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Accurate prediction of traffic flow plays an important role in ensuring public traffic safety and solving traffic congestion. Because
graph convolutional neural network (GCN) can perform effective feature calculation for unstructured data, doing research based
on GCN model has become the main way for traffic flow prediction research. However, most of the existing research methods
solving this problem are based on combining the graph convolutional neural network and recurrent neural network for traffic
prediction. Such research routines have high computational cost and few attentions on impaction of different time and nodes. In
order to improve the accuracy of traffic flow prediction, a gated attention graph convolution model based on multiple spa-
tiotemporal channels was proposed in this paper. 'is model takes multiple time period data as input and extracts the features of
each channel by superimposing multiple gated temporal and spatial attention modules. 'e final feature vector is obtained by
means of weighted linear superposition. Experimental results on two sets of data show that the proposed method has good
performance in precision and interpretability.

1. Introduction

With the development of urbanization process, people’s
demand for transportation are increasing day by day.
Whether to build an effective transportation system has
become an important factor in restricting development of
city. Accurate prediction about traffic condition plays a very
important role in people’s daily travel planning, urban traffic
planning, and traffic management and strategy. In order to
improve the efficiency of transportation and reduce the time
cost for transportation activities in daily work and life, this
paper proposed a traffic speed prediction model based on
multi-spatiotemporal gated graph convolutional network
with attention mechanism.

Based on analyzing the urban road’s traffic flow situa-
tion, the velocity of vehicles on the road can be predicted.
Traffic speed prediction can not only provide managers with
scientific decision-making information but also provide
appropriate route guidance for urban travelers, which is an
important guarantee for the unimpeded flow of urban traffic.
Currently, the main traffic speed prediction model can be

divided into three categories: the statistical-based methods,
the machine learning-based methods, and deep learning-
based methods. 'e statistical-based methods are con-
structed based on the theory of statistical forecasting and
mainly contain the historical average analysis prediction
method, regression difference moving average method [1]
(ARIMA), Kalman filtering method [2, 3], the grey pre-
diction model method, etc. 'ese models usually have strict
requirements on input data and these corresponding algo-
rithm structures are relatively fixed. However, the prediction
result of traffic flow can be easily affected by some random
interference factors, such as traffic accidents, weather, and
special events, which can make the prediction accuracy
relatively low. 'e second type is the method based on
machine learning way, which can not only model the
nonlinear feature of traffic flow but also continuously adjust
the model parameters by means of adaptive learning
methods to obtain more accurate prediction results.
'erefore, the methods based onmachine learning gradually
replace the statistical theory-based methods and become the
next research focus in traffic flow prediction field.
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Algorithms used for prediction mainly include support
vector machine [4], K-nearest neighbor [5], Bayesian net-
work [6], and other methods. 'e third category is the way
based on deep learning model, which is also the most
common used method at present. Deep learning methods
can be used to learn the features about input data without
mankind intervention. Such models have strong require-
ments on nonlinear mapping characteristic feature and less
strict requirements on data than those model-driven
methods, so they will be more suitable to model the un-
certainty status of traffic flow and improve the prediction
precision. Because of these advantages, some researchers
have applied deep learning methods into the field of traffic
prediction and achieved remarkable progress.

Shao et al. [7] applied the Long Short-Term Memory
Network (LSTM) model into traffic flow prediction and
improved the accuracy of flow prediction by calculation of
the spatial characteristics. Liu et al. [8] used the Gated
Recurrent Unit (GRU) model to predict urban traffic flow.
Since the internal neural cell number of the GRU model is
less than that of LSTM, the prediction performance is still
good. Traffic flow data not only has dynamic correlation in
time but also has strong dynamic correlation in space. In
order to extract the temporal and spatial features effectively,
Shi et al. [9] proposed Conv-LSTM model, which com-
prehensively uses CNN and LSTM to capture the spatio-
temporal feature. Liu et al. [10] applied it to short-term
traffic prediction. Yao et al. [11] put forward the spatio-
temporal dynamic network (STDN) model and used CNN
and LSTM to capture the spatiotemporal feature. Zhang
et al. [12] proposed the spatiotemporal residual network
(ST-ResNet) model which uses different residual units to
model the information of time proximity, periodicity, and
tendency.

Zhao et al. [13] proposed a temporal graph convolutional
network (T-GCN) model based on combining GCN model
with GRU model. 'e GCN model was used to learn
complex topological structure for capturing spatial feature,
and GRUmodel was used to learn temporal feature of traffic
flow changing data. Yu et al. [14] proposed a spatiotemporal
graph convolutional network (STGCN) model, which uses
one-dimensional CNN model to capture the time dynamic
feature and the GCN model was used to obtain the spatial
feature of local traffic data. In order to capture the depen-
dence between temporal and spatial feature, Li et al. [15]
improved the gated GRU unit and proposed diffused con-
volution gated loop unit (DCGRU). Combined with encoder
and decoder, the DCRNN model for Seq2Seq was proposed.
In view of the traffic flow data being time-dependent, Guo
et al. [16] used three different components to extract feature
from historical data. Song et al. [17] used three different
continuous time slices to construct local spatiotemporal
models and used sliding windows to segment time periods
into three parts. By stacking multiple graph convolution
layers, a spatiotemporal synchronous graph convolution
network (STSGCN) was established to extract long-term
spatiotemporal feature. Although the T-GCN model uses

two-layer graph convolution network to aggregate the
spatial information about two level neighbors, it still ignores
deeply excavating the spatial correlation between higher-
order neighbor nodes. 'erefore, K-order Chebyshev graph
convolution which can cover k-order neighbor nodes was
used to complete the spatial convolution operation and
extract the spatial feature of higher-order neighbor nodes. In
addition, T-GCN model uses a single time series to perform
prediction work without mining time dependence between
different slices. 'e spatiotemporal information can also be
used in other fields. Wang et al. [18] use spatiotemporal
correlation information to reconstruct traffic data. Wang
et al. [19] perform passenger flow prediction via dynamic
hypergraph convolution networks. Yu et al. [20] proposed a
low-rank dynamic mode decomposition model for short
traffic flow prediction.

Although these methods have been able to predict traffic
flow very precisely, there are still some areas that can be
improved. 'e existing methods can be improved from the
following two aspects: improving the scope of neighborhood
scale and considering the influence of data with different
time periods on future traffic. 'e traffic flow status in any
node on the traffic network can be affected not only by the
first-level neighborhood nodes, but also by the second-level
neighborhood nodes. 'e change rule of traffic flow is pe-
riodic. 'e traffic flow on the road is generally large during
working hours, and small during other times. Traffic in-
formation with different time periods has different influence
on the status change of traffic flow in the future. It is of great
help to improve the prediction of traffic flow to compre-
hensively consider the changing rules of traffic flow in
different time periods.

'erefore, this paper extracts three different time series
datasets which are monthly data, daily data, and weekly data
to fully capture temporal characteristics. In general, this
paper proposes a multichannel gated spatiotemporal graph
convolution with attentional mechanism, which puts three
different time series datasets into the model and gets the
feature by stacking multiple gated spatiotemporal blocks.
'e forecasting work was finished by combining all the three
different feature vectors with the help of weighted linear
combination operation. 'e main contributions of this
paper can be summarized as follows:

(i) We developed a multichannel gated spatiotemporal
graph convolution network to learn the dynamic
feature of traffic flow data. Specifically, a multi-
channel feature extraction and fusion framework
was proposed. 'e temporal feature of the traffic
data was fully exploited.

(ii) A novel spatiotemporal calculation module was
designed by adding attention mechanism. It helps
the model to pay more attention to import the
feature in each channel.

(iii) Extensive experiments are carried out on read traffic
data, which can verify the effectiveness of the model
proposed in this paper. 'e performance of this
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prediction model has a certain progress compared
to existing methods.

'e rest of this paper is organized as follows. Section 2
describes the related work on traffic flow forecasting and the
development of graph neural networks. Section 3 introduces
the detailed architecture of proposed forecasting network
with gated graph neural network and attention. Section 4
presents the experiment setting and the experiment results.
Finally, Section 5 concludes the work and presents the
findings of this research.

2. Related Work

In this section, we will briefly introduce corresponding
theories and definitions referring to the proposed model.

2.1.GraphNeuralNetwork. Convolutional neural network is
a feed-forward neural network based on convolutional
operation, which can efficiently compute feature informa-
tion from structured data such as image, speech, and text.
However, there are a lot of unstructured data in daily life,
such as social network data, human skeleton data, traffic flow
data, and other data without regular structure. 'e tradi-
tional CNN models cannot effectively model such un-
structured data. In order to effectively capture the local
spatial feature of these data, a graph convolution network
model for unstructured data was proposed. Graph con-
volutional network is a kind of neural network structure
which is popular in recent years. It is a kind of neural
network which extends the convolution operation to graph
structure data. Compared with traditional convolutional
network models which can only be used in structured data
computation, graph convolutional networks are special in
capturing unstructured data. 'e road network structure in
reality is typical unstructured data. 'us, the local feature of
traffic data can be extracted effectively based on using graph
neural network.

'e existing graph convolution operation-based
methods mainly can be divided into two types: the way based
on spatial domain and the way based on frequency domain.
'e spatial domain-based operation can be defined by ag-
gregating the feature information about adjacent nodes in
the graph. 'e frequency domain-based operation uses
Fourier transform to realize the convolution calculation in
frequency domain.

According to graph theory, the properties of graph
structure can be obtained by calculating Laplacian eigen-
value and eigenvector about adjacency matrix, and the
spectrum convolution result on graph can be obtained by
calculating the convolution of signal x ∈ RN and graph
convolution kernel gθ. 'e purpose of graph convolution is
to predict the state of the node at the next moment according
to current status of the node in a graph, which can be defined
as

H
(l+1)

� f H
(l)

, A , (1)

where H(l) denotes all the note status at time l, A denotes the
adjacent matrix, and f(·) denotes mapping function. Dif-
ferent mapping function represents different GCN models.
Usually, the node status in the next moment can be obtained
by calculating the linear combination of its adjacent notes
through multiplying the adjacent matrix with the current
status matrix, and the final expression can be defined as
follows:

H
(l+1)

� σ AH
(l)

W . (2)

'e weight matrix was used to perform linear mapping
operation and the function σ(·) was used to calculate the
nonlinear mapping operation. 'e function of the adjacency
matrix and state matrix multiplication was used to calculate
the addition of adjacency nodes in a matrix manner.
However, the information of node itself has not been taken
into account. 'e direct way to solve this problem is adding
an identity matrix to the adjacency matrix so as to add the
self-loop information of each node into the adjacency
matrix. In addition, with the accumulation of the GCN
operations, the dimension difference of status information
between nodes in the graph will become large. In order to
maintain the stability of the operation, the matrix infor-
mation needs to be normalized before each calculation.
Graph convolution operators usually adopt graph Laplacian
matrix as the substitution of adjacency matrix, and graph
convolution calculation function can be defined as follows:

H
(l+1)

� σ D
− (1/2) AD

− (1/2)
H

(l)
W

(l)
 , (3)

where A � A + IN represents a new adjacency matrix with
self-loop information, D � i

Aij, Hl ∈ RN×F denotes the
nodes information in l-th layer, H0 � X, X denotes the
initial status of graph nodes, and Wl ∈ RF×F denotes the
weight value in the l-th layer. Each calculation of graph
convolution is the extraction of first-order neighborhood
information. Multiorder neighborhood information can be
realized by superimposing several convolutional layers.

2.2. Spatiotemporal Attention Mechanism. Graph convolu-
tional neural network can capture the local spatial corre-
lation between adjacent nodes in graph, but different
adjacent points have different impact on the current node.
'e key idea of spatial attention mechanism is to pay
adaptive attention to the characteristics of the most relevant
nodes according to the input data. In time slice, the in-
formation of road network is changing dynamically all the
time. 'erefore, using spatial attention mechanism and
temporal attention mechanism to adaptively capture the
node information with higher correlation in each dimension
will be of great help to improve the prediction accuracy.

In this paper, soft attention [21] mechanism is used to
calculate attention weight. It can extract features from the
input sequence and adaptively calculate the importance of
each node from the road network information at different
time. Firstly, the information of all nodes at time t was
aggregated into a vector. 'e aggregated information
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includes the spatial characteristics and node information of
the road network at time t can be expressed as follows:

qt � relu 
N

i�1
Whti

⎛⎝ ⎞⎠, (4)

where W denotes the trainable parameters and hti denotes
hidden state value of the i-th node in time t. 'e attention
values about all nodes can be formulated as follows:

αt � Sigmoid Ustanh Whht + Wqqt + bs  + bu , (5)

where αt � (αt1, αt2, . . . , αtN) and αti denotes the attention
value of the i-th nodes at t time. Us, Wh, and Wq denote
trainable parameters; bs and bu denote bias vector. 'is
attention mechanism firstly spliced the aggregated infor-
mation of all nodes at time t with the information of all
nodes at the same time and then obtained the attention
weight of each node relative to all nodes through the full
connection layer. In order to calculate the nonlinear map-
ping information of nodes at different time, this paper uses
the structure of two fully connected layers to calculate at-
tention value.'e second hidden state hti of the i-th node at t
time can be calculated by (1 + αti) · hti and the weighted
graph state will be input into next layer.

2.3. Gated Convolution Network. Gated linear unit was
proposed by Dauphin et al., which is a convolutional neural
network model with gated mechanism. 'is model was
mainly used to replace the recurrent neural network in
natural language processing model. Compared with the
gated unit in RNN model, this unit has the advantages of
lower complexity, faster gradient propagation efficiency, and
being less prone to gradient disappearance or gradient ex-
plosion. In addition, the gated linear unit can also process
the input data in parallel, which can improve the accuracy of
the model as well as the computational efficiency. Let X

denote layer input, hl denote output of this layer which also
represents the hidden states of this layer, W and V denote
two different convolution cores, and b and c denote two bias
parameters; the gated convolutionmodel can be expressed as
follows:

hl(X) � (X∗W + b)⊗ σ(X∗V + c). (6)

'e output of the model was realized through dot
product calculation between linear mapping result vector
and nonlinear mapping vector. 'e linear mapping vector
can be obtained by multiplying the input vector X with
parameter vector W. 'e nonlinear mapping vector can be
calculated by multiplying the input vector X with parameter
vector V at first. 'en, the nonlinear mapping function can
be obtained by using nonlinear function σ(·). Because the
output of function σ(·) can only be 1 or 0, the function of
multiplying these two vectors is to perform gated selection
operation for each node.

3. Methodology

In this section, we will describe the framework of the
proposed method.'e traffic flow information was extracted
in three channels separately. In each channel, there are two
spatiotemporal blocks to fetch space-temporal feature. Each
ST block is composed of a spatial block and a temporal block
which are used to fetch the spatial feature and temporal
feature separately. 'e input of the three channels corre-
sponds to the traffic flow data containing three impassable
periods, respectively. 'e model structure is shown in
Figure 1.

3.1. Problem Definition. 'e goal of traffic prediction is to
predict the traffic information in a certain time based on the
historical traffic information on the road. 'is paper takes
traffic speed forecasting as the main objective of the study.
'is prediction work is performed based on traffic flow data
on the road which was collected by traffic sensors distributed
throughout the network. Typically, traffic flow data refers to
the number of vehicles that pass through a sensor during a
specified period of time.'e topology structure composed of
all sensors in the road network was defined as G� (V, E, A).
'e vector V � v1, v2, . . . , vN  denotes vertex set. Assume
that only one sensor was placed on each road and the road in
the road network can be represented by the sensor. Let N
denote the number of the codes and E denote the set of edges
in the network. 'e adjacent matrix A � RN×N was used to
denote the connection between nodes. 'e feature matrix
Xt ∈ RN×P denotes the flow status in time t, and P denotes
the length of feature vector. 'e traffic flow prediction
problem can be defined as follows: given the traffic flow’s
status at the time t and other historical data, the t+ 1 time
traffic flow data can be calculated in the form of the following
equation:

Xt+1, Xt+2, . . . , Xt+p  � f G; Xt− n, Xt− n+1, . . . , Xt( ( , (7)

where t is the length of historical time series and n is the
length of time series that need to be predicted.

3.2. Graph Convolution on the Traffic Data. Since the
structure of the road network is an irregular structure, the
traffic flow data generated by vehicles on the road network is
also irregular, and it is very suitable to use GCN model to
calculate the feature of traffic flow. Because the standard
graph convolution computation is too huge, the Chebyshev
inequality was often used to get the approximate solutions,
and the approximate equation can be formulated as follows:

θ∗φx � θ(L)x ≈ 
K− 1

k�0
θkTk(L)x, (8)

where θ is the graph convolution kernel, Tk(L) ∈ RN×N is k-
order Chebyshev inequality, L � 2(L/λmax) − IN ∈ RN×N,
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λmax is the largest eigenvalue of the Laplace matrix, k is the
size of convolution kernel, and the k-th Chebyshev
inequality’s recursive definition is
Tk(L) � 2xTk− 1(x) − Tk− 2(x), while k � 0 and T0(x) � 1.

In order to effectively learn local spatial dynamic feature,
the spatial attention matrix W ∈ RN×N was multiplied with
the k-order Chebyshev inequality Tk(L) based on dot
product.'e concrete equation can be formulated as follows:

θ∗φx � θ(L)x ≈ 
K− 1

k�0
θk Tk(L)⊙W( x. (9)

In this paper, k-order Chebyshev inequality was applied
to extract feature of road network information. 'e k-order
convolution operator of Chebyshev graph convolution can
cover the features of k-order neighborhood nodes.

3.3. Multiperiod Flow Data Series. In order to capture the
temporal dynamic characteristics of traffic flow, this paper
uses three different spatiotemporal components to extract
the characteristics of historical traffic data. 'is paper
constructs three different traffic flow data sequences with
three different periods: week, day, and hour.

3.3.1. 8e Weekly Periodic Series. 'e weekly periodic series
data Xw was composed of traffic data sampled in weeks.'ey
have the same weekly properties and time intervals as the
forecast period. In terms of the variation trend and peak

value of traffic conditions, the traffic flow on weekdays is
similar to that on weekdays, but not on nonweekdays.
'erefore, training with weekly periodic data can help us
capture differences between weekdays and nonweekdays
data.

3.3.2. 8e Daily Periodic Series. 'e daily periodic series Xd

was composed of the traffic data sampled in days. Due to the
regularity of people’s activity track, the traffic flow shows
periodic fluctuation. For example, the morning and evening
rush hours on weekdays may have similar traffic volumes.
'erefore, daily correlation data were added to extract
temporal and spatial dynamic correlation.

3.3.3. 8e Minutely Periodic Series. 'e minutely periodic
series Xm was composed of the traffic data sampled in
minutes.

'e sequence that has the greatest impact for the future
traffic is the traffic situation in the adjacent period. If the
current traffic flow on the adjacent road is large, the pos-
sibility of congestion at the next moment of this section will
be large.

All these three data series have the same structure and
can be calculated in the same way. 'ere are two spatio-
temporal blocks in the model and a fully connected layer in
the end. 'e spatiotemporal block was composed of spatial
block and temporal block. Each block has an attention
module. In order to avoid the decrease of training accuracy,

FC FC FC

Fusion Loss
YŶ

Temporal Block

Spatial Block

Temporal Block

Spatial Block

Temporal Block

Spatial Block

Temporal Block

Spatial Block

Temporal Block

Spatial Block

Temporal Block

Spatial Block

xw xd xm

Figure 1: 'e framework of the proposed model.
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we introduce residual learning module between spatio-
temporal blocks. In the end of forecastingmodel, the outputs
of the three channels will be merged by a parameter matrix
to form the final feature vector.

3.4. Gated Convolution for Feature Extracting. Graph con-
volution model can be used to extract spatial information of
traffic data effectively. However, traffic flow data is a typical
time flow data. Effectively extracting the characteristics of
traffic flow information on the time axis is of great help to
improve the accuracy of prediction. In this paper, gated
convolution model is used to extract temporal and spatial
features of traffic information. Compared with RNN model,
the gated convolution model has a simpler structure and
smaller computational time. In order to capture the char-
acteristics of traffic data on the time axis, we apply gated
convolution operation on each time axis to capture the
dynamic characteristics of traffic flow data.

3.5. Multichannel Data Merge. Each spatiotemporal con-
volution module consists of a graph convolution module for
spatial information and a gated convolution model for time
domain.'e gated convolution module captures the features
of the time axis along the time axis. 'e outputs of different
channels have different weight in prediction. In this paper,
we combine them based on linear combination operation.
'e fusion equation is shown as follows:

Y � Ww ⊙ Yw + Wd ⊙ Yd + Wm ⊙ Ym, (10)

where ⊙ denotes the element-wise Hadamard product, Yw

denotes the output of the channel weekly data, Yd denotes
the output of the channel daily data, and Ym denotes the
output of the channel minutely data. Ww, Wd, and Wm are
weighted parameters corresponding to different channel
data. In this paper, we take 0.4, 0.2, and 0.4 as the default
weight parameter values, because traffic flow status in former
time has more impact on the traffic data in the next time.

3.6. Loss Function. 'e goal of model training is to minimize
the error between the actual traffic speed and the predicted
value on the road. In this paper, Yt and Yt were used to
represent the actual traffic speed and predicted speed, re-
spectively.'e loss function of MSTAGCNwas shown in the
following equation:

loss � Yt − Yt

����
���� + λLreg. (11)

In this formulation, the first term was used to measure
the error between the actual speed and the predicted value.
'e second term represents Lreg, and the regularization term,
which helps to avoid the overfitting problem, is a
hyperparameter.

4. Results and Discussion

4.1. Datasets. 'e experiment datasets used in this paper
are PeMS04 and PeMS08 which belong to Caltrans per-
formance evaluation system (PeMS, https://www.pems.
dot.ca.gov). 'e geographic information and time infor-
mation are contained in the data. 'e PEMS04 is the traffic
flow data collected from San Francisco Bay, which in-
cludes 3,848 sensors on 29 roads. We pick out the ex-
periment data from 307 sensors. 'e time range of the
dataset is from January 1 to February 28 in 2018 which
covers 59 days. 'e PEMS08 was the traffic flow data
collected from SAN Bernardino, which includes 1,979
sensors on 8 roads. We pick out the data from 170 sensors
as experiment data.

4.2. Data Preprocessing. 'e data in these two datasets are
sampled in every five minutes. Each sensor contains 288 data
records per day, and each record contains three features.
'ey are the traffic flow, average vehicle speed, and occu-
pancy rate responding to sensors during that time period.
'e spatiotemporal data were divided into training set,
validation set, and test set in the ratio of 6 : 2 : 2. At the same
time, range normalization was carried out for each feature to
keep the data value between [0,1]. 'e specific calculation
formula is as follows:

x
∗

�
x − min

max − min
. (12)

By using the distance between different sensors, the
adjacency matrix of the graph was established using the
threshold Gauss kernel. 'e calculation process of the
threshold Gaussian kernel can be formulated as follows:

Wij �
e

dist vi,vj( 
2
/σ2 

, dist vi, vj < s,

0, dist vi, vj ≥ s,

⎧⎪⎪⎨

⎪⎪⎩
(13)

where Wij represents the weight of the edge between sensor
vi and sensor vj, dist(vi, vj) represents the distance between
sensor vi and sensor vj, σ2 is the variance of the distance, and
s is the threshold. As there are almost no sensors over 1000
meters in the dataset, the threshold s is 1000.

4.3. Evaluation Metrics Subheadings. To evaluate the per-
formance of the proposed model, we choose three metrics to
evaluate the difference between real traffic value Yt and
estimated value Yt, which was shown in the following
equations.

(1) Root Mean Square Error (RMSE) is calculated as
follows:
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RMSE �
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. (14)

(2) Mean Absolute Error (MAE) is calculated as follows:

MAE �
1

MN


M

i�1


N

j�1
y

i
j − y
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. (15)

(3) Mean Absolute Percentage Error (MAPE) is calcu-
lated as follows:

MAPE �
1

MN


M

i�1


N

j�1

y
i
j − y

i
j

y
i
j




, (16)

where yi
j denotes the real traffic flow data value in the i-th

time, yi
j denotes the predict value, M denotes the number of

samples, and N denotes the number of roads. Specifically,
the rule of metrics measuring prediction error is as follows:
the smaller the error, the higher the accuracy of the
prediction.

4.4. Experiment Settings. To verify the validity of the model,
the MSTAGCNmodel proposed in this paper was compared
with the classical GRU model and the recently proposed
DCRNN, T-GCN, ASTGCN, and STSGCN models. Table 1
shows the hyperparameter settings of each model and the
word layers means the number of hidden layers. 'e word
units represents the number of computing units in each
hidden layer and all models in the experiment are composed
of the same number of units. k denotes the order of graph
convolution, and Tw, Td, and Tm represent the length of
weekly, daily, and minutely sequence.

4.5. Experiment Result. 'e experimental results are shown
in Table 2. In 'e PEMS08 dataset, MSTAGCN model is
always superior to other benchmark models in terms of
accuracy. In EMS04 dataset, MST-GCN has the smallest
prediction error compared with other forecasting methods
and has slightly larger errors in MAE and MAPE result. In
the RMSE evaluation results, the proposed method has
larger error than STSGCN methods. Due to the simplest
model structure, the GRU model has the worst performance
in both datasets. 'e lower prediction results of the former
spatial analysis-based model demonstrate that those
methods have not effectively model the nonlinear infor-
mation of the traffic data. In general, the deep learning-based
methods have better performance than those non-deep
learning models and the convolution operation plays an
importance role in improving the accuracy of prediction.
'e convolution operation can effectively capture the local
feature in both the spatial information and the temporal
information. Simultaneously using spatial and temporal
information is the other effective prediction improving
routine. As we can see, the last four methods have better

performance than other methods. Besides, the MSTAGCN
performs better than other methods, indicating that the
multichannel mechanisms applied in the proposed model
are effective in capturing the changing routine characteristic.
Our MSTAGCN achieves better performance than the
previous models proving the feature about traffic changing is
nonlinear and single input information cannot provide
sufficient information for feature learning.

Figures 2 and 3 exhibit the prediction performance on
these two datasets. 'e GRU model only considers the
temporal characteristics and does not take advantage of the
spatial information of road network. 'e accuracy of GRU
is not as good as that of temporal correlation method. GRU
only considers the temporal correlation and does not use
the spatial correlation of road network, so the accuracy of
GRU is not as good as that of the method using temporal
and spatial correlation. 'e DCRNN and T-GCN model
spatial and temporal feature information separately, but
they only use a single time window to extract long-term
dependence without considering impaction caused by the
periodicity of different time windows. ASTGCN and
STSGCN both use different spatiotemporal components to
extract corresponding correlation from time windows, but
they ignored the correlation between different time period
channels. So, the prediction precision will be relatively
reduced. In this paper, the MSTAGCN method considers
impaction from different periodic data on traffic fore-
casting work and uses multichannel structure to fuse the
spatiotemporal components, so as to capture the long-term
spatiotemporal dependence between different periodic
traffic data. 'erefore, the prediction accuracy of the
proposed model is better than that of the existing models,
and the prediction effect is better.

Table 1: Hyperparameter settings for different models.

Models Layers Units k Tw T d T m

GRU 3 500 — — — 5
DCRNN 2 64 3 — — 5
T-GCN 3 64 2 — — 5
ASTGCN 2 64 3 24 12 5
STSGCN 4 64 3 — — 12
MSTAGCN 3 64 3 2 6 5

Table 2: Performance comparison of different models of traffic
flow prediction.

Model
PEMS04 PEMS08

MAE RMSE MAPE
(%) MAE RMSE MAPE

(%)
GRU 24.34 43.47 16.59 19.01 35.12 13.23
DCRNN 24.06 34.7 16.00 19.36 31.94 11.18
T-GCN 23.71 34.74 16.37 22.98 32.57 11.88
ASTGCN 22.36 32.6 15.18 18.21 27.99 13.22
STSGCN 22.52 34.62 14.92 17.79 26.33 11.80
MSTAGCN 22.11 32.96 14.15 15.85 23.62 11.44
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5. Conclusions

In this paper, we proposed a multi-spatiotemporal attention
gated graph convolution network (MSTAGCN) to capture
the spatiotemporal feature about traffic flow data. Firstly, in
order to deeply explore the temporal and spatial correlation
of nodes, the Chebyshev convolution and gated loop unit
were combined to obtain a larger receptive field. Secondly,
three periodicity datasets with different time window were
picked up to provide comprehensive traffic information.
Finally, the MSTAGCN model was constructed by fusing
multiple spatiotemporal components with encoder-decoder
network structure. 'e experimental results about highway
datasets PEMS04 and PEMS08 in Caltrans performance
evaluation system show that the performance of the new
model is significantly better than other models, and it can be
applied to the actual road network to improve traffic pre-
diction precision efficiency. In the next step, datasets about
urban road networks will be collected to explore the
adaptability of the model under complex urban road
networks.
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Figure 2: Prediction result on PEMS04.
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