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Predicting rail transit passenger flow is crucial for modifying the metro schedule. To increase prediction accuracy, a model is
proposed that combines long short-term memory (LSTM) with single spectrum analysis (SSA). Firstly, a stepwise
decomposition sampling (SDS) strategy based on SSA progressive decomposition is proposed as a solution to the data leaking
issue in traditional sequence decomposition. Then, based on this strategy, the passenger flow time series with complex features
is decomposed into a relatively single trend and fluctuation component. Finally, the LSTM network is employed to perform
short-term predictions on each component separately. The predicted value of each component is accumulated to obtain the
original passenger flow’ predicted result. The example shows that, compared with the single LSTM and other hybrid models,
the proposed method offers a greater overall prediction accuracy in the experimental days, and the method has specific
applicability.

1. Introduction

Subway system has the advantages of large capacity, high
speed, and high reliability. It has attracted more and more
attention both academically and practically [1]. However,
while the public is pursuing the high-quality metro, various
problems such as congestion and transfer inconvenience
must be solved.

The metro system’s short-term passenger flow (STPF)
prediction is a crucial component in managing public trans-
portation. By releasing the predicted STPF and congestion
status of bus routes to the public, passengers can adjust
travel mode, route selection, or departure time in advance
to better understand travel mode. For the government and
operators, the accurate STPF forecast can effectively control
and assess the system status and implement response mea-
sures when emergencies or special events occur [2]. Hence,
the accurate STPF forecast is of great significance.

Summing up, in order to predict the STPF more accu-
rately, it is necessary to consider whether the prediction

results can reflect the actual online prediction effect and
effectively avoid the problem of data leakage. In this
research, a prediction model based on SDS-SSA-LSTM is
proposed. The SDS strategy can effectively avoid the predic-
tion model from involving future data in the testing phase
and solve the data leakage problem of the traditional ODS
strategy. Using the SSA method, the trend and fluctuation
components in the passenger flow sequence with mixed fea-
tures can be effectively extracted. Combined with the ability
of the LSTM network to transmit long-term dependencies of
sequence data, the accurate prediction of STPF can be
achieved.

2. Literature Review

For unstable traffic flow, at present, wavelet decomposition
(WD) [3, 4] and variational mode decomposition (VMD)
[5] have been studied for rail transit STPF prediction. How-
ever, the above studies all adopt the overall decomposition
sampling (ODS) sampling technique to process the data
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samples; that is, the passenger flow time series is decom-
posed into subsequences. Nevertheless, the future data is
assumed to be known in the decomposition process, and
there is a problem of data leakage. Therefore, the model in
online prediction has poor practicability and unreliability.

The sampling technology based on stepwise decomposi-
tion sampling (SDS) [6] can effectively avoid the data leak-
age problem in traditional ODS technology. EMD cannot
be used for SDS because the number of modal decomposi-
tions is uncontrollable [7]. EEMD and CEEMD have their
algorithm principle [8, 9]. With the update of the edge value
of the time series to be decomposed, each decomposed com-
ponent will change significantly. When they are sampled by
SDS, the time sequence of the training samples is uncontrol-
lable. It is difficult to determine the wavelet basis and
decomposition level of WD. The trend items directly decom-
posed by VMD [10] will produce significant errors, which
will make prediction difficult. SSA is a nonlinear time
sequence analysis method [11], which can effectively extract
the trend and volatility in the original sequence. There is no
need to select a priori basis function. With the update of the
time series to be decomposed, the sequence characteristics of
the history of each decomposed component can be almost
wholly preserved [12]. Zhou et al. [13] combined SSA with
AdaBoost weighted limit learning machine. The original
data was divided into three parts for the construction of
SSA: trend, periodicity, and residue. Shuai et al. [14] show
that the complex characteristics of regularity and random-
ness of traffic flow can be captured by the decomposed traffic

flow prediction hybrid model. Therefore, with the advantage
of the SSA decomposition method, this paper decomposes
the mixed passenger flow series into trend series and fluctu-
ation series with relatively single characteristics, which is
easy for the model to learn.

In terms of the STPF prediction, traditional prediction
models mainly include the autoregressive integrated moving
average model [15], gray model [16], and Kalman filtering
model [17]. The traditional time series prediction model
has weak generalization ability, its performance and applica-
tion will be limited, and it is challenging to meet the require-
ments of processing massive data in practice. In recent years,
a large amount of data generated by various city sources has
allowed us to understand better the essence of hidden
dynamics in the traffic system and significantly changed
the way of predicting passenger traffic. Due to higher com-
puting capabilities, there is various computing intelligence
and data-driven technology to create opportunities for the
use of big data to broaden the practical application of the
intelligent transportation system (ITS) [18].

Advanced intelligent algorithms have attracted the atten-
tion of many scholars due to their superior structure and
performance. Li et al. [19] combined the characteristics of
segmented passenger flow data with a BP neural network
to predict segmented passenger flow. Tsai et al. [20] pro-
posed a new neural network which proves to produce satis-
factory results in forecasting STPF. Deep learning can
capture complex nonlinear relationships in big data, which
significantly improves predictive accuracy. In terms of the
STPF prediction, the most commonly employed models
are CNN [21–24] and RNN [25], which have shown their
excellent ability to extract space-time structure information.
LSTM [26–28] as a variant of RNN can automatically learn
the dependencies of long-term sequences and capture the
connection relationship between the steps. Through experi-
ments, Zhao et al., Guo et al., Du et al., Jiang et al., and
Hao et al. [29–33] proved that LSTM has certain advantages
in capturing the regularity of STPF.

The sampling strategy of SSA stepwise decomposition
(SDS) can be applied to avoid the data leakage in the tradi-
tional method of sequence decomposition. LSTM neural
network is suitable for predicting each component by learn-
ing historical data. The SDS-SSA-LSTM hybrid model can
provide a new method for the accurate predicting of STPF.
In this paper, we attempt to decompose the time series with
complex characteristics through the SDS strategy based on
SSA, so as to extract the internal characteristics of complex
passenger flow data, and build a LSTM memory network
model to forecast the short-term metro passenger flow.

3. Methodology

3.1. Singular Spectrum Analysis (SSA). SSA is a method of
nonlinear time-series analysis. By constructing the trajectory
matrix of the time series and decomposing and reconstruct-
ing it, the trend and fluctuation components in the original
series can be effectively extracted. The specific calculation
steps of this algorithm are as follows:

�e potential input samples

�e first sequence of length L
�e output samples

�e first sequence of length L+1
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Figure 1: The input and output samples.
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Figure 2: LSTM model structure diagram.

2 Journal of Advanced Transportation



(1) Embedding. According to the set embedding dimen-
sion LðL ≤ n/2Þ, the original time series X = ðx1, x1,
⋯,xnÞ is transformed into trajectory matrix Y . The
formula is as follows:

YL×K = yij
� �L,K

i,j=1
=

x1 x2 ⋯ xn−L+1

x2 x3 ⋯ xn−L+2

⋮ ⋮ ⋱ ⋮

xL xL+1 ⋯ xn

0
BBBBB@

1
CCCCCA
, ð1Þ

where K = n − L + 1

(2) Singular value decomposition. Calculate the eigen-
values λ1, λ2,⋯, λLðλ1 ≥ λ2≥⋯≥λLÞ and corre-
sponding eigenvectors U1,U2,⋯,UL of matrix
YYT . d is the number of nonzero eigenvalues; define
Vi = YTUi

ffiffiffiffi
λi

p
; the singular value decomposition of

the trajectory matrix Y can be written as follows:

Y = Y1 + Y2+⋯+Yd , ð2Þ

where Yi =
ffiffiffiffi
λi

p
UiV

T
i , 1 ≤ i ≤ d; Ui is the ith singular value

of the trajectory matrix Y corresponding to the left singular
vector; and Vi is the ith singular value of the trajectory
matrix Y corresponding to the right singular vector. The
contribution degree of each matrix Yi to the trajectory
matrix Y is related to the eigenvalue λi, and its contribution

rate η can be defined as follows:

η =
λi
∑λ

ð3Þ

(3) Diagonal averaging. Each submatrix Yi is reduced to
a time series with n length. Suppose that Y is a
matrix with the same shape as L × K . Let L∗ =min
ðL, KÞ and K∗ =max ðL, KÞ. If L < K , y∗ij = yji; other-
wise, the restructured series Zc = ðzc1, zc2,⋯,zcnÞ is
defined as follows:

zcl =

1
l + 1

〠
l+1

m=1
y∗m,l−m+2, 1 ≤ l ≤ L∗,

1
L∗

〠
L∗

m=1
y∗m,l−m+2, L∗ ≤ l ≤ K∗,

1
n − 1

〠
l−K∗+1

m=l−K∗+2
y∗m,l−m+2, K∗ ≤ l ≤ n

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4Þ

(4) Grouping. The singular vector corresponding to the
largest eigenvalue represents the largest change trend
of the original sequence, and the singular vector cor-
responding to the smaller eigenvalue reflects the
fluctuation components of the original sequence.
By setting the contribution rate threshold ηe (gener-
ally taken ηe ≥ 80%) and then gradually

Original rail transit passenger flow sequence

Data preprocessing

�e training set �e test set

Stepwise decomposition of SSA

�e trend component Volatile components

Stacking and refactoring

LSTM2LSTM1

�e SDS sampling based on SSA

�e trend component Volatile components

LSTM1 LSTM2

�e prediction results of rail transit passenger flow

Figure 3: The process of the STPF prediction based on SDS-SSA-LSTM.
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reconstructing the subsequence in the order of eigen-
value from large to small, when it appears ∑λi/∑λ
≥ ηe, the obtained sequence is the trend component
of the original sequence, and the remaining subse-
quence is reconstructed into the fluctuation
component

3.2. Sampling Strategy Based on Stepwise Decomposition. Let
time series TS = fxtjt = 1,⋯,T + Kg, where T + K is the
length of time series TS. Use x1 to xT as training data and
the rest as test data. The specific stepwise decomposition
steps are as follows:

(1) Decompose the time series x1:L into subsequences
xi21:L+1

(2) Decompose the time series x1:L+1 with length L + 1
into subsequence xi21:L+1. Then, the input and output
of the first sample of the ith subsequence come from
xi11:L and xi21:L+1, respectively, as shown in Figure 1

(3) Continue to decompose the next time series of
length L and L + 1 according to step 1 and step 2
until all training datasets are obtained

(4) Establish a prediction model for each subsequence,
respectively

(5) In the prediction stage, the time series of historical L
length is decomposed, and each subsequence is pre-
dicted according to the trained model

(6) Accumulate the predicted values of each subse-
quence to obtain the predicted result of the original
sequence

The application of the above SDS strategy completely
avoids the data leakage problem in traditional ODS, and
the model based on this strategy conforms to the actual
online prediction scenario.

3.3. Long Short-Term Memory Network (LSTM). Compared
with traditional neural networks, RNN can capture the tem-
poral regularity of sequence data more effectively. LSTM was
originally a variant of the traditional recursive neural net-
work. It has strong memory ability when dealing with
time-series prediction and is widely used in time-series pre-
diction scenarios with long time interval and delay. The
basic structure of the LSTM unit is shown in Figure 2.

LSTM adds more memory modules to the neural net-
work to selectively let information pass through, with each
door having a different function.

The forget gate f t decides which news to discard by inte-
grating the information of the last moment and the news of
the present moment. The formula is as follows:

f t = σ wf xxt +wfhht−1 +wf cCt−1 + bf
� �

, ð5Þ

σ zð Þ = 1
1 + e−z

, ð6Þ
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Figure 5: Continued.
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where σð⋅Þ is the sigmoid activation function, xt the input at t,
ht the output at t, ht−1 the output at t − 1, Ct the candidate vec-
tors at time t, wf x,wfh,wf c weight coefficient of the forgetting
gate, and bf bias of forgetting gate.

An input gate it is the opposite of a forget gate f t. This sec-
tion decides the news to enter the cell state based on the input
threshold. The output of the input gate at t is as follows:

it = σ wixxi +wihht−1 +wicCt−1 + bið Þ,
vt = tanh wcxxt +wchht−1 + boð Þ,

tanh zð Þ = ez − e−z

ez + e−z
,

ð7Þ

wherewix,wih,wic are the weight coefficients of input gate, bi is
bias of input gate, wcx,wch are the weighting coefficients and
bias of candidate vectors, bo is the bias of candidate vectors,
tanh ð⋅Þ is the hyperbolic tangent activation function, and vt is
the updated value of candidate vectors.

The output gate ot determines what information will be
output. No information can pass through the output gate
except what is required. So the output at time t is as follows:

ot = σ wox +wohht−1 +wocCt−1 + boð Þ,
ht = ot ⋅ tanh Ctð Þ,
Ct = Ct−1 ⋅ f t + itvt ,

ð8Þ
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Figure 5: The training samples and test samples of the passenger flow sequence data 1.
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where ot is the output gate and wox,woh,woc are the weight-
ing coefficients of the output gate.

3.4. STPF Prediction Model. Figure 3 is the process of the
SSA-LSTM model based on the SDS strategy, and here are
the modeling steps:

Step 1. Original data processing. The original rail transit pas-
senger flow’s preprocessed time series is divided into a train-
ing set and a test set.

Step 2. Decomposition of original passenger flow data. SDS
for the training set based on the SSA method until the
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Figure 6: Training samples and test samples of passenger flow sequence data 2.

Table 1: SDS-SSA-LSTM model parameters.

Model parameters SDS SSA LSTM

Number of neurons — — 32

Learning rate — — 0.001

Look back — — 3

Epochs — — 50

Window length — 20 —

Contribution threshold — 80% —

Length of decomposition 50 — —

Note: “—” indicates that the parameter in this row does not exist in this
column model.
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complete training sample of the trend component and the
fluctuation component is obtained. The trend series repre-
sents the broader trend of original data. The fluctuation
series represents the periodic of original data.

Step 3. Establish prediction model. The LSTM prediction
model in view of the deep learning is established for the
training set in each subsequence, respectively.

Step 4. Perform SSA stepwise decomposition on the test set,
and input it into the LSTM to generate the prediction results
of each component.

Step 5. Accumulate the predicted values of each component.
Get the STPF forecast results.

4. Experiments and Results

4.1. Data Analysis. The original data is selected from the
daily passenger flow data of Xi’an Metro Line 3 from January
1, 2017, to January 24, 2020, to analyze the established
model. The sampling interval is one day, and a total of
1119 groups of sample points are obtained.

Passenger flow data has a time correlation. The closer the
time is , the higher the correlation between the speed. With
the increase of time, the correlation weakens. In addition,
the passenger flow data has an obvious trend in the short
term and periodic in the long term. To analyze the temporal
characteristics of passenger flow data, some datasets are
selected for visual analysis, as shown in Figure 4.

The weekly trend changes in Figure 4 are very similar,
which shows the passenger flow data has periodicity of
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Table 2: Comparison of model prediction performance.

Data Model
Evaluation index

RMSE MSE MAE

Data 1

ARIMA 4.484 20.102 0.163

LSTM 4.340 18.838 2.642

GRU 4.469 19.970 2.776

DWT-LSTM 3.367 11.335 2.008

EMD-LSTM 3.693 13.637 2.335

VMD-LSTM 4.142 17.160 2.693

SDS-SSA-LSTM 2.040 4.161 1.280

Data 2

ARIMA 8.450 71.403 0.229

LSTM 5.958 35.496 4.872

GRU 6.059 36.712 4.960

DWT-LSTM 5.939 35.274 4.636

EMD-LSTM 5.919 35.040 5.010

VMD-LSTM 5.902 34.830 4.823

SDS-SSA-LSTM 4.320 18.661 1.838
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prominence. Therefore, in this study, the passenger flow
data is grouped into two samples, from Monday to Thursday
(data 1) and from Friday to Sunday (data 2), and the two sets
of datasets are, respectively, predicted to verify the model.

4.2. Passenger Flow Decomposition

4.2.1. SSA Decomposition. The SSA is applied to the histori-
cal time-series for SDS. Figures 5 and 6 show the decompo-
sition results of training samples and test samples of the two
datasets, respectively.

4.2.2. Data Normalization. To improve the data processing
efficiency of the subsequent prediction model, it is necessary
to normalize each subsequence. In this paper, MinMax is
selected for normalization.

4.3. STPF Forecast

4.3.1. Model Parameter Setting. In this paper, given the daily
passenger flow data of Xi’an Metro Line 3 from January 1,
2017, to January 24, 2020, the short-term passenger flow in
the future period is calculated. After many tests, the param-
eters of the SDS-SSA-LSTM model are set in the example as
shown in Table 1.

4.3.2. Forecast Result. To test the performance of the model in
the STPF prediction, ARIMA, LSTM, GRU single model, and
DWT-LSTM, EMD-LSTM, VMD-LSTM, SDS-SSA-LSTM,
and other hybrid models are used to predict the two datasets.
The prediction results are shown in Figures 7 and 8.

4.4. Performance Comparison. In this paper, three single
models and four mixed depth models commonly used in the
existing literature are selected to compare the prediction accu-
racy. To evaluate the effectiveness and accuracy of the SDS-
SSA-LSTM model, the mean absolute error (MAE), mean
square error (MSE), and root mean square error (RMSE) were
used to evaluate the model. Table 2 shows the error compari-
son results of the prediction model.

According to the error results in Table 2, it can be seen
that

(1) in the classic single-model prediction, the LSTM
model shows better prediction effect on both datasets,
and RMSE and MSE indicators are the lowest. How-
ever, the traditional statistical method has low predic-
tion accuracy for passenger flow data with complex
influencing factors

(2) in terms of predicting STPF, the hybrid model with
decomposition and fusion strategies performs better
than the single model. To some extent, the predic-
tion accuracy has increased

(3) the prediction performance of the DWT-LSTM,
EMD-LSTM, and VMD-LSTM models using ODS
strategy is lower than that of the SSA-LSTM model
based on SDS strategy

(4) ODS strategy assumes that the future data is known
from the beginning, but in practical application, the

future data needs to be predicted. Therefore, the pre-
diction results obtained by the model based on the
ODS strategy cannot reflect the actual online predic-
tion effect. The model based on the SDS strategy
completely avoids the leakage of future data, and its
prediction results can guide online prediction

5. Conclusion

This research suggests a prediction methodology based on
SDS-SSA-LSTM to better precisely predict the passenger
flow sequence of rail transit. The SDS strategy can effectively
avoid the future data involved in the prediction model in the
testing phase and solve the data leakage problem of the tra-
ditional ODS strategy. Using the SSA method, the passenger
flow sequence with mixed features is decomposed into trend
sequence and fluctuation sequence with relatively single fea-
tures, which is easy for model learning. Through example
verification, the proposed model established in this paper
performs well in the STPF prediction, and this method
reveals great application prospects.

In the future, developing a visual STPF forecasting plat-
form is the next research focus, and developing a prediction
model based on decomposition needs to be combined with
SDS strategy. In addition, the cumulative error caused by
the increased in modeling quantity is a challenge in achiev-
ing the STPF prediction.
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