. Such management strategy has been found
to account for nearly half of highway accidents at the con-
gested merging zone, where rear-end crashes are most fre-
quent due to drastic deceleration [13]. In addition,
sideswipe and angle highway collisions are also found to be
significantly related to the speed difference between highway
mainline and on-ramp [14]. Statistical analysis has validated
that increasing ramp vehicle volume assists in reducing
crashes, while increasing mainline vehicle volume tends to
increase crashes. Thus, it is important to enhance ramp traf-
fic efficiency [15]. That is consistent to the early empirical
research that suggests to remove the criteria of setting ramp
design speed to be 50th percentile of freeway design speed, so
as to allow more freedom to ramp vehicles [16].

Therefore, the research is encouraged to apply VSL to
both on-ramp and mainline for their homogenization,
instead of suppressing on-ramp and prioritizing mainline
traffic. This highway management strategy is expected to
alleviate the speed difference between mainline and on-
ramp traffic, reducing on-ramp vehicle stops and shock-
waves at the merging zone. That helps to maintain highway
capacity and to reduce traffic fluctuations. To tune finely the
variable speed limit, a set of continuous decision variables
should be solved along the time horizon. Thus an efficient
solution method is called for that is capable of finding the
optimal control scheme under traffic dynamics.

Recently, artificial intelligence has attracted increasing
attention, where intelligent agents are defined to perceive
environment, predict system evolution, and take proactive
actions for maximal reward [17]. Advanced application of
artificial intelligence includes the improvement of object
tracking against occlusion [18], image inpainting against
structure disconnecting with improved total variation mini-
mization [19] or structural disorder with multilevel attention
progression mechanism [20], and multiscale superresolution
image with feature map attention mechanism [21]. When it
comes to highway management, reinforcement learning is
widely adopted for complex modelling solution. For exam-
ple, a reinforcement learning based VSL control is proposed
to reduce total travel time near a freeway recurrent bottle-
neck [22] and to smooth vehicle conflicts for reduced
crashes [23]. Single agent Q learning was implemented on
ramp-metering, which is found to reduce total network
travel time by 17% compared to ALINEA algorithm [24].
Q-learning was also applied to VSL optimization to reduce
total travel time of both mainline and on-ramp by 49.3%
and 21.8% under stable and dynamic traffic demand, respec-
tively [22]. Further, deep Q-learning is applied to VSL of
highway mainline with on-ramp bottlenecks, reducing total
travel time by 26% to 67% with stable demand, and 21% to
70% with dynamic demand [25]. To select continuous
actions instead of discrete ones, deep deterministic policy
gradient (DDPG) is proposed to learn competitive policies

[26]. For example, updated research has applied DDPG
learning model to VSL control against spatially dynamic
speed limit zones based on vehicle position and speed [27].

Therefore, research gap is identified on highway merging
zone management, where previous research assigns priority
to mainline over on-ramps, causing traffic shocks and con-
flicts upstream of the bottleneck area. To this end, the
research proposes an adaptive coordinated VSL (ACVSL)
to explore the potential of applying VSL to highway main-
line and on-ramp, guiding vehicles of both to adjust to the
same speed before the merging zone [28]. The proposed
speed limit is deduced from fundamental diagram with traf-
fic density close to the critical density that corresponds to
road capacity. Thus capacity drop at the merging zone can
be reduced under the objective of maximal vehicle through-
put, to which the emerging solution method of deep rein-
forcement learning is employed for efficient control scheme.

For this paper, the main contributions are as follows. (1) a
novel ramp management strategy is proposed to remove
mainline priority over on-ramp, where both are managed with
VSL in an adaptive coordinated way. Thus equal speed can be
achieved between mainline and on-ramp immediately
upstream of the merging zone. That helps to alleviate traffic
shockwaves at the merging bottleneck and to anticipate capac-
ity drop. (2) Error state is structured to reflect the real-time
difference between actual and critical traffic density, based
on which speed control parameters are developed to update
VSL of both mainline and on-ramp. Thus traffic density at
the merging zone can be stabilized around the critical density
to counteract road capacity drop. (3) DDPG-based deep rein-
forcement learning is established to solve the proposed model
with continuous control parameters, which is calibrated and
validated with simulation platform for enhanced vehicle
throughput and alleviated speed fluctuations.

The remaining of the paper is organized as follows. Sec-
tion 2 establishes ACVSL model for the continuous highway
sections of mainline and on-ramp till the merging bottle-
neck. It develops nonlinear feedback to narrow the differ-
ence between actual and critical traffic density to sustain
bottleneck capacity. Section 3 develops the deep reinforce-
ment learning method with DDPG to solve the proposed
ACVSL under critic-actor framework. Simulation and tests
follow in Section 4, validating that the proposed model and
solution method can significantly enhance the efficiency of
highway merging. Section 5 briefly concludes the paper,
and points out future research directions.

2. Mathematical Modelling

Figure 1 shows a typical highway section with on-ramp. The
mainline and on-ramp are divided into Nm and Nr sections,
respectively. Considering the limited ramp length, we set
Nr = 2. VSL on the upstream sections controls the vehicles
getting into the next section, and finally into the merging
zone.

Objective of the control model is given by:

max 〠
t

qd tð Þ =〠
t

〠
x

qxNx tð Þ, ð1Þ
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so as to maximize vehicle throughput from the merging zone,
and to retain highway capacity. Parameter qdðtÞ represents the
total flow through the merging bottleneck at time t, and qxNxðtÞ
means flow on the last section of x at time t, where x = r and
x =m refer to the mainline and on-ramp, respectively.

As indicated by the studies of [2, 29], lower speed limit
can increase the critical density to a higher value. Figure 2
shows that the speed lower than the free-flow speed (i.e. 0
< vd < vd0) assists in shifting the critical density to a higher
value (i.e. 0 < ρd0 < ρd) in the fundamental diagram without
decreasing bottleneck capacity. Moreover, the lower speed
causes the slope of the under-critical part to be decreased,
making the fundamental diagram get closer to a straight line,
i.e. the red dash line vs. green dash line on the left-side, to
alleviate the speed deviation around the critical density and
the resultant shockwaves. Therefore, we may design an
adaptive coordinated VSL control on the continuous sec-
tions of highway mainline and on-ramp, letting the traffic
density at the merging section converge to the critical den-
sity derived from fundamental diagram. Thus the region of
fluent traffic for the merging zone can be extended in com-
parison to the no-control scenarios, helping to attenuate
shockwaves, and to sustain bottleneck capacity.

To this end, we define an error state to describe the devia-
tion of the actual traffic density from its critical value, given by:

exi tð Þ = ρxi tð Þ − ρd,c∀x, i, ð2Þ

ed tð Þ = ρd tð Þ − ρd,c: ð3Þ

For the sections upstream of and at the merging zone,
respectively, at time step t on highway x. Parameter ρxi ðtÞ
means the actual traffic density on section i of road x at time
step t. Parameter ρdðtÞ represents the actual density of the
merging zone at time step t, while ρd,c describes the critical
density between fluent and congested traffic flow, and is
assumed to be constant.

Now we have developed an open-loop control system
joining both mainline and on-ramp. In the following, the

nonlinear feed-back mechanism for adaptive coordinated
variable speed limit (ACVSL) is established.

Control parameters aim to adjust the guide speed on the
VSL signs upstream of the merging zone, given by:

λxi t + 1ð Þ = qxNx tð Þ − �vxi t + 1ð Þρxi tð Þ½ �
Lxi+1e

x
i+1 tð Þ ∀x, i ≤Nx − 1, ð4Þ

so as to maintain the density of the merging zone around the
critical value, and to counteract capacity drop. Notation λxi
ðt + 1Þ represents the control parameter on section i of high-
way x at time step (t + 1), qxNxðtÞ describes the traffic flow of
section Nx, �vxi ðt + 1Þ means the intended guide speed that
will be demonstrated on the VSL sign at time step (t + 1),
and Lxi+1 represents the length of section ði + 1Þ on x. There-
fore, on the right-side of Eq. (4), the numerator is the flow
difference between section Nx and section i, and the denom-
inator is the vehicle count in section ði + 1Þ required to fill its
density gap from the critical density at time t of highway x
[30]. Eq. (4) can be reformulated to represent the intended
guide speed �vxi ðt + 1Þ, given by:

�vxi t + 1ð Þ = −λxi t + 1ð ÞLxi+1exi+1 tð Þ + vxNx tð ÞρxNx tð Þ
ρxi tð Þ ∀x, i ≤Nx − 1

ð5Þ

Figure 2: Effects of lower speed on fundamental diagram.
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Figure 1: Configuration of highway mainline and on-ramp.
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Thus the gap between actual density and critical density can
be alleviated to promote efficient and stable traffic flow. There-
fore, once control parameter λxi ðt + 1Þ is determined, the
intended guide speed �vxi ðt + 1Þ can be calculated with Eq. (5).

When it comes to the last sections either on the mainline
or on-ramp, VSL there is set the same as that of the merging
zone to secure smooth convergence, given by:

�vxNx tð Þ = Vd∀x, ð6Þ

whereVd means the theoretical speed of themerging zone from
macroscopic fundamental diagram at critical density [30]. Thus
speed conflicts can be alleviated between highway mainline and
on-ramp immediately upstream of the merging zone.

Additionally, to avoid dynamic oscillation in speed limit,
the speed design by Zhang and Ioannou [31] is borrowed,
given by:

~vxi tð Þ =min �vxi tð Þ½ �5, vxi t − 1ð Þ + Cv, vxi−1 tð Þ + Cv , vmax
È É

∀x, i ≤Nx − 1,

ð7Þ

Vx
i tð Þ =max ~vxi tð Þ, vmin, vxi t − 1ð Þ − Cv , vxi−1 tð Þ − Cvf g∀x, i ≤Nx − 1,

ð8Þ
where ~vxi ðtÞ is the maximum speed limit that can be demon-
strated on VSL sign for section i of highway x at step t.
Parameter ½�vxi ðtÞ�5 rounds �vxi ðtÞ to its closest multiple of 5,
Cv represents the maximum speed difference in VSL

between successive control steps and highway sections;
vmax is the upper bound of VSL; and Vx

i ðtÞ returns the final
speed delivered to VSL sign for section i of highway x after
considering the lower bound of speed limit, with vmin being
the lower bound of VSL.

Thus the optimization model ACVSL is summarized
with the object of Equation (1) and constraints of Equa-
tions (2)–(8), by optimizing a set of control parameters
λxi ðtÞ. Table 1 summarizes the notation of the proposed
model.

3. Solution Method

In this section, we target at optimizing the vector of control
parameters λxi ðtÞ from Eq. (4), a set of multi-dimensional
continuous variables. The control parameters λxi ðtÞ indicate
the ratio of the flow difference to the gap between current
density and critical density for section i of highway x at time
t, determining the VSL values in turn as in Eq. (5), so as to
adjust the count of vehicles moving downward. Thus we
may coordinate VSL of both mainline and on-ramp so as
to adapt to real-time traffic state with optimized control
parameters λxi ðtÞ, sustaining critical traffic density that is
beneficial to bottleneck flow.

DDPG-based deep reinforcement learning method first
collects traffic state sðtÞ, given by:

s tð Þ = v tð Þ, ρ tð Þ½ �, ð9Þ

Table 1: ACVSL notation list.

No. Notation Explanation

1 Nx Section count on highway part x, where x =m and x = r refers to mainline and on-ramp, respectively.

2 qd tð Þ Total flow through the merging bottleneck at time t

3 qxNx tð Þ Traffic flow of section Nx at time t

4 exi tð Þ Error state of section i on highway x upstream of the merging zone at time t

5 ρxi tð Þ Actual traffic density on section i of highway x at time t

6 ρd,c Critical density between fluent and congested traffic flow

7 ed tð Þ Error state of merging zone at time step t

8 ρd tð Þ Actual density of merging zone at time step t

9 λxi t + 1ð Þ Control parameter on section i of highway x at time step t + 1ð Þ
10 �vxi t + 1ð Þ Intended speed on VSL sign for section i on highway x at time step t + 1ð Þ
11 Lxi+1 Length of section i + 1ð Þ on highway x

12 vxNx tð Þ Actual speed on section Nx at time step t

13 Vd Theoretical speed of the merging zone from macroscopic fundamental diagram at critical density

14 ~vxi tð Þ Maximum speed limit demonstrated on VSL sign for section i of x at time step t

15 vxi t − 1ð Þ Actual speed on section i of highway x at time step t − 1ð Þ
16 Cv Maximum speed difference in VSL between successive time steps and sections

17 Vx
i tð Þ Final speed delivered to VSL sign after considering the lower bound of

speed limit for section i on highway x at time step t

18 vmax Upper bound of VSL

19 vmin Lower bound of VSL
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where vðtÞ and ρðtÞ refer to the vectors of traffic speed and
density over highway sections at time t, which are of differ-
ent physical units and normalized for effective learning,
given by:

v tð Þ = vx1 tð Þ, vx2 tð Þ,⋯, vxNx−1 tð Þ, vd tð Þ½ �
vxf

, ð10Þ

ρ tð Þ = ρx1 tð Þ, ρx2 tð Þ,⋯, ρxNx−1 tð Þ, ρd tð Þ½ �
ρxjam

, ð11Þ

with vxf and ρxjam being free flow speed and jam density on
highway section x, respectively.

The proposed method entails the training of a software-
controlled agent to take action aðtÞ in response to the cur-
rent system state sðtÞ for reward rðtÞ. Action sets the value
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Figure 3: Schematic illustration of the critic and actor network.

Initialize critic network Qðs, ajθQÞ and actor network πðsjθπÞ
Initialize target critic network Qðs, ajθQ′Þ and target network πðsjθπ′Þ
Initialize prioritized experience replay memory R
While not converge do

Observe system state sðtÞ
Select action aðtÞ = μðsjθμÞ +N for the current state sðtÞ following ε-greedy exploration policy
Observe transition pair ½sðtÞ, aðtÞ, sðt + 1Þ, rðtÞ�, and store in R
Sample a mini-batch ½sðtÞ, aðtÞ, sðt + 1Þ, rðtÞ� of size N from R

Set yðiÞ = rðiÞ + γQ′fsði + 1Þ, π½sði + 1Þjθπ′ �jθQ′g
Update critic network by minimizing:

∑i½yðiÞ −Qðsði + 1Þ, sðiÞjθQÞ�2
Update actor with the sampled policy gradient:

∇θπ J ∼ 1/N∑i∇aQðs, ajθQÞjs=sðiÞ,a=π½sðiÞ�∇θππðsjθπÞjsðiÞ
Update target network

θπ
′
⟵ τθπ + ð1 − τÞ · θπ′

θQ
′
⟵ τθQ + ð1 − τÞ · θQ′

Algorithm 1: DDPG Algorithm.

Net.inp

VISSIM
Layout.ini

Simulation

MATLAB

Controller

Actor

Algorithm DDPG.m

ACVSL.m

Environment
Interface with

COM component

Observation
(State & reward)

Command (Action)

Figure 4: The framework of ACVSL control platform.

5Journal of Advanced Transportation



of the control parameter λxi ðtÞ at the beginning of each con-
trol time step, given by:

a tð Þ = λx1 tð Þ, λx2 tð Þ,⋯, λxNx tð Þ½ �
λmax

, ð12Þ

where λmax means the upper bound of control variables for nor-
malization to secure the action variables in the interval ½0, 1�, a
necessity for the input of neural network. Reward function aims
to maximize highway bottleneck outflow, given by:

r tð Þ =
ð c+1ð ÞT

cT

qd tð Þ
QT

dt, ð13Þ

which is divided by the multiplication of Q and T for nor-
malization, with Q and T being bottleneck capacity and step
interval length, respectively. Reward at each step is achieved

via actor network, which actually refers to control policy π,
a function that maps system state to probability distribution
with control actions. Critic network then develops a corre-
sponding Q-function to represent the accumulated dis-
counted reward if action aðtÞ is taken for state sðtÞ and
strategy π is followed at step ðt + 1Þ onwards, given by:

Qπ s tð Þ, a tð Þ½ � = E r tð Þ + γQπ s t + 1ð Þ, π s t + 1ð Þ½ �js tð Þ, a tð Þf gh i,
ð14Þ

where Qπ represents the Q value obtained under strategy π,
and γ is a discount factor of interval ð0, 1Þ. Thus the accu-
mulated reward is kept a finite quantity where the
temporally-proximate rewards are more heavily weighted
than are the distant ones. To obtain the optimum policy
π∗ for maximum EhQπfsðtÞ, π½sðtÞ�gi, the proposed

Table 2: Scenario parameters.

No. Notation Value No. Notation Value No. Notation Value

1 Lm1 500m 6 Lr1 100m 11 ρrjam 144 veh/km/ln

2 Lm2 300m 7 Lr2 100m 12 λmax 100

3 Lm3 200m 8 vmf 120 km/h 13 ρd 80 veh/km/ln

4 Lm4 200m 9 vrf=vmax 80 km/h 14 vmin 20 km/h

5 Ld 100m 10 ρmjam 144 veh/km/ln 15 Cv Km/h

Figure 5: Dynamic flow demand for DDPG exploration and training.
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network is customized for parameterized actors and critics,
i.e. πðsjθπÞ and Qðs, ajθQÞ.

Specifically, the training epochs tune the actors and
critics alternately, first by updating the function approxima-
tors θQ to satisfy Equation (14), and then by updating θπ

with a policy gradient defined by:

E ∇aQ s, ajθQ
� ����

a=π sð Þ
∙∇θππ sjθπð Þ

� �
: ð15Þ

Transition pair ½sðtÞ, aðtÞ, sðt + 1Þ, rðtÞ� is stored in the
replay memory at the end of each control step and is sam-
pled uniformly at random for state update. Figure 3 illus-
trates the actor-critic framework employed to establish the
relationships between traffic states, action agents, and
reward function, so as to address the problem with continu-
ous action space of parameter λxi . Referring to the limited

dimension of input ½vðtÞ, ρðtÞ�, i.e. 2 ðNm +Nr − 2Þ, one
hidden layer is constructed for both critic and actor network.

Note: DDPG-based deep reinforcement learning method
adopts exploration epochs before training. That is to over-
come local minimum, a major challenge of learning in con-
tinuous action spaces. Thus the procedure of exploration is
treated independently from the learning algorithm, so as to
globally explore for the optimal strategy. Algorithm 1 sum-
marizes the proposed solution method.

4. Simulation and Tests

In this section, we design and evaluate the performance of
the proposed ACVSL model and solution method for a high-
way bottleneck with on-ramp. After validation, the proposed
method is applied to extensive scenarios with varying traffic
demand.

Table 3: Sample data of traffic dynamics.

Training data Testing data

No. Interval (min)
Mainline demand

(veh/h/ln)
On-ramp demand

(veh/h/ln)
Mainline demand

(veh/h/ln)
On-ramp demand

(veh/h/ln)

1 0-2 1340 809 1507 1009

2 2-4 1363 835 1529 1035

3 4-6 1387 864 1553 1064

4 6-8 1413 895 1579 1095

5 8-10 1441 929 1607 1129

6 10-12 1470 965 1637 1165

7 12-14 1502 1003 1669 1203

8 14-16 1536 1043 1702 1243

9 16-18 1571 1085 1737 1285

10 18-20 1607 1129 1774 1329

11 20-22 1645 1175 1812 1375

12 22-24 1685 1222 1851 1422

13 24-26 1725 1270 1891 1470

14 26-28 1765 1318 1932 1518

15 28-30 1806 1368 1973 1568

16 30-32 1847 1417 2014 1617

17 32-34 1888 1465 2054 1665

18 34-36 1928 1513 2094 1713

19 36-38 1966 1560 2133 1732

20 38-40 2004 1604 2170 1774

21 40-42 2039 1647 2206 1797

22 42-44 2072 1686 2239 1806

23 44-46 2103 1723 2269 1845

24 46-48 2130 1756 2297 1872

25 48-50 2154 1785 2321 1907

26 50-52 2175 1810 2342 1926

27 52-54 2192 1830 2358 1951

28 54-56 2204 1845 2371 1970

29 56-58 2213 1856 2380 1981

30 58-60 2217 1861 2384 1993
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4.1. Set-up. The proposed ACVSL model and solution algo-
rithm are developed and tested with MATLAB 2020, which
is connected to simulation platform VISSIM 5.3 for traffic
states collection. Specifically, the files of Layout.ini and
Net.inp input road network information and other traffic
parameters into VISSIM 5.3, respectively. Figure 4 shows
the workflow, where the controller observes the traffic state
and reward from the environment of VISSIM simulator at
each control step and returns the control parameters to the
simulator with COM interface. Note the first 20-min simula-
tion is ignored to allow vehicles to fill the convergence zone.

Highway mainline has 3 lanes, while on-ramp has a
single lane. Assuming default traffic parameters of driving
behaviour and traffic composition in VISSIM platform,
capacity of mainline and on-ramp is tested and set 2000
and 1500 veh/h/ln, respectively. Other parameters of the
proposed ACVSL model are summarized in Table 2. Con-
trol step is set 2min (i.e. T = 2 min) for timely VSL
update. That is, VSL signs are updated every 2min so as
to delicately control traffic state dynamics. Control param-
eter λxi is specified in the range of [0,100], i.e. the action
space.

(a)

(b)

Figure 6: Bottleneck flow acquired from exploration and training procedure in different scenarios. (a) Static scenario and (b) dynamic scenario.
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Meta-parameters of DDPG-based deep reinforcement
learning are selected from repeated experiment, and the set
with the best performance is adopted. Reward discount fac-
tor γ is set 0.85. Update probability during the training
period is 20%. The size of replay memory and mini-batch
is set 4000 and 400, respectively.

4.2. Training. We consider the following two scenarios to
train the proposed method of DDPG-based deep reinforce-
ment learning for the developed ACVSL model.

(1) The scenario with static demand, which is set 5400
and 1400 veh/h for mainline and on-ramp,
respectively

(2) The scenario with dynamic demand, which follows
the curve in Figure 5 for mainline and on-ramp,
respectively. That is, demand increases and decreases
for the first and last 60min, respectively. Sample data
employed in the training process is summarized in
Table 3

Figure 7: Dynamic flow demand for DDPG test.

Table 4: Performance comparison of DRL-ACVSL, EX-ACVSL, and Do-nothing strategies.

Scenario Static demand Dynamic demand
Strategy DRL-ACVSL EX-ACVSL Do-nothing DRL-ACVSL EX-ACVSL Do-nothing

Traffic flow (veh/h)

Avg. 4,291 3,998 3,909 4,818 4,208 4,041

Med. 4,482 4,025 3,756 4,856 4,400 3,945

Std. DV 517 468 660 610 656 688

Traffic density (veh/km)

Avg. 108 130 168 115 94 156

Med. 109 134 177 119 90 162

Std. DV 22 27 30 23 30 34

Traffic speed (km/h)

Avg. 41 32 25 44 47 28

Med. 42 30 22 42 49 25

Std. DV 6 8 9 10 11 11

9Journal of Advanced Transportation



Each epoch of both exploration and training persists 2-
hour simulation windows. With 2-minute control interval,
each epoch of the exploration and training procedure is thus
divided into 60 steps. A total of 30 epochs are adopted in the
exploration, while 30 and 70 epochs in the training for the
scenarios with static demand and dynamic demand, respec-
tively, where learning rate τ is set 0.01 and 0.02, due to the
difficulty of capturing demand changes in the latter scenario.

Figure 6 shows the outcomes of exploration and training
epochs, as measured by the resulting bottleneck flow vs.
epoch number under static and dynamic demand, respec-
tively. In the exploration epoch, the series of control param-
eters is stochastically selected without optimization. Thus
the bottleneck volume varies greatly. In comparison, in the
training epoch, control parameters are iteratively updated
to tune actors and critics alternatively, where bottleneck
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Figure 8: Bottleneck flow under different control strategies. (a) Static scenario and (b) dynamic scenario.
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volume exceeds that with the best control scheme from
exploration epochs (i.e. EX-ACVSL) at the 7th and 8th

epoch under the static and dynamic scenario, respectively.
The optimal control schemes from the proposed deep
reinforcement learning (i.e. DRL-ACVSL) are obtained at
the 24th and 65th epoch, beating the best control scheme
from the exploration epoch EX-ACVSL by 13% and 19%,
respectively.

4.3. Test and Calibration. Test and calibration of the
trained controller entails a 2 h simulation under static
and dynamic scenarios, respectively. The static case is
characterized with the demand of 5500 veh/h on the
mainline and 1500 veh/h on the ramp. The dynamic case
deals with the demand given in Figure 7, data trend of
which input to the proposed ACVSL method is similar
to that of Table 3.
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The proposed scheme from the developed method DRL-
ACVSL is compared with the strategies that adopts the opti-
mal control parameters from the exploration epochs (i.e.
EX-ACVSL), and that of without control (i.e. Do-nothing).
Table 4 summarizes the performance of DRL-ACVSL
scheme from training together with EX-ACVSL selected

from the exploration epoch as well as the Do-nothing strat-
egy. It is observed that DRL-ACVSL scheme competes with
EX-ACVSL and Do-nothing with higher and more stable
traffic flow at the merging zone, where the variation of traffic
density and speed is also reduced to promote stable traffic
flow. Specifically, average bottleneck flow is enhanced with
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Figure 10: Bottleneck error state under different control strategies. (a) Static scenario and (b) dynamic scenario.
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DRL-ACVSL strategy by 7% and 10% under static demand,
while by 14% and 19% under dynamic demand, compared to
EX-ACVSL and Do-nothing strategies, respectively. Such
enhancement competes the existing research that reports
flow increase by 4.7% [32]. DRL-ACVSL competence is also
reflected with the fact that standard deviation of traffic den-
sity is reduced by 17% and 27% under static vs. 23% and
32% under dynamic demand and standard deviation of traf-

fic speed is reduced by 25% and 33% under static vs. 9% and
9% under dynamic demand against EX-ACVSL and Do-
nothing strategies, respectively.

Figure 8 demonstrates the dynamics of traffic flow for
highway merging bottleneck under three strategies, it is
observed that DRL-ACVSL scheme manages to smooth
vehicle outflow and keep it at a higher level than that with
EX-ACVSL scheme, though the latter also promotes stable
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vehicle throughput compared to the Do-nothing scheme.
Moreover, DRL-ACVSL performs better under static
demand than dynamic demand, bringing higher vehicle
throughput, and better smoothing flow fluctuations.
Another interesting finding is that, under dynamic demand,
DRL-ACVSL manages to enhance traffic flow compared to
the static scenario, because the changing demand allows bet-
ter exploitation of highway capacity with gradually increas-
ing or decreasing demand, instead of crowding into the
bottleneck constantly.

Traffic density in Figure 9 shows that DRL-ACVSL is
efficient in reducing and stabilizing traffic density at the
merging zone under static scenario. In this case, DRL-
ACVSL competes with EX-ACVSL and Do-nothing strate-
gies, where significant ups and downs in traffic density are
frequently observed. When it comes to the dynamic case,
the advantage of DRL-ACVSL reducing density dynamics
is kept, though density comes to a higher level compared
to EX-ACVSL strategy. Therefore, DRL-ACVSL is validated
to keep stable traffic density and reduce traffic shocks, pro-
moting traffic efficiency and safety. Note traffic density is
also related to the error state (see Figure 10) between actual
and critical traffic density, where the latter is set constant
based on fundamental diagram with speed limit. Thus
Figure 10 shows similar trend to that of Figure 9.

Figure 11 comes to traffic speed of the merging zone. It is
observed that DRL-ACVSL can enhance traffic speed and
reduce speed oscillation to a higher degree than EX-ACVSL,
while the Do-nothing strategy performs least satisfying.
Moreover, the gap between DRL-ACVSL and EX-ACVSL
is enlarged when it comes to the subsequent steps, showing
that the proposed solution can well trace traffic dynamics
under static demand. When it comes to the dynamic sce-
nario, EX-ACVSL outperforms DRL-ACVSL with higher
speed, though DRL-ACVSL manages to further reduce speed
deviation. The Do-nothing strategy is still the worst with
respect to speed average and variation.

4.4. Numerical Analyses. Extensive numerical analyses are
conducted for the proposed method under variable traffic
demands. Figure 12 summarizes the results from the numer-
ical analysis, where dynamic demand increases from half
static demand to one and half at the same difference for
the first hour, and decreases in the same style for the second
hour. It is observed that the proposed DRL-ACVSL is effi-
cient in enhancing bottleneck throughput against varying
traffic demand. Specifically, with static demand, DRL-
ACVSL always competes with EX-ACVSL and Do-nothing
strategies, with DRL-ACVSL advantages strengthened when
on-ramp demand increases, though the latter to a lesser
degree. In contrast, the Do-nothing strategy brings
decreased throughput when on-ramp demand increases,
implicating the intensified conflicts between mainstream
and on-ramp vehicles. Similar trend is observed under
dynamic demand, except that vehicle throughput is gener-
ally at a higher level compared to static scenarios. Thus the
proposed model and solution method is validated to be
capable of adapting to various traffic conditions for
enhanced bottleneck efficiency.

Thus the proposed method has the potential to better
enhance the capacity of the merging zone with increasing
on-ramp demand. That can be explained with on-ramp vehi-
cle density getting closer to the intended critical density to well
sustain capacity of the merging zone for maximum through-
put. In comparison, the increased demand of mainline
decreases the vehicle flow of the merging zone. The findings
are consistent to the previous research that increasing on-
ramp flow and reducing mainline flow contributes to enhance
bottleneck capacity [15] with a new attempt to coordinate the
variable speed limits of both mainline and on-ramp.

5. Conclusions

This paper proposes an adaptive coordinated variable speed
limit (ACVSL) control strategy for highway bottleneck with
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on-ramp, where the priority to mainline over on-ramp is
removed to alleviate the speed difference upstream of the
merging zone and to improve highway merging efficiency.
In this endeavour, error state is developed to indicate the
gap between the actual and critical traffic density, with the
latter derived from fundamental diagram that corresponds
to road capacity. Thus the smaller the error state, the higher
traffic flow, and the shifting can be reduced between fluent
and congested traffic states. In the following, nonlinear feed-
back mechanism is established to adjust speed limits along
the control horizon.

To solve the proposed model, deep reinforcement learn-
ing algorithm is developed, which is trained with DDPG
using a critic-actor network to finely tune the continuous
control variables. With traffic state collected and control
reward evaluated, exploration and training epochs search
the feasible domain and establish the control scheme. Exper-
iment platform with VISSIM is then employed to test the
proposed method, followed with numerical analyses. After
calibration and training, extensive scenarios are established
for method validation. It is found that the proposed scheme
is capable of enhancing traffic flow through the bottleneck
by 10% and 19% under static and dynamic demand, respec-
tively, compared to the Do-nothing strategy. That competes
the existing literature with respect to the improvement in
vehicle throughput, validating the efficiency of the proposed
model. Moreover, the proposed scheme manages to reduce
the variation of traffic density and speed by around 30%,
helping to stabilize traffic states and reduce traffic shock-
waves. Extensive numerical analyses further confirm the
advantage of the proposed method to improve bottleneck
capacity especially when on-ramp demand increases.

This research adds to the existing literature with coordi-
nated speed guide between mainline and on-ramp, provid-
ing insights for responsive agencies into highway on-ramp
bottleneck management that prioritize mainline over ramps
can be unnecessary. Thus highway merging bottleneck can
be better addressed to relieve congestion and to reduce acci-
dent. Limitation of the research is threefold. First, the perfor-
mance in pollution emissions and fuel consumption should
be further explored. Second, detailed analysis has not been
scratched on how mainline and on-ramp vehicles cooperate
for acceptable gap and smooth merging. Third, the effect of
acceleration lane at the merging zone on traffic states has not
been considered. The on-going research is to extend the pro-
posed method to include more ramps so as to explore the
potential of adaptive coordinated variable speed limit for
consecutive highway ramps.
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