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.e dynamic exit sign has been verified as an effective means to guide the pedestrian during evacuation. .e most critical
mechanism with dynamic exit sign guidance is to balance the pedestrian flow on each exit route by optimizing the direction of
signs. .is paper formulates a bi-level programming model for the direction optimization problem of dynamic signs in buildings.
In the bi-level program, the upper-level model is a system optimal model, aiming to minimize the total travel time by optimizing
the dynamic sign direction..e lower-level model is a pedestrian assignment model satisfying the dynamic user optimal principle
that describes the evacuee exit/route choice behaviour to achieve a balanced pedestrian distribution on the route. A method based
on the fundamental diagram, the cell transmissionmodel, and the point-queuing theory is developed to estimate evacuation travel
time considering congestion and queuing. A heuristic algorithm is extended to solve the bi-level program. Finally, the proposed
methodology is validated with numerical examples. Results reveal that the proposed model can produce the optimal dynamic sign
direction, significantly improving the evacuation efficiency.

1. Introduction

Exit signs in buildings can help people find escape routes
and emergency exits quickly, thus reducing evacuation
time and the risk of casualties. .erefore, exit signs are
widely used in buildings, especially in large public places
with complex layouts such as transportation hubs, stadi-
ums, and theatres. Most exit signs, which point to the
nearest exit with a fixed arrow, operate in a Static Sign
Guidance (SSG) mode. However, this SSG mode may have
two negative impacts. First, the SSG will introduce evacuee
into the dangerous zone if the waypoint in the direction of
the sign has fire hazards. Second, without considering the
crowd distribution, the SSG always guides people through
the shortest route to the same exit. Consequently, this may
lead to congestion at that exit and slow down the whole
evacuation process, whereas other viable exits remain
virtually unused.

To overcome the inherent defects of SSG, researchers
have developed Dynamic Sign Guidance (DSG) systems with
direction-variable exit signs that can change their arrow
direction [1–3]. .e DSG system can guide people away
from hazardous areas with the help of fire detectors, which
can effectively eliminate the first negative impact of SSG [1].
Hence, we are more concerned with how to eliminate the
second negative impact. Specifically, we focus on how to
guide evacuees to appropriate routes considering the crowd
distribution to reduce congestion. An approach is to reroute
evacuees through DSG to ensure that all exits and routes are
fully utilized during the evacuation process [4]. .is full
utilization is consistent with Francis’ fundamental “Uni-
formity Principle” which states that if the building is
evacuated in minimum time, then the allocation of evacuees
to routes is such that the route evacuation times are all the
same [5]. In this case, the flow on the evacuation route is in a
traffic equilibrium state. .at is, we should guide evacuees
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through DSG with the aim of achieving a flow equilibrium
state on the evacuated route to minimized evacuation time.

In the DSG system, the guidance of the crowd flow on the
evacuation route relies on the redirection of exit signs.
Hence, the optimization of exit sign direction is very im-
portant to achieve the guidance of a flow equilibrium state.
However, not much research has been done on the opti-
mization of exit sign directions considering flow equilib-
rium. Some of the existing studies related to exit sign
direction use only path distance as route metric for direction
optimization and ignore the crowd distribution, much less
the flow equilibrium state [4, 6–11]. Another part of the
research considered a balanced assignment of evacuation
flow using metric that reflects the travel cost of the route,
including route flow [12, 13], density [2], flow to capacity
ration of route [4], and travel time [14]. .en the exit sign
direction is determined based on the optimal route in flow
equilibrium state. However, this two-stage approach, which
separates the equilibrium allocation of evacuated flows from
the solution of exit sign direction, is not applicable to the
dynamic sign-guided modes..e reason is that in a dynamic
sign-guided approach, the adjustment of the exit sign di-
rection implies a reconfiguration of evacuation network
topology. .is reconfiguration affects the route selection
behaviour of evacuated individuals, which in turn leads to
the redistribution of evacuee. .e redistribution of evacuee
crowd can destabilize the flow equilibrium state, which can
make a mistake in solving the optimal route in the equi-
librium state. .at is, the adjustment of dynamic sign di-
rection can break the flow equilibrium state and impact the
route optimization. .erefore, we believe that the flow
equilibrium assignment of the evacuation network and the
optimization of the exit sign direction should be considered
together, instead of being calculated separately in two stages.
However, to the best of our knowledge, there are few studies
that combine these two aspects.

For closing this gap, we will study both exit sign direction
optimization and flow equilibrium assignment of the
evacuation network from the perspectives of both evacua-
tion managers and evacuees. During evacuation, managers
and evacuees have different optimization goals..emanager
hopes to guide evacuees towards the uncrowded route by
pointing exit signs to minimize the total evacuation cost.
With the manager’s evacuation guidance, evacuees will
choose the shortest route to evacuate, resulting in a different
evacuee flow distribution than the manager expects. .is
difference may lead to an increase in the total evacuation
cost. In this case, the sign should be redirected to reach the
optimal goal of the system. Considered the above two
perspectives, dynamic sign direction optimization and flow
equilibrium assignment involve a game between managers
and evacuees. To reflect the game, we committed to for-
mulating a bi-level programming model for dynamic sign
direction optimization of buildings in this study. .is model
also takes account the evacuee flow equilibrium assignment
as well. Specifically, the upper-level model takes the exit sign
direction as the decision variable from the manager’s per-
spective and the minimum total evacuated cost as the op-
timization objective. In the lower-level model, a dynamic

pedestrian assignment (DPA) model consistent with the
dynamic user optimum (DUO) principle is extended to
describe individuals’ route choice behaviour to achieve an
equilibrium distribution of evacuees on the route.

.e contributions of this paper are as follows:

(1) A new directed graph-based model: in this paper, the
evacuation scene is divided into multiple grids, each
of which is assumed to have an exit sign. Based on
this, a directed graph-based model is conducted. .e
grid denotes the directed arc of the graph model and
the neighbouring edges between the grids as the
nodes of the graph model. .e pointing of the exit
sign in the grid equals to of the direction of the arc in
the directed graph. .us, the optimization of the exit
sign direction can be transferred to the optimization
of the arc direction in the directed graph-based
model.

(2) A new approach of pointing exit signs based on the
bi-level programming model: since few studies have
focused on individual guidance to a balanced
evacuation among multiple exits and routes through
exit sign changes, the model in this paper can bridge
this gap. A bi-level programming model is proposed,
in which the upper-level model takes the exit sign
direction as the decision variable and the lower-level
model is a DPAmodel satisfying a DUO criterion. As
a result, the exit sign direction can be solved ex-
plicitly for balanced evacuation guidance.

(3) A new method for calculating the travel time of
evacuation routes: the travel time of an evacuation
route is a basic measure of the number of evacuees
allocated on that route. .is metric ensures a bal-
anced assignment of flows in the evacuation net-
work. In this paper, we propose a method for
calculating route travel time based on a cell trans-
mission model. .e method is able to calculate not
only the delay time caused by congestion, which is
considered by traditional methods, but also the
queuing waiting time, which is not considered by
traditional methods.

.e rest of this paper is organized as follows. Section 2
surveys the works related to exit sign guidance optimization.
Section 3 provides the model for dynamic sign direction
optimization. A heuristic solution-combined genetic algo-
rithm with a route-swapping algorithm was developed in
Section 4. A set of numerical experiments are given in
Section 5 to verify the effectiveness of the approach. Section
6 concludes the paper.

2. Related Work

A review of intelligent evacuation system can be found in
literature [15]. According to the guidance approach, the
intelligent evacuation system can be divided into dynamic
signs, trained leaders, robots, and mobile devices [15].
However, the guidance approach with trained leaders, ro-
bots, and mobile devices still have some problems. In the
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case of leaders, it is difficult for leaders to maintain an
accurate situation awareness of disasters and crowd distri-
bution. But without these real-time dynamic information,
leaders still struggle to fully address misdirection to dan-
gerous or congestion area. Obviously, trained leaders can
reduce the response time to evacuation warning and better
guide the evacuation process [16]. However, trained leaders
cannot be located everywhere throughout the building and
they may not be able to reach the crowd quickly enough [17].
Temporary opinion leaders may be generated in the crowd.
However, studies show that temporary opinion leaders do
not always have sufficient influence on crowd, which reduces
evacuation efficiency [18]. As far as robots are concerned, the
application of robots in evacuation guidance is not yet
mature. Issues such as high economic costs and restriction
on application scenarios all limit the application of robots
[15]. In addition, there may be problems with human trust in
robot guidance, which can affect the effectiveness of evac-
uation guidance [19]..e effectiveness of mobile devices was
verified in an experimental environment. During the ex-
periments, most of the studies assume that each evacuee
possesses a handheld communication device, like a smart-
phone or a wristband [13, 20]. .e application on the
smartphone is able to display the structure of evacuation
scenarios and receive route information delivered from
wireless sensor networks. However, we argue that the use of
such device is impractical. For example, in public places such
as stations and airports, prior installation of the application
is not guaranteed for everyone.

.e exit sign is commonly used worldwide and is ac-
customed by users. It can be preinstalled and seen by each
evacuated individual. .ese advantages have prompted re-
searchers to pay attention to the dynamic exit sign [1–3].
Depending on the message conveyed, dynamic exit signs can
be divided into two types: negative signs and positive signs.
.e negative sign shows a flashing red cross on the exit sign
for displaying dissuasive message that a certain egress di-
rection is not available [21]. Surveys [22, 23] and simulation
[24–27] revealed that negative signs can significantly prevent
evacuees from approaching hazardous areas compared to
static sign. .e positive signs display a recommendation
message, that is, which exit route is better for the evacuee.
Specifically, the positive signs designed with two arrows in
opposite directions, which is different from traditional exit
signs that have only one arrow. One of the two arrows is
highlighted to indicate the recommended exit route direc-
tion. In particular, the highlighted arrow can be modified at
any time according to the evacuation status. As a result, the
dynamic exit sign can provide time-variable evacuation
guidance to the crowd. A survey showed that the recom-
mended information from positive signs is more useful than
the prohibited information from negative signs [28].
.erefore, positive signs, as the main display terminal of
Dynamic Sign Guidance (DSG) systems, are the subject of
this paper.

Exit sign direction optimization is a central issue for
DSG systems. .e available studies on the optimization of
exit sign direction are mainly classified into the following
three methods. .e first method is based on static network

shortest route optimization [6, 7, 10, 11], where researchers
proposed several exit sign direction setting approaches with
shortest route algorithms based on indoor navigation graph
networks. .e second method is based on dynamic network
flow optimization [29–31]. Researchers calculated the op-
timal route from the evacuation origin to the exit in a time-
space network using maximum flow models. .e direction
of each arc in that optimal route is used as the direction of
the sign..e third method is based on evacuation simulation
for exit choice. Several simulation models, such as cell au-
tomate [22], floor field [14, 32], and agent-based models
[33, 34], were proposed for predicting the egress time of
agents to multiple exits. Depending on the egress time, the
sign at the agent’s location was set to point to the nearest exit.
In general, the above methods took the direction of the edge
in the optimal route as the exit sign direction based on the
immutable network topology, and these methods are rea-
sonable for static signs with fixed direction. However, in the
DSG system, the network topology will change with the
dynamic sign direction, which affects the optimal routes. As
a result, to optimize dynamic sign direction, both the op-
timal evacuation route and the network topology change
brought by sign direction adjustments should be considered.

Fortunately, similar studies considering both network
topology and route flow optimization have been conducted
in regional evacuation guidance on road networks. .ese
studies treat large-scale evacuation guidance as a network
design problem [35, 36] or a one-way organization opti-
mization problem [37] and proposed several bi-level pro-
gramming models for these problems. In their bi-level
programming models, the direction of each edge in the
evacuation network was the decision variable for the upper-
level model, and the route flow was the decision variable for
the traffic assignment model that serves as the lower-level
model. Consequently, the bi-level programming model
could optimize both the traffic flow to the shortest route and
the driving direction of roadway segments, which was
precisely suitable for optimizing dynamic sign directions.

However, there are still two flaws in our knowledge of
applying these bi-level programming models for the dy-
namic sign direction optimization problem in buildings..e
first one is that most lower-level models employ static user
equilibrium models, which were usually conducted to de-
scribe the route choice behaviour of travellers in long-term
planning problems such as road network planning. Hence, it
was unsuitable for the dynamic process of evacuation due to
the dynamic route choice behaviour of pedestrians. .us, to
better describe dynamic characteristics of pedestrians in
evacuation, the dynamic user optimal (DUO) principle and
the corresponding dynamic pedestrian assignment (DPA)
model were proposed [38]. Just as dynamic traffic assign-
ment models in road traffic flow, the DPA model could be
divided into two categories, predictive and reactive,
according to the different calculations of route evacuation
time cost. .e predictive model assumed that pedestrians
could accurately predict evacuation times by considering
future situation changes with their experience. .e reactive
model assumed that pedestrians would estimate the in-
stantaneous egress time of the route based on the immediate
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collected information and choose a suitable route accordingly.
Due to the dynamic feature of evacuation, it is difficult for
pedestrians to predict the egress time accurately. Hence, the
assumption of the reactive model is more consistent with the
evacuation behaviour of pedestrians. .erefore, a reactive
DPA model conforming to the DUO principle should be
adopted in the lower-level model to describe the dynamic
route selection behaviour of pedestrians.

.e second flaw concerns the route travel cost. As
mentioned above, the route travel cost is the basis of the DPA
model, which ensures a well-balanced distribution of pe-
destrian flow on each route. Existing studies on DSG have
proposed various indicators of route travel costs, including
distance [1, 7], travel time [2, 3, 6, 10], level of service [2, 11],
hazard level [7], and individual congestion-awareness [39].
Among them, level of service, hazard level, and individual
congestion-awareness rely on personal subjective judgments.
Distance, on the other hand, although relatively objective,
does not reflect the congestion impact of the route. .erefore,
travel time has been widely used as a measure of route travel
cost. However, most of the current travel time calculations
adopt network-based flowmethods, which can only reflect the
time delay caused by congestion, but not the queuing time
that would account for a large portion of the egress time [40].
While simulation-based methods can estimate the queuing
time by simulating individual interactions, they suffer from
computational costs. Guo et al. [33] established an iterative
approach that can balance accuracy and computational ef-
ficiency based on a cell transmission model to calculate route
travel time. However, this approach, which uses a spatial-
potential field to define the virtual shortest route and calculate
the travel cost, lacks an explicit queuing time expression.
Nevertheless, the cell transmissionmodel inspires us to bridge
the gap between computational accuracy and efficiency.

3. Methodology

3.1. Problem Statement. Unlike the static sign with only a
one-directional arrow, the dynamic sign considered in this
paper has two arrows in opposite directions. Each arrow can
be lit or off, thus indicating three states, namely, (1) one lit
arrow guides to the left; (2) the other lit arrow guides to the
right; and (3) both arrows are extinguished, that is, the sign
does not guide pedestrians, as shown in Figure 1, respectively.
In the first two states, pedestrians should move according to
the arrow pointing. In the third state, the sign has no di-
rection, and pedestrians can move on their own according to
the current speed direction.

To better describe the decision behaviour of pedestrians in
evacuation, we discretize the evacuation area into regular grids.
Each grid can accommodate a certain number of pedestrians,
and the pedestrians can move towards adjacent grids..e grids
are used to construct a network representing the walkable areas
and obstacles. Grids are used to calculate roadway travel times
and thus determine the dynamic route choice of individuals.
.e size of the grid cannot be smaller than the distance travelled
by pedestrians at free-walking speed in one-time step; otherwise,
it cannot reflect the route choice behaviour provoked by the
variability of pedestrian density in different grids. Too small a

grid size also leads to a computational burden due to the large
size of the evacuated network. .e grid size should also not be
too large in order to ensure the computational accuracy of the
grid’s travel time. In order to balance the computational effi-
ciencywith accuracy requirements of travel time calculation, the
length and width of each grid ranges from 1m to 3m.

It is assumed that each grid has a dynamic sign to direct the
movement of pedestrians. According to the adjacency rela-
tionship between the grids and the guided direction of signs,
the walkable space with discrete grids can be converted into a
directed network. Figure 2 shows the indoor area with dif-
ferent sign directions and its corresponding directed network.

As shown in Figure 2(a), gray grids are obstacles, and
blank white grids denote the walkable area. .e neigh-
bouring edge of two adjacent blank grids numbered in
Figure 2(a) is regarded as a node in the directed network in
Figure 2(b). .e arrow in the blank grid, indicating the sign
direction, is viewed as a directed arc between two nodes. As a
result, the walkable space in Figure 2(a) can be transformed
into the directed network in Figure 2(b). Besides, it should be
noted that there is no arrow in grid A in Figure 2(a), which
indicates that the sign of grid A is in the third state as
described in Figure 2(c), and pedestrians in grid A can move
towards the neighbouring edges 11 and 12. .erefore, the
directed arc between nodes 11 and 12 in Figure 2(b) should
be a bi-directional arc. If the sign direction in the grid is
changed, the corresponding directed network will also be
reformed. For example, the sign direction of grid B and grid
C in Figure 2(a) is adjusted to the opposite direction, as
shown by the red bold arrow of grid B and grid C in
Figure 2(c). .en the directed arc between node 13, node 14,
and node 10 in Figure 2(b) will also change, as shown by the
red arrows in Figure 2(d). By this method, the optimization
of the dynamic sign direction can be converted into the
optimization of the network topology.

For a better formulation, there are two assumptions as
follows:

(1) Pedestrians are familiar with all sign directions and
will comply with DSG.

(2) Pedestrians can estimate travel time on all available
routes based on the pedestrian flow on each route.

For the room with complex layouts and multiple exits,
the walkable space is divided into several grids to form an
evacuation network H � H(R), where R is the set of blank
grids. Let D be the set of exit grids and Ri be the set of
neighbour grids of grid i, then we have D ⊂ R and Ri ⊂ R.
.e evacuation period [0, T] is divided into kmax time in-
tervals by time duration Δt, so we have T � Δt × kmax and
the set of time intervals is K � 1, 2, . . . , k . . . , kmax .

For the convenience of readers, the primary notation is
described in Table 1.

3.2. 2e Upper-Level Optimization Model. .e decision
variable in the upper-level model is the dynamic sign di-
rection in each grid, which is set as a binary variable x

j
i

(i ∈ R, j ∈ Ri), indicating whether the dynamic sign direc-
tion in grid i points to grid j:
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EXIT

(a)

EXIT

(b)

(c)

Figure 1: Dynamic sign with different guidance direction. Figure (a) denotes a guidance to the left with green arrow, Figure (b) denotes a
guidance to the right with green arrow, and Figure (c) denotes no guidance.
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Figure 2: .e discretization of space with sign direction and its corresponding directed network. Figure (a) and (c) are the same discrete
space with different sign directions, and Figure (b) and (d) are directed networks corresponding to Figure (a) and (c), respectively. In Figure
(c), the sign direction in grid B and grid C points in the opposite direction compared with Figure (a). Accordingly, the corresponding
directed network is reformed from Figure (b) to Figure (d) by changing the arc direction between node 13, node 14, and node 10.
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x
j
i �

1, if the sign of grid i points to grid j,

0, otherwise.
 (1)

.e objective of the evacuation manager’s decision in the
upper-level model is to minimize the total evacuation cost of
the system to reduce network-wide congestion. According to
the system-optimization program, with x

j
i as the decision

variable to minimize the total travel cost, the upper-level
model is formulated as equations (1)–(5).

minZ � 
i∈R


j∈R

tij x
j
i , ρi(k), k nij(k), (2)

s.t 
j∈Ri

x
j

i ≤ 1, ∀i ∈ R, (3)

x
j
i + x

i
j ≤ 1, ∀i ∈ R, j ∈ Ri, (4)

x
j
i ∈ 0, 1{ }, ∀i ∈ R, j ∈ Ri, (5)

where equation (2) is the objective of minimizing the total
travel cost. In this paper, travel time is chosen as travel cost.
In equation (2), tij(x

j
i , ρi(k), k) is the link travel time for

pedestrian from grid i to j, and it is a function of x
j
i and

ρi(k), where x
j
i is determined by the upper-level model and

ρi(k) is obtained from the lower-level model. tij(x
j
i , ρi(k), k)

is abbreviated as tij(k) in following context and its specific
calculation procedure is detailed in Section 3.4.

Constraint (3) ensures that the sign cannot point in more
than one neighbouring grid simultaneously. If j∈Ri

x
j

i � 1, it
means that the sign in grid i will point to one of its neighbour
grid j, and all pedestrians in grid i should move according to
its guidance direction. In this case, grid i can be regarded as
a one-way grid and defined as a directed grid in this paper. If
j∈Ri

x
j
i � 0, it means that there is no directional guidance in

grid i, and all pedestrians in that grid can move according to
their current routes, that is, their moving directions may not
all be the same. In this case, grid i can be regarded as a
nondirectional grid and defined as an undirected grid in this
paper.

Constraint (4) guarantees that two dynamic signs in two
adjacent grids cannot point to each other simultaneously.
Constraint (5) represents that the decision variable x

j

i are
binary variable.

3.3. 2e Lower-Level Dynamic User Optimization Model.
According to the assumptions above, with sign directions
obtained by the upper-level model, individuals desire to

Table 1: : Temperature and wildlife count in the three areas covered by the study.

Symbol Definition
ni(k) .e number of people in grid i during time interval k.
nij(k) .e number of people in grid i who choose to move to grid j during time interval k, where j ∈ Ri.
ni,d

j (k) .e number of people in grid i who choose to exit d with passing through grid j during time interval k, where j ∈ Ri.

ci,d
j (k)

.e travel time for people in grid i to pass through grid j and eventually evacuate from exit d during time interval k, where j ∈ Ri

(unit: s).
ci,d

p (k) .e travel time for people in grid i selecting route p to exit d during time interval k (unit: s).
fi,d

p (k) .e number of people in grid i selecting route p to exit d during time interval k.
tij(k) .e estimated travel time for people in grid i moving into grid j during time interval k, where j ∈ Ri (unit: s).
t0ij .e expected travel time for people in grid i moving into grid j with free flow velocity during time interval k, where j ∈ Ri (unit: s).

ψi,d
j (k)

.e minimum travel time for people in grid i moving from grid j to the queue tail at exit d during time interval k, where j ∈ Ri

(unit: s).

ti,d
j (k)

.e minimum travel time for people in grid i moving to the queue tail at exit d by passing through grid j during time interval k,
where j ∈ Ri.

πp(k) .e minimum evacuation travel time of people selecting route p during time interval k.
πi(k) .e minimum evacuation time of people in grid i during time interval k.
Lij .e moving distance for people in grid i moving to grid j during time interval k, where j ∈ Ri.

qk
d(l)

.e queue length of exit d, which is predicted during time interval k, for the people arrives at exit d at the time interval l, where
l≥ k.

ξi,d
j,k(l)

Binary variables and pedestrians in grid i choose exit d to evacuate by passing through grid j during time interval k; if the
pedestrians can arrive exit d during time interval l, we have ξi,d

j,k(l) � 1, otherwise 0, where j ∈ Ri.
ρi(k) .e pedestrian density in grid i during time interval k (unit: persons per square meter).
ρmax According to the literature [41], the maximum pedestrian density is set at 5.4 persons per square meter for safety.

Ej(k)
.emaximum number of people who allowed to moving into grid j during time interval k, that is, the acceptance capacity of grid

j, where j ∈ Ri.

Yij(k)
.emaximum number of people who can move from grid i to grid j during time interval k, that is, the output capacity of grid i to

grid j, where j ∈ Ri.
pij(k) .e ration of people moving into grid j who are from grid i during time interval k, where j ∈ Ri.

Qij

.e through capacity between grid i and grid j; it set Qij � 2.0734 × llength − 0.5901 according to the literature [38], where j ∈ Ri

and llength denotes the length of neighbour edge between grid i and grid j.
Sij(k) .e transmission capacity for people who move from grid i to grid j during time interval k, where j ∈ Ri.
Mi .e area of grid i (unit: square meter).
x

j
i Binary variables, whether the dynamic sign guide in grid i points to grid j
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evacuate as quickly as possible along the route with the shortest
travel time. However, it is challenging to predict the travel time of
all routes exactly. Hence, the instantaneous travel time of each
route estimated by pedestrians is taken to assess the shortest route
in the lower-level model. .en the system will reach a reactive
DUOequilibrium statewhen everyone chooses the routewith the
minimum travel time, and no one would be better by unilaterally
changing his/her route. In this situation, the instantaneous travel
time of all selected routes is equal andminimum. In contrast, that
of all unselected routes is not less than the minimum instan-
taneous evacuation travel time. Namely, with the reactive DUO
equilibrium state, if pedestrians in grid i choose evacuation route
p toward exit d during time interval k, that is, fi,d

p (k)> 0, it
means the evacuation route p has the minimum instantaneous
evacuation travel time. Otherwise, fi,d

p (k) � 0 indicates that the
evacuation travel time on route p is not less than the minimum
evacuation travel time, and no one chooses that route..erefore,
we have the following expression.

c
i,d
p (k)

� πp(k), if f
i,d
p (k)> 0,

≥ πp(k), if f
i,d
p (k) � 0.

⎧⎪⎨

⎪⎩
(6)

where ci,d
p (k) is the time for pedestrians in grid i selecting

route p to exit d and πp(k) is the minimum evacuation time
of pedestrians on route p during the time interval k.

Equation (6) can be equivalently expressed as a nonlinear
complementarity problem (NCP) as follows [38].

f
i,d
p (k) c

i,d
p (k) − πp(k)  � 0, ∀i ∈ R, d ∈ D


d


p

f
i,d
p (k) � ni(k), ∀i ∈ R, d ∈ D,

c
i,d
p (k) − πp(k)≥ 0, ∀i ∈ R, d ∈ D,

f
i,d
p (k)≥ 0, ∀i ∈ R, d ∈ D.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Since equation (7) is a route-based model, all the routes
from each grid to each exit should be enumerated, which is
relatively inefficient to solve. .erefore, we reformulate
equations (6) and (7) by transferring the route-based model
to grid-based through the method developed in literature
[38]. We assume that when a pedestrian in grid i chooses a
certain shortest route p to exit d, it must first pass through its
neighbour grid j, as shown in Figure 3. According to
equation (6), if the travel time of route p is equal to the
minimum travel time, we have fi,d

p (k)> 0 and ni,d
j (k)> 0,

where ni,d
j (k) is the number of pedestrians in grid i that

choose to exit d with passing grid j. Otherwise, we have
fi,d

p (k) � 0 and ni,d
j (k) � 0 when the travel time of route p is

not the minimum travel time. Hence, the travel time for
pedestrians in grid i passing grid j to exit d is

c
i,d
j (k)

� πi(k), if n
i,d
j > 0,

≥ πi(k), if n
i,d
j � 0.

⎧⎪⎨

⎪⎩
(8)

Similarly, the grid-based reactive DUO condition of
equation (8) can also be rewritten as the following equivalent
NCP formulation.

n
i,d
p (k) c

i,d
p (k) − πp(k)  � 0, ∀i ∈ R, j ∈ Ri, d ∈ D,


j∈Ri


d∈D

n
i,d
p (k) � ni(k), ∀i ∈ R,

c
i,d
j (k) − πp(k)≥ 0, ∀i ∈ R, j ∈ Ri, d ∈ D,

n
i,d
p (k)≥ 0, ∀i ∈ R, j ∈ Ri, d ∈ D.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

To solve equation (9), we can equivalently restate it as a
Variational Inequality (VI) problem. Let Ω � jdni,d

j

(k)ni(k), ni,d
j (k)≥ 0, ∀i ∈ R, j ∈ Ri, d ∈ D} as the feasible

grid flows of equation (9), n � [ni,d
j (k)] as the dynamic

pedestrian flow vector, and c(n) � [ci,d
j (k)] as the vector of

instantaneous evacuation travel time, which is a function of
n. .en if there is a vector n∗ ∈ Ω, equation (9) is equivalent
to the VI problem as follows:

〈c n∗( ,n − n∗〉 ≥ 0, ∀n ∈ Ω. (10)

.e solution of the VI problem satisfies the instanta-
neous dynamic user optimal condition. .e proof can be
seen in literature [42].

3.4. Calculation of Instantaneous Route Travel Time. To solve
the above model, we need to estimate the evacuation travel
time of each route firstly. As we consider the impact of
pedestrian congestion on the grid and queuing at bottlenecks
on the travel time, the travel time is consisting of (1) the
minimum travel time for pedestrians to move from the
current grid i through grid j to exit d during time interval k,
denoted as ti,d

j (k), and (2) queuing time at exit d, denoted as
wd(k), equation listed as

c
i,d
j (k) � t

i,d
j (k) + w

d
(k). (11)

As shown in Figure 3, ti,d
j (k) is calculated as follows.

t
i,d
j (k) � tij(k) + ψi,d

j (k), (12)

where ψi,d
j (k) can be calculated using the shortest route

algorithm based on the travel time tmn(k) between the
adjacent grid m and n which are the parts of the shortest
route corresponding to ψi,d

j (k). tij(k) is related to the sign
direction, the pedestrian flow speed, and the transmission
capacity of grids i and j. We will develop it in the following
section.

3.4.1. Calculation of Travel Time between Two Adjacent
Grids. We estimate the travel time between adjacent grids
based on a velocity-density relationship. .e velocity-den-
sity function of the grid is first stated. According to the

i j d

�e shortest route p

tij (k)
ψj

i,d (k)

tj
i,d (k)

Figure 3: .e shortest route was chosen by a pedestrian [38].
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fundamental diagram of pedestrian flow, the pedestrian flow
speed ui(k) is a function of ρi(k) in grid i. As stated in
Section 3.2, a one-way pedestrian flow is formed in the
directed grid with j∈Ri

x
j
i � 1, while the pedestrian flow in

different directions is formed in the undirected grid with
j∈Ri

x
j
i � 1. In the latter case, the multidirectional pedes-

trian flows may produce friction and congestion effects,
reducing the pedestrian flow speed in each direction. As a
result, the pedestrian flow speed in undirected grids would
be lower than in directed grids under the same pedestrian
density. .erefore, in this paper, ui(k) should be revised as a

function of ρi(k) and x
j
i . We adopt the pedestrian flow

velocity-density function u(ρ) � umax(1 − exp(β(ρ− 1−

ρ− 1
max))) proposed by Weidmann [41] to fit ui(k) in the
undirected grids and the directed grids, respectively, where
umax and β are the parameters to be calibrated,
ρmax � 5.4 persons/m2. As in equation (13), if j∈Ri

x
j
i � 1,

ui(k) in directed grids can refer to literature [41] with umax �

1.34 and β � 1.913. If j∈Ri
x

j

i � 0, ui(k) in undirected grids
is obtained with umax � 1.26 and β � 1.63 by fitting the data
in literature [43] with the least-squares method.

ui(k) �

1.26 1 − exp − 1.63
1

ρi(k)
−

1
5.4

   , if 
j∈Ri

x
j
i � 0,

1.34 1 − exp − 1.913
1

ρi(k)
−

1
5.4

   , if 
j∈Ri

x
j
i � 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(13)

Next, the travel time of the grid is estimated based on
ui(k) and the pedestrian flow moving distance Lij. Without
consideration of the transmission capacity limitations
caused by the edge length difference between adjacent grids,
the travel time tij

′ (k) from grid i to grid j can be calculated by
the following equation (14). In equation (14), if j∈Ri

x
j
i � 1

and x
j
i � 0, it means that grid i is a directed grid, but the sign

in grid i does not guide to grid j. .is indicates that pe-
destrians in grid i are not allowed to move to grid j.
.erefore, tij

′ (k) � +∞.

tij
′(k) �

Lij

1.26 1 − exp − 1.63 1/ρi(k)(  − (1/5.4)( ( ( 
, if 

j∈Ri

x
j
i � 0,

Lij

1.34 1 − exp − 1.913 1/ρi(k)(  − (1/5.4)( ( ( 
, if x

j

i � 1,

+∞, if 
j∈Ri

x
j
i � 1 andx

j
i � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

To take the influence of pedestrian congestion on the
evacuation travel time into account, we perform a cell
transmission model of traffic flow to obtain a more accurate
travel time. When pedestrians travel through grids, the
transmission capacity Sij(k) between grid i and j, j ∈ Ri,
have a significant impact on the travel time. Figure 4 shows
the factors influencing Sij(k). As shown in Figure 4, Sij(k) is
influenced by the output capacity of grid i to grid j (denoted
by Yij(k)), acceptance capacity of grid j (denoted by Ej(k)),
and the acceptance ration of grid j (denoted by pij(k)).

(1) Yij(k) is influenced by the number of pedestrians in
grid i who plan to travel to grid j and the through
capacity Qij between grid i and j. By definition,
Yij(k) can be calculated by

Yij(k) � min nij(k), Qij . (15)

(2) Ej(k) is determined by the remaining capacity of
grid j and the capacity of grid j to its neighbour

grids. To ensure evacuation safety, we set the max-
imum pedestrian density in each grid as
ρmax � 5.4 persons/m2; then the remaining capacity
of grid j is ρmaxMj − nj(k). .en, we have

Ej(k) � min ρmaxMj − nj(k), 
i∈Rj

Qij}.
⎧⎪⎨

⎪⎩
(16)

(3) To simplify, the following formula is used to define
the allocation ratio pij(k), which denotes the pro-
portion of pedestrians moving into grid j who are
from grid i during time interval k,

pij(k) �
Yij(k)

i∈Rj
Yij(k)

. (17)

As shown in Figure 4, the through capacity Sij(k) from
grid i to grid j during time interval k can be obtained by the
following equation,
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Sij(k) � min Yij(k), pij(k)Eij(k) 

� min nij(k), Qij, pij(k)Eij(k) .
(18)

Hence, considering transmission capacity limitation and
sign direction of grid i, the travel time from grid i to grid j

during time interval k is

tij(k) � max t
0
ij, tij
′(k),

nij(k)

Sij(k)
Δt . (19)

3.4.2. Calculation of Queuing Time of Exit. During the
evacuation, reduced capacity at bottlenecks, such as exits,
can lead to queues. Queuing time is part of the evacuation
travel time and can also affect the route choice of

pedestrians. .e queuing time is related to the number of
people queuing at the exit and the exit width. .erefore, a
point queuing model [44] is used to estimate the number of
people in line around exits.

By definition, at current time interval k, if pedestrians
can arrive at exit d during time interval l with travel time
ti,d
j (k), that is, l≤ ti,d

j (k) + k< l + 1, we have ξi,d
j,k(l) � 1,

otherwise ξi,d
j,k(l) � 0.

ξi,d
j,k(l) �

1, if l≤ t
i,d
j (k) + k< l + 1,

0, otherwise.

⎧⎨

⎩ (20)

Hence, in time interval l, the number of pedestrians in
line at exit d is

q
d
k(l) �

max q
d
k(l − 1) + 

i


j

n
i,d
j (k)ξi,d

j,k(l) − ΔtQdo,
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, if l≥ k,

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

where Qdo is the through capacity between exit d and the
adjacent virtual outside grid o.

Since the time for pedestrians to reach the exit is not
necessarily an integer interval, for simplicity, the queue
length of two adjacent integer intervals is considered when
calculating the queue length, and the linearizationmethod in
literature [45] is used to calculate the number of pedestrians
queuing at the exit at the time (l + μ)Δt, μ ∈ [0, 1], that is,

q
d
k(l + μ) � μq

d
k(l) +(1 − μ)q

d
k(l + 1). (22)

Hence, the queuing time at exit d during time interval
k is

w
d
(k) �

q
d
k k + t

i,d
j (k) 

Qdo
Δt. (23)

After in all, the evacuation travel time ci,d
j (k) can be

estimated by equation (11)–(23).

4. Algorithm

4.1. 2e Algorithm for Upper-Level Model. Since the discrete
bi-level programming model in this paper is an NP-hard
problem, it is difficult to get the optimal global solution in
polynomial time. Existing heuristic algorithms for solving
discrete bi-level programming problems mainly use the
branch-and-bound method [46]. However, this method is
inefficient in dealing with a massive number of variables x

j
i .

.erefore, in this paper, a genetic algorithm is designed for
the bi-level programming model as follows.

In the genetic algorithm, the genes in the chromosome
are to be coded according to the constraints of the variables.
To satisfy the constraints (4), we encode every two adjacent
genes in pairs of 0 and 1 to denote the decision variable x

j

i

and xi
j. .erefore, the chromosome can be described as

X � . . . , x
j
i , xi

j, . . . , where 1≤ i< card(R), j ∈ Ri, and j> i.
.e pseudocode of the genetic algorithm is given as

grid i grid j

grid m

Qij

Qmj

nij (k)

nmj (k)
Ymj (k)

Yij (k)

Ej (k)pij (k)

Ej (k)pmj (k)

nj (k)

Figure 4: .e influencing factors of Sij(k).
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Algorithm 1. .e genetic algorithm also includes algorithms
for crossover, mutation, and reproduction, which corre-
spond to the pseudocodes as Algorithms 2–4, respectively.

In line 12 of Algorithm 1, and in line 6 of Algorithm 4,
the chromosome fitness values F(X) � Z0/Z(X, ρi(k)) are
calculated according to equation (2), where Z0 is the total
travel time with x

j
i � xi

j � 0, i, j ∈ R.
According to Algorithms 1–4, the complexity of the

genetic algorithm is mainly affected by Algorithm 2, and the
time complexity of the genetic algorithm is O(MP2), where
M is the number of variables x

j
i and P is population size.

4.2. 2e Algorithm for Lower-Level Model. In this paper, we
develop an iterative heuristic algorithm based on the concept
of adjusting pedestrians from long routes to shorter ones in
literature [38]. .e algorithm pseudocode is as follows.

.e convergence condition in line 5 of Algorithm 5
needs to satisfy the following equation; then the iteration
algorithm terminates.

i∈Rj∈Ri
d∈Dn

i,d
j (k) c

i,d
j (k) − πi(k) 

i∈Rj∈Ri
d∈Dn

i,d
j (k)πi(k)

< ε. (24)

.e time complexity of Algorithm 5 is mainly affected by
the multilayer iterations in line 17 to 27, and the algorithm
complexity is O(n2), where n � card(R). .e multilayer
iterations transfer pedestrians in the route with a long
evacuation travel time to the shortest route. .e total
transfer amount cannot exceed the full flow in each route to
ensure feasibility.

4.3. Simulation Algorithm for Evacuation. For numerical
analysis, we try to embed the bi-level model into a micro-
scopic simulation model and put forward an algorithm
framework integrating themacroscopic evacuation guidance
optimization and microscopic simulation, as seen in Al-
gorithm 6. In Algorithm 6, the best route selected by pe-
destrians from the macro optimization model determines
their moving direction in the microscopic simulation model.
.en, the pedestrian density of grids is updated after pe-
destrians move in the microscopic simulation. .e new
pedestrian density of grids can then be input into the
macroscopic model.

.e social force model in literature [47] is adopted in the
microscopic simulation model with a simulation step length
Δt′. Due to the computational time consuming of upper-level
model, we assume that the optimization for dynamic sign
direction is conducted in every δ time, where δ � w × Δt′ and
w is a positive integer to improve the computation efficiency.
.e simulation algorithm pseudocode is as follows.

5. Numeral Experiments

5.1. Case Description and Parameters Setting. For compar-
ative analysis, an evacuation scene in literature [38] was
selected as the simulation scenario..e evacuation scene is a
23 m × 18 m room with two exits, namely, exit A and exit B,
with a width of 2m and 1.5m, respectively. According to the

positions of walls, obstacles, and exits, the scene is divided
into 86 grids. .e length of grids ranges from 1 meter to 3
meters. Figure 5 shows the simulation scene diagram, where
the gray grids are obstacles, green grids are exits, and blank
grids with index are the walkable area.

.e parameters in the social force model are set as
τ � 0.5 s, A � 2000, B � 0.08, k1 � 1.2 × 105, k2 � 2.4 × 105,
Δt′ � 0.01 s, and δ � 10Δt′ � 0.1 s. Let pedestrian quality
m � 70 kg, and pedestrian radius r is a uniform value be-
tween [0.25m, 0.35m] and desired speed vmax � 1.34 m/s.
.e parameters in the genetic algorithm are set as P � 50,
Pc � 0.6, Pm � 0.01，and G � 200. With Microsoft Visual
Studio 2017 based on dot net Framework 4.6, the simulation
experiment with 200 pedestrians is operated on the platform
of Windows 10, CPU is intel i7-7700HQ 2.8GHz, and 16G
memory. It takes 132 seconds for the simulation case to
finish running. Figure 6 shows the pedestrian evacuation
simulation process at different time intervals. In Figure 6,
red arrows represent the dynamic sign direction, purple
circles denote those who selected exit B to evacuate, and
green circles correspond to those who chosen exit A.

As shown in Figure 6, at the moment t � 0 s, pedestrians
are randomly uniform distributed in the scene, and the sign
directions were generated according to the upper-level model.
Each individual chooses the exit according to the dynamic
sign direction. As the simulation evolves, the direction of
some signs is adjusted. For example, the red arrows labelled
with blue circles in Figures 6(b)–6(d) change their pointing in
comparison with Figures 6(a)–6(c), respectively. Accordingly,
some pedestrians also adjust their target exits and routes.

5.2. Effectiveness Analysis of DSG. We conduct some com-
parative simulations with DSG and SSG on the same inputs
in this section. In the DSG simulation, pedestrians move
according to our model. In the SSG simulation, pedestrians
choose the nearest exit and the shortest route to evacuate.
.ree statistical indexes are calculated to illustrate the ef-
fectiveness of our model on evacuation time as follows:

(1) .e maximum evacuation time Tmax is the time of
the last person left from the simulation scene, that is,
Tmax � max

h
Th , where Th is the evacuation time for

pedestrian h.
(2) .e average evacuation time Tave is the average

evacuation time of all pedestrians, that is,
Tave � (

N
h Th)/N, where N is the number of pe-

destrians in simulation.
(3) .e average delay time Tdel is the average delay time

compared with the evacuation time required on the
shortest route under free flow, that is,
Tdel � 

N
h (Th − T0

h)/N, where T0
h is the evacuation

time for pedestrian h moving in the desired velocity
vmax along the shortest route.

Random distributions of pedestrian locations during the
initialization lead to different results. To eliminate the dif-
ferences in results, we simulate the same number of indi-
viduals at random locations 50 times. .e statistical index is
the average of 50 simulations listed in Table 2. In Table 2, Err
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(1) Input: number of pedestrians in grids nij(k), the travel time tij(k)

(2) Output: the chromosome X with maximum F(X)

(3) Procedure GENETICALGORITHM(nij(k), tij(k))
(4) Initialize population size P, crossover probability Pc, mutation probability Pm, contemporary population Y(g), maximum

evolution algebra G. Let g � 1.
(5) while g<G, do
(6) CROSSOVER(P, Pc, Y(g), card(R))
(7) MUTATION(P, Pm, Y(g), card(R))
(8) REPRODUCTION(P, Y(g), Y′(g), nij(k), tij(k))
(9) g � g + 1
(10) End while
(11) For each chromosome in Y(g), do
(12) Calculate the fitness value F(X) of the chromosome X
(13) obtain the chromosome X with the maximum F(X) from Y(g)

(14) End for
(15) Return X
(16) End procedure

ALGORITHM 1: Genetic algorithm for upper-level model.

(1) Input: P, Pc, Y(g), the cardinality of the set R card(R)

(2) Output: the offspring population Y′(g)

(3) Procedure CROSSOVER(P, Pc, Y(g), card(R))
(4) Set temporary population chromosome set T � ∅
(5) For i � 1 to P, do
(6) generate random number r ∈ (0, 1)

(7) If r<Pc

(8) .en add the i th chromosome in Y(g) to T
(9) End if
(10) End for
(11) For the m th chromosome Xm in T (m � 1 to card(T)), do
(12) For the n th chromosome Xn in T (n � m + 1 to card(T)), do
(13) generate random positive integer r ∈ (0, card(R)]

(14) For β � r to card(R), do
(15) Swap the gene pairs (x

j

β, x
β
j ) and (y

j

β, y
β
j ) inXm andXn corresponding to the neighbour edges of the β th grid..at is x

j

β↔y
j

β and
x
β
j↔y

β
j , where x

j

β, x
β
j ∈ X

m, y
j

β, y
β
j ∈ X

n, j ∈ Rβ.
(16) End for
(17) Two new chromosomes Xm′ and Xn′ are obtained and added to the offspring population Y′(g).
(18) End for
(19) End for
(20) Return Y′(g)

(21) End procedure

ALGORITHM 2: Crossover algorithm in genetic algorithm.

(1) Input: P, Pm, Y(g), card(R)

(2) Output: the offspring population Y′(g)

(3) Procedure MUTATION(P, Pm, Y(g), card(R))
(4) Set temporary population chromosome set T � ∅
(5) For i � 1 to P, do
(6) generate random number r ∈ (0, 1)

(7) If r<Pm

(8) .en add the i th chromosome in Y(g) to T
(9) End if
(10) End for

ALGORITHM 3: Continued.
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(11) For the m th chromosome Xm in T (m � 1 to m � 1), do
(12) generate random positive integer β ∈ (0, card(R)]

(13) Selection of gene pair (x
j

β, x
β
j ) in Xm to mutate to (x′

j

β , x′
β
j ). Let x′

j

β � 1 − x
j

β and x
′β
j � 0 if x

j

β � 0, otherwise, x′βj � x
β
j .

(14) the new chromosomes Xm′ are obtained and added to the offspring population Y′(g).
(15) End for
(16) Return Y′(g)

(17) End procedure

ALGORITHM 3: Mutation algorithm in genetic algorithm.

(1) Input: P, Y(g), Y′(g)

(2) Output: the next-generation population Y(g + 1)

(3) Procedure REPRODUCTION(P, Y(g), Y′(g), nij(k), tij(k))
(4) Set Y″(g) � Y(g)∪Y′(g), make sure no identical chromosomes are in Y″(g).
(5) For each chromosome in Y″(g), do
(6) Calculate the fitness value F(X) of the chromosome X obtain the chromosome X with maximum fitness value F(X) from Y″(g)

(7) End for
(8) Let Y″(g) � Y″(g) − X{ }， Y(g + 1) � Y(g + 1) + X{ }.
(9) while card(Y″(g))<P, do
(10) Randomly select chromosome Xm and Xn from Y″(g)

(11) If F(X1)≥F(X2)

(12) .en set X � X1

(13) Else set X � X2

(14) End if
(15) Let Y″(g) � Y″(g) − X{ }， Y(g + 1) � Y(g + 1) + X{ }.
(16) End while
(17) Return Y(g + 1)

(18) End procedure

ALGORITHM 4: Reproduction algorithm in Genetic algorithm.

(1) Input: the current simulation time interval k, sign direction variable x
j
i , pedestrian number in grids ni,d

j (k),
(2) Output: the exit/route choice result for individuals in each grid
(3) Procedure ROUTECHOICE(k, x

j
i , ni,d

j (k))
(4) initialize the convergence accuracy ε
(5) while do not satisfy the convergence condition, do
(6) For all each grid i ∈ R, do
(7) calculate ui(k) according to equation (13) based on ni,d

j (k).
(8) For all each grid j ∈ Ri, do
(9) calculate the tij(k) according to x

j
i (j ∈ Ri) and equations (15)–(20).

(10) End for
(11) End for
(12) Find shortest path and calculate the shortest travel time ψj,d

i (k)

(13) For all each grid i ∈ R, do
(14) Calculate the travel time ti,d

j (k) and ξi,d
j,k(l) (l> k) according to equations (12) and (19), respectively

(15) Calculate the queue length qd
k(l) and estimate the evacuation travel time ci,d

j (k) according to equations (20) and (11), respectively.
(16) End for
(17) For all OD pairs (i, d), do
(18) For all j ∈ Ri, do
(19) calculate the minimum evacuation time πi(k) � min ci,d

j (k)  and its corresponding grids set Ri � (j, d)|ci,d
j (k) � πi(k) 

according to equation (24), where j ∈ Ri, d ∈ D

(20) End for
(21) Calculate ϑ � j∈Ri

d∈Dαni,d
j (k)[ci,d

j (k) − πi(k)], where α denotes pedestrian sensitivities to the evacuation travel time
differences

(22) For all j ∈ Ri, do
(23) If (j, d) ∉ Ri

ALGORITHM 5: Continued.
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is the relative gap of the statistical index between DSG and
SSG, which is calculated by Gap � (the statistical index
in SSG − corresponding index inDSG) × 100%/the statistical
index in SSG.

As shown in Table 2, as the number of evacuees increases,
the difference in statistical indexes between theDSGmodel and
the SSG model can be divided into three groups. .e evacu-
ation process can be divided into three situations accordingly.

(24) .en set ni,d
j (k) � ni,d

j (k) − αni,d
j (k) Else set ni,d

j (k) � ni,d
j (k) + ϑ/|Ri|

(25) End if
(26) End for
(27) End for
(28) End while
(29) End procedure

ALGORITHM 5: Algorithm for lower-level model.

(1) Procedure SIMULATION( )
(2) Generate the grid division and evacuate network. Initialize N pedestrians with velocity and location of each pedestrian p, set

simulation time τ � 0. Set x
j
i � 0, initialize the social force model parameters.

(3) while N> 0 do
(4) If τmod δ � 0, then
(5) GENETICALGORITHM(nij(k), tij(k))
(6) ROUTECHOICE(k, x

j
i , ni,d

j (k))
(7) End if
(8) For the pth pedestrian (p � 1 to N), do
(9) According the exit /route choice result update the pth pedestrian’s desire velocity direction
(10) Calculate the pth pedestrian’s velocity and acceleration using social force model
(11) End for
(12) For the pth pedestrian (p � 1 to N), do
(13) Update the pth pedestrian’s velocity and location
(14) If p has evacuated out, then
(15) N � N − 1
(16) End if
(17) End for
(18) τ � τ + Δt′
(19) End while
(20) End procedure

ALGORITHM 6: Simulation algorithm for evacuation.
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Figure 5: .e layout and grid division of the simulation scene.
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(1) .e first situation: In this situation, the number of
pedestrians is relatively small (N< 30), and the above
three statistical indexes for DSG and SSG are equal.
In particular, Tdel is zero for DSG and SSG. It follows
that when the number of people is small, the sign
direction in the DSG model is the same as that in the
SSG model, both pointing to the nearest exit along
the shortest route. It makes the same pedestrians in
DSG and SSG move in the same trajectory. As a
result, Tmax and Tave are the same in both models.
Furthermore, everyone can also move with vmax
without congestion during the evacuation process;
hence, the delay time is zero in both models. During
the simulation, we find that the initial position of
pedestrians has a negligible impact on Tmax and Tave.

(2) .e second situation: In this situation, the number of
pedestrians is 30≤N≤ 40, and the above three sta-
tistical indexes for DSG and SSG are equal. Unlike
the first situation, Tdel is greater than zero. .e
equality of statistical indexes shows that the sign
direction under DSG is the same as that under SSG.
However, with the number of pedestrians increasing,
it causes congestion on some evacuation routes.
Hence, the delay time is greater than zero. Mean-
while, the increase in the number of pedestrians will

increase the congestion and its duration, making a
positive correlation between Tave and N. Nonethe-
less, not all pedestrians would be affected by the
congestion. As a result, Tmax is still randomly
distributed.

(3) .e third situation: In this situation, the number of
pedestrians is N> 40, and statistical indexes of DSG
are all smaller than that of SSG. It means that the sign
direction under DSG will be adjusted according to
the congestion and waiting time at the exit. .is
adjustment can guide pedestrians to detour or even
change the exits. In this way, pedestrians are dis-
tributed in balance on evacuation routes and exits,
with minimum total travel time cost. Overall, all the
three statistical indexes of DSG and SSG increase
with the number of pedestrians.

Generally, as listed in Table 2, there is no significant
difference between the SSG and DSG in the first and second
situations due to the relatively low density of pedestrians and
the absence of congestion during evacuation. However, as
the number of pedestrians increases (N> 40), the relative
gaps of all three statistical indexes almost increase. For
instance, the relative gap of Tave is 12.85% when the number
of pedestrians is 100 and 37.1% when the number of

(a) (b)

(c) (d)

Figure 6: Snapshots of simulation at different simulation time intervals: (a) t� 0 s; (b) t� 26.31 s; (c) t� 47.66 s; (d) t� 56.42 s.
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pedestrians is 300. .rough the above analysis, we can
conclude that the more the pedestrians in evacuation, the
better the improvement of DSG over SSG on evacuation
time and delay time.

5.3. Effectiveness of DSG at a Different Location. .is sub-
section mainly focuses on analysing the effect of DSG at
different locations on the evacuation process. We counted
the number of sign direction changes for each gird during
the simulation, as shown in Figure 7. According to the
number of changes, the grids where these signs are located
can be divided into two types, described as follows.

(1) For the first type of grids, the change times of sign
direction are less than 5, and most of them are 1,
namely, the sign directions in these grids change
from the undirected state shown in Figure 1(c) to a
specific direction shown in Figures 1(a) and 1(b) at
the beginning of the simulation, and will be main-
tained until the end of the simulation, like the grids
numbered in 1–9 in Figure 5. It indicates that the
direction states of the signs in this type of grids are
stable, and the optimal route and exit guided by these
signs do not change with the fluctuation of pedes-
trian flow in the grids. .is type of grids accounts for
a significant proportion of the whole evacuation area,
as shown in Figure 7.

(2) For the second type of grids, the change times of sign
direction are more than 5, and most of them are even
greater than 10, such as the grids numbered 47, 48,
49, 50, 58, and 68 in Figure 5. Namely, the sign
direction changes in this type of grids are more
frequent than those in the first type of grids. As
shown in Figure 7, the scene, in this case, can be
divided into two regions with and without square
filling. .e pedestrians in these two regions choose
exit B and exit A, respectively. And the second type
of grids is mainly located on both sides of the

boundary line (red dot line in Figure 7) of these two
regions. It may be because that the travel time from
the boundary grid to the two exits is relatively close,
so even slight changes in the pedestrian flow can
cause the two evacuation times through exit A and
exit B to take turns to be the larger one. As a result,
exit A and exit B will alternate between being the
nearest exit of the boundary grid. .is alternation
further leads to frequent guidance adjustment of
dynamic signs in these boundary grids. .ese
boundary grids are different from the first type of
grids where the travel time to one of the exits is much
greater than that to the other one, and fluctuations in
pedestrian flow have little effect on the alternation of
shortest routes and exits. .erefore, we believe that
the second type of grids is more sensitive to pe-
destrian flow than the first type of grids. And DSG in
the second type of grids may have a more significant
impact on evacuation time.

To evaluate the influence of dynamic guidance in the
above two types of grids, we perform seven sets of com-
parative simulation experiments for each of the two types of
grids with different signs, as shown in Table 3. In Table 3, the
grid with no signs means it is an undirected grid, while the
grid with static grids means the signs in that grid always
direct to the nearest exit. Set the number of pedestrians as
N � 300. .e above experiments are simulated 50 times,
respectively, and the initial locations of these pedestrians are
the same in each simulation.

As shown in Table 3, Tave of the seven groups of ex-
periments can be divided into three grades. Among them,
Tave of experiment 1, 2, and 3 in the first grade is less than
63 s; Tave of experiment 4 and 5 in the second grade is 71.8 s
and 71.86 s, respectively; and Tave of experiment 6 and 7 in
the third grade is greater than 97 s. Within the same grade,
Tave of all experiments with the same evacuation signs in the
second type of grids and different signs in the first type of
grids are close. It can be seen that whether set as dynamic

Table 2: : Comparative results with different number of pedestrian.

N
Tmax Tave Tdel

DSG (s) SSG (s) Gap (%) DSG (s) SSG (s) Gap (%) DSG (s) SSG (s) Gap (%)

10 17.09 17.09 0.00 9.83 9.83 0.00 0.00 0.00 0.00
15 17.04 17.04 0.00 9.76 9.76 0.00 0.00 0.00 0.00
20 17.08 17.08 0.00 9.77 9.77 0.00 0.00 0.00 0.00
25 17.07 17.07 0.00 9.72 9.72 0.00 0.00 0.00 0.00
30 17.18 17.18 0.00 10.65 10.65 0.00 0.86 0.86 0.00
35 17.16 17.16 0.00 11.33 11.33 0.00 1.54 1.54 0.00
40 17.12 17.12 0.00 12.21 12.21 0.00 2.18 2.18 0.00
45 18.36 19.11 3.92 13.01 13.27 1.96 2.99 3.07 2.61
50 20.34 22.72 10.48 15.26 16.33 6.55 5.44 6.55 16.95
100 26.43 29.55 10.56 18.59 21.33 12.85 8.85 11.49 22.98
150 32.75 38.69 15.35 22.9 27.16 15.68 13.07 17.42 24.97
200 44.51 58.21 23.54 31.28 40.42 22.61 21.44 30.58 29.89
250 62.84 92.70 32.21 48.57 68.34 28.93 38.78 58.51 33.72
300 82.14 136.05 39.63 62.45 99.28 37.10 52.69 89.44 41.09
350 104.68 182.21 42.55 79.37 139.42 43.07 69.52 129.64 46.37
400 130.21 228.6 43.04 96.36 178.49 46.01 86.52 168.76 48.73
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signs, static signs, or no signs in the first type of grids, the
impact on evacuation time is not significant. .erefore, in
practice, static signs can be set in the first type of grids, and
their guidance directions can be optimized in advance to
save computational costs.

Comparing the experiments of different grades, we can
be seen that Tave of each experiment differs greatly when
the evacuation signs are the same in the first type of grids
and different in the second type of grids. For example, when
the first type of grids are set to dynamic signs, Tave is re-
duced by 35.18 s and 9.39 s if the second type of grids is set
to dynamic signs, compared to static signs and no signs,
respectively. It can be concluded that there are some critical
grids similar to the second type of grids in the evacuation
area. .ese critical grids play an important role in bal-
ancing congestion and improving evacuation efficiency.
Combining with experiment 2 and experiment 3, we can
know that focusing on optimizing DSG in these critical
grids can improve calculation efficiency while realizing
good evacuation effectiveness.

5.4. Effectiveness of Dynamic Guidance at Different Periods.
In the previous experiments, we assumed that δ � 0.1 s,
indicating that the sign direction may change every 0.1 s.
However, this is unreasonable because frequent adjustments
of sign directions in a short period leave pedestrians without
enough reaction time, which may bring chaos to evacuation.
.erefore, to relieve the confusion, we set the time interval

between two sign direction adjustments to an acceptable
value. .is setting means that the dynamic guidance of signs
is limited. Based on experiment 3 in Table 3, the effect of
DSG on Tave with limitation is discussed in this subsection.

According to experiment 3 in Table 3, we know that Tmax
is no less than 73.4 s in the above simulation scene with 300
individuals. .erefore, we set the sign direction to change no
more than seven times so that δ is greater than 10 s. Let the
number of sign direction adjustment h � 1, 2, . . . , 7, and
δ � Tmax/h, where Tmax ≥ 82 s. With this setting, Tave for the
same initial pedestrian distribution under different h is
counted, as shown in Figure 8.

From Figure 8, it is easy to see that the average evac-
uation time increases with the number of dynamic sign
direction optimization from 0 to 1, while it decreases
gradually when h> 1. It implied that when h � 1, the dy-
namic sign direction no more changes after optimization,
which will cause a maximum evacuation time similar to the
static signs. And when h> 1, the dynamic sign direction in
the second type of grids will be optimized several times
according to the pedestrian distribution, effectively reducing
evacuation time.

To analyse the effectiveness of DSG on Tave in the dif-
ferent periods, we design five simulation experiments based
on experiment 3 in Table 3. In each experiment, four times of
dynamic sign direction optimization are employed with an
interval of 10s in the second type of grids, that is, h � 4 and
δ � 10 s. In the five experiments, the only difference is that
the start time of dynamic sign direction optimization is
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Figure 7: .e change times of dynamic sign direction in the grids.

Table 3: : Experimental scheme for different evacuation sign guidance.

Experiment no.
.e signs set in the grids

Tave (s).e first type of grids .e second type of grids

1 Dynamic signs Dynamic signs 62.41
2 No signs Dynamic signs 62.65
3 Static signs Dynamic signs 62.47
4 Dynamic signs No signs 71.8
5 No signs No signs 71.86
6 Dynamic signs Static signs 97.59
7 Static signs Static signs 99.36

16 Journal of Advanced Transportation



different, which are at 0 s, 10 s, 20 s, 30 s, and 40 s, respec-
tively. .e average evacuation times corresponding to the
five simulations are 74.07 s, 73.16 s, 72.62 s, 72.2 s, and
71.88 s, respectively, as shown in Figure 9.

.e comparative results show that the performance of
dynamic guidance in the later period is better than that in the
early period under the same situation. .e following reasons
may cause this performance. Firstly, the pedestrian distribution
in the early period ismore uniform than that in the later period.
And the pedestrian flow in the second type of grids is un-
crowded. As a result, the dynamic sign direction optimized
according to the initial pedestrian distribution may not be
consistent with the pedestrian distribution in the later stage,
resulting in prolonging evacuation time. Secondly, in the later
period, pedestrians in the critical grids aremore than that in the
early period. .us, the optimization of DSG employed in the
later periodmay bemore practical, and the optimization results
would affect more pedestrians to reduce evacuation time.

5.5. Limitations. .e goal of the work is to achieve dynamic
evacuation guidance. .e optimization of DSG is the core
model in an evacuation guidance system. A complete evac-
uation guidance system framework includes three modules:
detecting devices, back-end computing, and evacuation
guidance display. .is paper deals with the development of
the latter two modules but not yet with the detecting devices.
.e detecting devices mainly collect pedestrian locations and
input the pedestrian density of grids to the DSGmodel. In this
paper, the density of pedestrians in grids is obtained using a
simulation method. However, in practice, pedestrian density
needs to be obtained with sensors for pedestrian detection.
For example, the whole evacuation scene can be monitored by
installing a large number of videos. Each video monitoring
area can be considered as a grid. .e grid density of the DSG
model can be obtained by identifying the number of pe-
destrians within the video. .us, a DSG-based evacuation
guidance system can be implemented.

6. Conclusion

.is paper proposes a bi-level programming model for the
direction optimization problem of dynamic signs in
buildings. (1) .e upper-layer model takes the dynamic sign
direction as the decision variables and minimum evacuation
time as the optimization objective from the managers’
perspective. (2) In the lower-level model, a DPA model
consistent with the DUO principle is extended to describe
individuals’ route choice behaviour to achieve a balanced
pedestrian distribution on the route. While to estimate the
evacuation time according to the congestion, a formula is
given to calculate the queuing time according to the point
queuing model based on the cell transmission model in the
lower-level model. A heuristic algorithm is developed to
solve the bi-level programming problem.

Several numerical experiments are performed to verify
the effectiveness of the proposed approach. .e results in-
dicate that (1) the more pedestrians in evacuation, the better
DSG performs than SSG on evacuation time. (2) DSG at
different locations in the evacuation scene has various
features..e direction of DSG in the boundary grids changes
frequently, and the change times of which are more than 5,
and most of them are even greater than 10. On the contrary,
the change times in the no-boundary grids are less than 5,
and most of them are 1. It indicates that DSG in the
boundary grids is more sensitive than that in no-boundary
grids. .us, focusing on the optimization of DSG in these
critical grids can improve calculation efficiency. (3) .e
different periods of DSG have various achievements. .e
optimization of DSG employed in the later period may be
more practical, and the optimization results would affect
more pedestrians to improve the evacuation efficiency.

In this work, all pedestrians are assumed to obey DSG
perfectly. However, it is not similar to the actual situation. In
reality, pedestrians may not fully comply with DSG due to
herd behaviour and panic during evacuation. .erefore,
various random factors need to be considered in the model
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to describe the probability of pedestrian obedience to DSG.
Besides, the time interval for dynamic sign direction ad-
justment was set to 10 s due to the size of the numerical
experiments. However, in practice, this time interval is still
short for pedestrians. .erefore, the numerical example of a
large-scale evacuation scenario can be performed in the
future. In addition, we optimized the guidance direction of
signs based on the crowd distribution but did not consider
the evolution of hazardous events. Hazardous events may
lead to path interruption, which are very different from path
congestion due to unbalanced crowd distribution..erefore,
DSG considering the evolution of hazard events should be
conducted in future work.
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