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Injuries and fatalities for vulnerable road users, especially bicyclists and pedestrians, are on the rise. To better inform design for
vulnerable road users, we need to evaluate how bicyclist and pedestrian behavior and physiological states change in different roadway
design and contextual settings. Previous research highlights the advantages of using immersive virtual environments (IVEs) in
conducting bicyclist and pedestrian studies. (ese environments do not put participants at risk of injury, are low cost compared to
on-road or naturalistic studies, and allow researchers to fully control variables of interest. In this paper, we propose a framework,
Omni-Reality and Cognition Lab Simulator (ORCLSim), to support human sensing techniques within IVEs to evaluate bicyclist and
pedestrian physiological and behavioral changes in different contextual settings. To showcase this framework, we present two case
studies, where pilot data from five participants’ physiological and behavioral responses in an IVE setting are collected and analyzed,
representing real-world roadway segments and traffic conditions. Results from these case studies indicate that physiological data are
sensitive to road environment changes and real-time events in the IVE, especially changes in heart rate and gaze behavior. In addition,
our preliminary data indicate participants may respond differently to various roadway settings (e.g., signalized vs. unsignalized
intersections). By analyzing these changes, future studies can identify how participants’ stress level and cognitive load are impacted by
the surrounding environment. (e ORCLSim system architecture is a prototype that can be customized for future studies in
understanding users’ behavioral and physiological responses in virtual reality settings.

1. Introduction

Over the past couple of decades, the evaluation of roadway
safety and design has been automobile-centric. Many
observational, survey-based, naturalistic, and experi-
mental studies have been conducted to evaluate the im-
pact of roadway design features on drivers’ behaviors and
safety, leaving out other roadway users such as bicyclists
and pedestrians. (e National Highway Traffic Safety
Administration reported a 35% increase in pedestrian
fatalities in the past ten years, and deaths of bicyclists in
the United States reached all-time highs in 2018 and 2019
[1]. (ese trends indicate that the design of current
roadways needs to be improved to be more inclusive for all
users, especially for vulnerable road users such as

bicyclists and pedestrians [2]. Different factors, such as
the speed limit, roadway design, and the presence of large
vehicles (e.g., trucks), have been shown to be associated
with severe injury or fatality of bicyclists [3]. In addition,
the presence of intersections, traffic volumes, noise levels,
and physical separation between bicyclists and vehicles
has been shown to influence bicyclists’ stress or comfort
levels [4–6]. Similarly, for pedestrian safety, similar fac-
tors for bicyclists are emphasized by researchers: pedes-
trian infrastructure, roadway design, traffic volumes,
vehicle speed, and visibility of the road environment [7]. It
is also found that bicycle paths, crossing surface material,
street type, as well as the presence of nearby parked ve-
hicles are associated with the number of pedestrian-ve-
hicle conflicts from a naturalistic observation study [8].
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To better inform roadway design, extensive datasets like
the automobile-focused studies of the past are needed for
bicyclists and pedestrians. To develop robust bicyclist and
pedestrians-focused datasets, studies with both high eco-
logical and internal validity are needed. Ecological validity
refers to the extent an experimental environment matches
with the real world, increasing the chances that the effects
identified in an experimental environment generalize to
real-world settings. Internal validity refers to the extent, in
which a cause-effect relationship is warranted in a study.
Subjective, naturalistic, and experimental datasets can be
utilized to tackle these issues. Subjective studies, such as
surveys, provide measures of users and their perceptions of
their environment but lack ecological and internal validity
[9]. On the other hand, naturalistic studies can provide
information about realistic changes within the environment
and bicyclist and pedestrians’ behavior with high ecological
validity, but these studies with lower internal validity are
resource- and time-extensive and have potential risks of
injuries and fatalities for participants. For example, a study
in real traffic examining glance behavior of teenage cyclists,
while listening to music is terminated when the results
indicated that a substantial percentage of participants cy-
cling with music decreased their visual performance [10].
Furthermore, naturalistic studies are influenced by many
environmental factors that restrict the ability to fully isolate
and understand the impact of independent variables, thus
offering low internal validity, especially for physiological and
behavioral factors [4, 11]. (us far, the majority of bicyclist
and pedestrian studies rely on subjective and naturalistic
data derived from real-world settings to assess participants’
behavior and comfort in different traffic environments
[12, 13].

Experimental studies provide an opportunity to evaluate
the impact of safety-related conditions, infrastructure, and
technology on bicyclists and pedestrians. (ey can offer the
ecological validity lacking in subjective studies and allow the
researchers to control for external variables, unlike natu-
ralistic studies, for greater internal validity. Experimental
studies conducted with virtual simulators can minimize the
hypothetical bias of subjective surveys while offering a
controlled, low-risk, and immersive environment that real-
world experiments cannot guarantee. (e benefit of
immersive virtual environment (IVE) is achieving high
internal and ecological validity, while also being cost-ef-
fective and offering complete experimental control to rep-
licate trials [14, 15]. Early IVE lacked realism, which was
primarily due to a lack of technological capability. Fortu-
nately, IVE software and hardware platforms have signifi-
cantly improved over the last few years with the release of
high-end commercially available head-mounted displays
(HMDs). Furthermore, as the level of immersion increases, it
is possible to integrate human sensing devices to capture
participants’ psychophysiological data, which is a field of
data that has historically been overlooked. Such data provide
insights into how participants’ behaviors and perceptions
may change in contextual settings in different research fields
[16–20]. In addition, psychophysiological data can record
people’s responses to environmental changes, while some of

these responses are not visible from the videos such as heart
rate. For example, pedestrians’ distinct physiological re-
sponses (gait patterns, heart rate, and electrodermal activity)
to negative environmental stimuli are reported from natu-
ralistic ambulatory settings in a building [21]. With the
increase of realism in IVE simulators and the development
of low-cost ubiquitous sensors, IVE simulators have become
promising tools for conducting highly realistic and
immersive experimental studies [22]. In traffic safety studies,
driving simulators have been widely applied to study drivers’
behaviors, awareness [23], and psychophysiological states
with multimodal data collection systems such as eye
trackers, electroencephalogram (EEG), and electrocardio-
gram (ECG) [24–27]. Some of the driver-related studies are
conducted in IVE [28]. Meanwhile, for bicyclists and pe-
destrians, only a few studies have applied physiological
responses in IVE simulators. For example, bicyclists’ gal-
vanic skin response is found to have less peaks with a bike
lane than in no bike lane condition [6]. In another cycling
virtual reality study, EEG data show its potential in a hybrid
model framework as an indicator of the perceived risk of
bicyclists [29]. For pedestrians, it is notable that older pe-
destrians spent more time focusing on their travel path and
rarely on other areas in the last five seconds before making
the crossing decision in an IVE study [30].

In this paper, we propose a modular IVE-based
framework, Omni-Reality and Cognition Lab Simulator
(ORCLSim), for supporting pedestrian and bicyclist
physiological behavior research. (e proposed framework
integrates realistic visualizations from the real world in IVE
along with a physical bicycle and a suite of passive sensing
technologies, which enable the collection of physiological
and behavioral responses of users. Our framework has the
following innovations: (1) a low-cost and highly immersive
solution for studying vulnerable road users’ behavior and
responses to the new roadway design features or new
technology such as bicyclist’s responses to connected au-
tonomous vehicles; and (2) multimodal data collection to
capture participants’ physiological information (i.e., gaze,
pose, heart rate, and HRV), physical responses (i.e.,
braking, speed, and steering), as well as controlling and
monitoring environmental conditions (distance of vehicles
to cyclists and traffic volume). Previous IVE studies did not
collect behavioral and physiological data. (e lack of
physiological data in previous studies is mainly due to cost
and the intrusive nature of such devices, as well as the lack
of analytic and processing capability of human sensing
devices. By synchronizing the timestamps of different
human sensing devices, bike simulators, pedestrian walk-
ing, VR headset, cameras, and video recording, the authors
are able to precisely match behavioral/physiological re-
sponses to the stimuli in the environment, allowing us to
fully capture how contextual setting impacts roadway users.
In the framework, the authors use integrated eye trackers,
light-weighted smartwatches, and low-cost web cameras to
collect the gaze, heart rate, body position, and cycling/
walking data in a less intrusive way. (ese modules are
independent, and can be easily modified and integrated
with other simulators.
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(e goals of this paper are to (1) identify research
methods, trends, and gaps in knowledge related to bicyclist
and pedestrian physiological behavior research in IVE; (2)
present a novel framework for evaluating bicyclist and pe-
destrian behavioral changes through integrating human
physiological sensing within IVE; and (3) present a set of
case studies to highlight how the proposed framework could
be implemented to collect and analyze bicyclist and pe-
destrians’ behavioral and physiological changes in different
roadway conditions and designs.

2. Background and Literature Review

(is section will provide background information regarding
different types of studies on bicyclists and pedestrians and
how physiological measurements are integrated into related
studies, especially for IVE studies. Table 1 shows a list of
acronyms for further reference.

2.1. Surveys and Observational Studies. Surveys have been
widely used as methods of studying bicyclists and pedes-
trians, particularly when faced with a lack of observational
data. Surveys, when composed carefully, can reliably and
efficiently assess large populations of people and have been
used to study a wide variety of topics including perceived
safety and comfort [31, 32], route choice [33], and crash
history [34, 35]. However, stated preference surveys have
limitations such as being subject to hypothetical bias, where
responses to hypothetical situations are not the same as they
would be in real-world situations [36].

Observational studies eliminate the risk of hypothetical
bias from stated preference surveys [37]. However, the data
collected relies on-road users in real-world conditions. In
recent years, with the increasing number of cameras, more
video streams are available for observational studies.
However, these studies can only evaluate participants’ be-
haviors in existing environments, where we have a very
limited number of options to consider for roadway im-
provements. To have full control over design considerations,
we need to evaluate how bicyclists and pedestrians respond
to different designs of roadways during the planning or
design phase of projects. Simulations and immersive virtual
environments offer an approach that minimizes the limi-
tations of stated preference surveys, and allows for a con-
trolled, safe environment that real-world observational
studies cannot provide.

2.2. IVE Simulation Technology and Framework. Over the
past decade, driving simulators, virtual reality (VR) tech-
nologies, and human sensing technologies have provided
new insights into human behavior in different contextual
settings, assisting in evaluating different design alternatives
for roadways [38, 39], buildings [40], hospitals [41], and
other civil infrastructure systems [39, 42, 43]. Simulation
methods utilizing IVE offer a low-cost, low-risk approach to
studying the users’ safety, perception, and behavior. Tra-
ditionally, real-world observation methods have been used
to understand bicyclist and pedestrian behavior. (ese

methods are often expensive, time-consuming, and unre-
alistic for studying naturalistic behaviors as they often re-
quire some level of unrealistic environmental control for the
safety of test subjects. (e improvements in IVE over the
recent years have provided researchers, designers, and en-
gineers with a way to evaluate alternative infrastructure
designs while providing high degrees of immersion. Novel,
commercially available VR headsets offer a high degree of
realism and immersion. Furthermore, environmental factors
that may influence bicyclist and pedestrian behavior are
highly controllable within IVE, allowing for replicable ex-
perimental trials. (e last two decades have seen research
utilizing IVE and VR simulations focusing on how coun-
termeasures influence safety-related elements such as
walking speed, gap acceptance, analysis of risky behavior,
stated preference data, visual or auditory warning effec-
tiveness, speeds, steering, and resistance [44–49].

Arguably the biggest gap in IVE research for bicyclists
and pedestrians is the lack of standard methods to cross-
compare different studies. For instance, it is difficult to draw
conclusions relating to technology effectiveness between a
simulator using 2D screens and another using a 3DHMD, as
validation studies are very limited and not consistent be-
tween different mediums [50]. (is was shown by Maillot
et al., which evaluated participants’ crossing behavior across
three mediums: 2D screens, 3D HMD, and 3D Cave Au-
tomatic Virtual Environment (CAVE); their analysis showed
there exists a significant difference in participant gap ac-
ceptance between 2D screens and CAVE. However, there
was no significant difference between CAVE and HMDs
[51, 52]. (ese findings indicate that not only are there
limited IVE studies for understanding bicyclist and pedes-
trian behaviors but there are even fewer studies where the
results and findings can be properly compared. Some cor-
relation is recognized between a multiscreen setup and the
use of a cell phone mounted in a cardboard viewer as a
simulated HMD setup [53]. Other factors such as participant
movement, visual scenes, and sound technology have been
taken into consideration for fidelity comparison [54–56].
Overall, a lack of a generalized framework to develop IVE
simulators and technological inconsistency in data collec-
tion between studies are the biggest factors for this gap.
Other research gaps worth noting include a lack of model
complexity; for example, more work needs to be put into the
IVEs to incorporate traffic flow theory [57–59]. In addition,
the lack of complexity with respect to what the bicyclists and
pedestrians can do within an IVE also needs to be addressed

Table 1: List of acronyms.

ORCLSim Omni-Reality and Cognition Lab Simulator
IVE Immersive virtual environment
HMD Head mounted display
EEG Electroencephalogram
ECG Electrocardiogram
VR Virtual reality
CAVE Cave automatic virtual environment
HR/HRV Heart rate/heart rate variability
BCP Bayesian change point
SGE/GTE Stationary gaze entropy/gaze transition entropy
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including limitations in walking speed, interaction with
vehicles and infrastructure, and modeling streetscapes
within the boundaries of indoor laboratory space
[46, 57–59].

2.3. Integration of Human Sensing within IVE. Apart from
subjective studies, there are limited datasets including hu-
man physiological and psychological sensing (e.g., eye
tracking, body tracking, and heart rate) for bicyclists and
pedestrians. It is crucial to assess participants’ patterns of
perception and reaction in certain contextual settings. Many
traditional on-road studies have used accident statistics and
road infrastructure data (e.g., roadside cameras) to evaluate
the safety-related concerns of bicyclists and pedestrians. To
further study their perception and cognitive states, human
sensing devices (e.g., physiology devices) have been shown to
provide promising insights [60, 61]. (ere are practical
concerns about the data collection of human sensing on real
roads. First, the safety, ethical and cost considerations
prohibit large-scale on-road observational experiments [10].
Second, the implementation of traditional human sensing
devices (such as body trackers) is intrusive, which may affect
the behavior and perception ability of the participant, as well
as the data quality on real roads (especially in high-speed
scenarios) [62]. Considering these shortcomings, most IVEs
can handle the first limitation, as virtual environments
provide a low-risk and cost-effective alternative to real
settings. (e second shortcoming (monitoring perception
and cognition) requires the integration of human sensing
systems and ubiquitous computing into the IVE. (e ma-
jority of existing IVE research in bicyclist and pedestrian
studies has not utilized ubiquitous computing and human
sensing techniques to monitor participants’ behaviors and
physiological states.

Eye tracking behaviors, such as fixations distribution and
pupillometry, are usually found to be related to the process
of cognitive resource allocation. Eye-tracking behavior is
usually measured by optical eye trackers. Eye tracking has
been widely used in studying users’ visual perception and
attention in different contexts. For example, research has
shown that experienced and inexperienced bicyclists have a
different perceived gaze at infrastructure treatments around
intersections [63]. (e latest virtual reality headsets, such as
the HTC VIVE Pro Eye, have integrated eye tracking fea-
tures, allowing for IVE researchers to incorporate eye
tracking analysis within their studies.

Body position has an influence on leg kinematics and
muscle recruitment for bicyclists [64]. Sensors can be used to
build 3D body tracking by implementing multiple on-body
receivers to study pedestrians’ dynamics of indoor activity
[65]. Recent developments in computer vision have greatly
reduced the cost of obtaining body movement data. For
example, OpenPose, an open-source real-time multiperson
system, can jointly detect human body, hand, facial, and feet
key points on single 2D images [66].

ECG is a well-established method to record the electrical
activity of the heart. A participant’s heart rate (HR) and
heart rate variability (HRV) can be measured using an ECG

signal. HR is a commonly measured index of physiological
arousal in response to changes in work demands, especially
for workload [67]. Relative to HR, HRV decreases with
increasing task demands [68]. To collect the HR/HRV data,
apart from the intrusive sensors usually utilized in lab tests,
many wearable devices such as smartwatches and smart
bands, can provide reliable measurements for HR and HRV
[69, 70]. (ese devices enable longitudinal data collection
that can help in building personalized models for users.

To summarize the existing literature, we have catego-
rized past IVE bicyclist and pedestrian simulator studies
with their IVE settings and data collection methods. Tables 2
and 3 illustrate how the trends in technology, immersion,
collected data, and analysis of bicyclist and pedestrian re-
search have changed over the last two decades. Note that for
studies from the same research group, only the latest work is
included. As can be seen from Tables 2 and 3, for past
pedestrian and bicycle simulators, there are two major
shortcomings: (1) lack of realism in existing VR environ-
ments and cycling experiences and (2) lack of integration of
behavioral and/or physiological sensing in the real world and
VR simulation studies.

3. Materials and Methods

To address the existing knowledge gaps identified in the
previous section, we introduce a new IVE-based framework,
ORCLSim, where, we can evaluate participants’ behavioral
and physiological responses in different simulated environ-
ments. (is section provides details on the devices and
processing techniques utilized in the proposed framework. In
order to collect the multimodal data desired, multiple com-
ponents are required to work in synchronicity within the IVE.
(e ORCLSim system architecture is shown in Figure 1,
demonstrating all the technology, software, communications
network, and associated data flow. (e details of the system
framework will be discussed in this section.

3.1. Environment and Design Context. (e IVE is developed
based on a 1 :1 scale as the real-world environment: the
Water Street corridor in Charlottesville, Virginia. In the
presented framework and during the development of the
IVR model, the scale of the road, surrounding buildings,
and other roadway design features (i.e., markings, traffic
lights, etc.) are calibrated to fit a 1 : 1 scale as the real
road. For the presented case study, the construction
plans of the selected roadway corridor from the city of
Charlottesville were obtained as a reference to build the
IVE. Water Street is well-trafficked by bicyclists and has
been identified by the Virginia Department of Trans-
portation as a high-risk site for pedestrians and is being
considered for redesign by the city of Charlottesville, as
shown in Figure 2. (e section of the corridor chosen for
this experiment consists of four city blocks, with an
eastbound 4% downhill grade on one of the segments
(road segment 1 in Figure 2(d)), shared lane markings for
bicycles in the east and westbound directions, a traffic
signal at the intersection of East Water Street and 2nd
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Street SE, and a parking lane in the westbound direction.
Figures 2(a) and 2(b) present the comparison between
the real environment and the IVE created in Unity. (e
IVE used in this framework is developed in Unity 3D
game engine 2018 and runs through the SteamVR
platform. In addition, to realistically simulate traffic
patterns, the research team collected approximately two
weeks of video data at the selected corridor and recorded
the number of cars and other roadway users passing
through this corridor along with their speed. (is data
was used to simulate the number and speed of the cars
within the IVR environment. A pilot test was conducted
among the research team and several transportation
experts from the University of Virginia were invited to

evaluate the realism of the model and provide feedback
for improvement.

3.2. Simulator Setup. (is section will discuss the hardware
components chosen for both simulators. Figure 3 demon-
strates the appearances of both simulators. HTC Vive Pro
VR headsets with their accompanying controllers are
equipped in our simulators.

Table 4 shows the cost estimation of the IVE framework,
compared to a comparable real road test. (e IVE-based
framework cannot only save direct costs in hardware but
also save additional costs in the planning process and
eliminate test subject safety concerns. At the time of this

Table 2: IVE bicyclist simulator literature table.

Report
information Level of immersion Data reported

Author and
year

Simulator
environment

setting

Visual
technology

Agency of
movement Haptic Participant Kinematic Movement Eye

tracking Physiology Stated
preference

van Veen
et al., 1998
[71]

Real world SS +HMD Real time ✓ — ✓ — — — —

Kwon et al.,
2001 [72] Real world SS +HMD Real time ✓ — ✓ ✓ — — —

Nikolas
et al., 2016
[73]

Simulation CAVE Real time ✓ 63 ✓ — — — ✓

O’Hern
et al., 2017
[47]

Real world HMD Dummy — 30 ✓ — — — ✓

Xu et al.,
2017 [74] Simulation HMD Stationary — 30 ✓ — — — ✓

Kwigizile
et al., 2017
[75]

Real world HMD Real time ✓ 36 ✓ — — ✓ ✓

Lee et al.,
2017 [76] — HMD Real time — — ✓ — — — —

Stroh 2017
[77] — CAVE Real time — — ✓ — — — —

Keler et al.,
2018 [78] Real world SS +HMD Real time — — ✓ — — — —

Sun and
Qing 2018
[49]

Real world CAVE+HMD Real time ✓ — ✓ — — — —

Nazemi
et al., 2018
[79]

— HMD Dummy — — — — — — —

Abadi et al.,
2019 [80] — SS Real time — 48 — — — — ✓

Shoman
and Imine
2020 [81]

— CAVE Real time ✓ 10 ✓ — — — ✓

Current
study 2021 Real world HMD Real time ✓ — ✓ ✓ ✓ ✓ ✓

Note: —: not included or not specified in the paper; ✓: included in the paper. Simulator environment setting: whether IVE is simulated from a real word
environment or not. Visual technology: the subject viewed a single screen (SS), multiple screens, or CAVE or head-mounted display (HMD) as a visual source.
Agency of movement: stationary, the subject remained motionless or interacted via controller; dummy, the subject was on the stationary bike but movements
were not translated into VR; real time, subject movements were translated into VR. Haptic: interaction with the environment through vibration, resistance,
etc. Kinematic: speed, steering, and direction data. Movement: body or head movements data. Eye tracking: eye tracking data included. Physiology: whether
any physiological responses are recorded (such as heart rate). Stated preference: subjective stated preference from participants.
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experiment, the cost of the initial setup of the virtual
environment is about $3500, the price of HTC VIVE Pro
Eye with controllers and base stations is approximately
$1500, and the room videos data are collected from two
web cameras ($25 each). ­e software to integrate all
virtual reality videos is OBS studio, which is open-sourced
and free for research purposes. For the IVE, the eye
tracking software is the Tobii Pro Unity SDK, which is free
for research purposes. ­e authors have developed the
documentation and the code examples on how to set up
and obtain access to the eye tracking data from the HTC
VIVE Pro EYE. Meanwhile, for on-road tests, not all types
of eye trackers are suitable for this situation (e.g., desktop-
based). More �exible eye trackers such as eye tracking
glasses (SMI or Smarteye Pro) are required, as well as the
license fee of the eye tracking glasses’ software, which can
be very expensive (such as the SMI eye tracking glass-
es + iMotion). Lastly, the real-world road test has potential
risk to researchers and participants during the experiment
as participants may be involved in unforeseen accidents/
events, especially during busy tra�c hours. However, the
risk for participants and researchers in IVE is very low.

­erefore, as long as the IVE setting is representative of
the real-world conditions, such IVE environments can
provide us with insightful information on how the users
can design and manage roadway systems to ensure the
safety and comfort of all roadway users.

­e following equipment was speci�cally chosen for the
bicyclist simulator:

(i) Wahoo Kickr Smart Trainer: power measurement
system of ± 2% for accurate, realistic resistance
feedback

(ii) Wahoo Kickr Climb: adaptive, real-time indoor
bicycle grade simulator attached to the front fork of
the bicycle that accurately raises or lowers the front
end of the bicycle based on on-road grade

(iii) Wahoo Kickr Headwind: adaptive, real-time vari-
able speed vortex fan capable of reaching wind
speeds experienced by bicyclists on the road

(iv) ANT+ : wireless protocol used for communications
between the Wahoo training equipment and
desktop computer
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20)18) 22) 23)
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Figure 1: System architecture of the ORCLSim framework. Design context: (1) road geometry information from Google Maps; (2) road
texture from real-world measurement; (3) vehicle modeling and tra�c simulation in Unity; (4) buildings modeling from 3DMax. IVE
platform: (5) Unity: 3D gaming engine; (6) SteamVR: integrating hardware with Unity. Simulator setup: (7) Wahoo Kickr Climb: physical
grade changes; (8) Wahoo Kickr headwind: headwind simulation by speed; (9) Wahoo Kickr Smart Trainer +ANT+: biking dynamics
simulation; (10) Trek Verve physical bike; (11) HTC VIVE Pro Eye: VR headset with eye tracking; (12) controllers: steering and braking of
the bike and pedestrian’s interactions with the environment. Data collection: (13) C# scripts in Unity to record (14) position, (15) cycling
performance, and (16) pedestrian’s interactions (touch, click, or press); (17) Tobii Pro Unity API collects; (18) eye tracking data; (19) OBS
studio: records room videos and VR videos (20); (21) Android smartwatch collects (22) heart rate and (23) hand acceleration data. Data
preprocessing: (24) Opencv: video and image processing; (25) OpenPose: pose data extraction from videos; (26) Python: data cleaning,
management, and analysis; (27) Amazon S3: smartwatch data on the cloud.
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(v) Physical Trek Verve bike: the main body structure of
the bicycle simulator

3.3.DataCollection. In this section, we will introduce details
about the collected data from diªerent data sources in-
cluding the data type and the frequency of data collection.
Speci�cally, we �rst discuss the data streams exported from
the Unity software, followed by the eye tracking data, and
information extracted from the video recordings and
smartwatches, as shown in Figure 1.

With the attached scripts written in C# programming
language to the Unity scenario, the world position (in
meters) and direction (unit vector) of each object in the
virtual environment can be extracted including headset,
controllers, and other virtual objects such as vehicles. ­e
scripts also collect any input from the controllers. For ex-
ample, the pulled trigger values (0 to 1) are the brake for the
bike simulator. ­e frequency of Unity is generally around
30Hz. In addition, the system timestamp is attached to the
�nal Unity output data for time synchronization.

­e eye tracking data are collected through Tobii Pro
Unity SDK. It is integrated with Unity with C# scripts. ­e
output of Tobii Pro raw data is the 3D gaze direction, gaze

origin, and pupil diameter. Preprocessing techniques are
required to relate the eye tracker’s coordinate system to the
headset’s position in a virtual 3D world.­e frequency of eye
tracking data is 120Hz. Details of the utilized eye tracking
system, sample environment, and the code to extract the
diªerent data streams have been shared online [87].

­e video recording system has three components: two
video recordings from cameras capturing the body position of
the participant and one screen recording of the participant’s
point of view in IVE.­ese videos are recorded simultaneously
in OBS studio with the same frequency (30Hz), resolution
(1080p, 1920 by 1080), and system timestamp.

Experiment participants wear two android smartwatches
(one for each wrist) that are equipped with the “SWEAR”
app for collecting longitudinal data. ­e SWEAR app rec-
ords heart rate (1Hz), hand acceleration (10Hz), audio
amplitude (noise level, 1/60Hz), and gyroscope (10Hz) [88].
Both watches are connected to a smartphone via Bluetooth;
the smartphone and computer are on the same Wi-Fi
network to make sure time is synchronized with the server
before each experiment.

VRReality
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Bicycle Moving direction
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Figure 2: Comparison between (a) the real environment street map and (b) the IVE, (c) the map for the location of the real-world
environment, and (d) vertical road geometry.
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HTC VIVE Pro Eye headset

SteamVR Base Station

SteamVR Base Station

Wahoo Kickr Headwind

ANT+

Wahoo Kickr Smart Trainer

Wahoo Kickr Climb

Camera 1

Camera 2

(a)

Controllers

HTC VIVE Pro Eye headsetSteamVR Base Station

Camera 1

Camera 2Smart Watches

(b)

Figure 3: Appearance of the simulators: (a) bicycle simulator; (b) pedestrian simulator.

Table 4: Cost comparison between the IVE and naturalistic studies.

Cost IVE Real road test
Environment building $3,500 ­ousands to millions for road reconstruction
Additional bicycle
components

$1,200 (Wahoo Kickr Climb+Wahoo Kickr
Headwind +Wahoo Kickr Smart Trainer +ANT+) Smartphone + software ($500)

Headset $1,500 (HTC VIVE Pro EYE) >$10,000 (eye tracking glasses like SMI or Smart
Eye Pro)

Cameras $50 (2 web cameras, $25 each) $700 (2 GoPros, $350 each)
Eye tracking software Free (Tobii Pro Unity SDK+ self-developed code) $1,300 per year (iMotion academic)
Video recording and
integration Free (open-sourced OBS studio) Video integration requires a lot of label work

Safety concerns Very low Potential risk to researchers and participants in the
real road environment
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3.4. Data Preprocessing. All the data collection devices and
platforms (except for the smartwatches) are connected to the
local computer, allowing them to be synchronized with the
computer’s system time. Information from each video
source (frames per second, creation date, duration, height,
and width) can be extracted from the singular video and be
split into separate videos for each source (cameras 1 and 2)
through the Opencv software. Furthermore, the body po-
sition data can be extracted from these videos using the
OpenPose software. Figures 4(a) and 4(b) show the body
position detection of the video recordings from OpenPose.
Combining the raw gaze direction from the eye tracking data
with the video information of the point-of-view videos, it is
possible to transform the 3D gaze direction into 2D videos to
visualize, what the participants are looking at in the IVE. As
shown in Figure 4(d), the green and blue dots represent the
direction, in which the left and right eyes are looking, re-
spectively. Data from the smartwatches are stored locally in
the device during the experiment and then uploaded to the

Amazon S3 cloud. After the experiment, the data can be
downloaded for further analysis.

Figure 4 shows the visualization of all the data collected
in the simulator after time synchronization.

3.5. Data Analysis. In this section, we demonstrate potential
applications of the collected data, speci�cally by discussing
the change point detection algorithm applied on the HR as
well as the gaze entropy, which is the basis of the event
detection in our study. First, we discuss how the Bayesian
change point (BCP) detection is applied to the HR data.
Similarly, for the gaze data, we discuss how gaze entropy can
be calculated and used to identify the dispersion of gaze.

Bayesian Change Point Detection. BCP detection
methods are applied to detect the abrupt changes in HR data.
Change point analysis deals with time series data, where
certain characteristics undergo occasional changes. Obser-
vations are then assumed to be independent in diªerent
blocks given the sequence of parameters [89]. Suppose, we
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Figure 4: Example of data visualization output. (a, b) Video data from two cameras with body position detection; (c) position and
controllers input data in VR; (d) �eld of view VR video recording with gaze mapping, and green/blue dots indicate left/right eye �xation; (e)
eye tracking data, includes gaze direction and pupil diameter; (f ) heart rate and hand acceleration data from the smart watch.
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have a time series of HR data X, and, we use
ρ � (U1, . . . , Un) to indicate a partition of the time series
into nonoverlapping HR regimes, where Ui � 1 means a
change point happens at position i+ 1. To calculate the
posterior distribution over partitions, we use the Markov
Chain Monte Carlo (MCMC) method. We define a Markov
Chain with the following transition rule: with probability pi,
a new change point at the location i is introduced. In each

step of the Markov Chain, at each position i, a value of Ui is
drawn from the conditional distribution of Ui given the data
X and the current partition ρ. Let b denote the number of
blocks obtained if Ui � 0, conditional on Uj, for i ≠ j. (e
transition probability p, for the conditional probability of a
change point at the position i+ 1, can be obtained from
[89, 90]:

pi

1 − pi

�
p X, Uj, j≠ i􏼐 􏼑

p X, Uj, j≠ i􏼐 􏼑

�
􏽒

c

0 p
b
(1 − p)

n− b− 1dp

􏽒
c

0 p
b−1

(1 − p)
n−bdp

􏽒
λ
0 w

b/2/ W1 + B1w( 􏼁
(n−1)/2

􏼐 􏼑dw

􏽒
λ
0 w

(b−1)/2/ W0 + B0w( 􏼁
(n−1)/2

􏼐 􏼑dw
.

(1)

Here, B0, W0 and B1, W1 are the within and between
block sums of squares obtained when Ui � 0 (with change
point at location i) and Ui � 1 (without change point at
location i), respectively. (e two tuning parameters c and λ
can be calculated with MCMC. We use bcp package in R to
implement the change point analysis [90]. A similar ap-
proach has been utilized in a previous study to identify
changes in driver’s HR data in different roadway conditions
[70]. (e BCP output is a time series data of the probability
of change points.

Gaze entropy. Gaze entropy is a comprehensive measure-
ment of visual scanning efficiency. (e concept of entropy
originates from information theory [91]. (ere are two types
of gaze entropy measures: stationary gaze entropy (SGE) and
gaze transition entropy (GTE) [92]. SGE measures overall
predictability for fixation locations, which indicates the level
of gaze dispersion during a given viewing period [93]. (e
SGE is calculated using Shannon’s equation:

Hs(x) � − 􏽘
n

i�1
pi( 􏼁log2 pi( 􏼁. (2)

Here, Hs(x) is the value of SGE for a sequence of data x

with length n, i is the index for each individual state, and pi is
the proportion of each state within x, it is assumed that
fixation is an individual output of the gaze control system
that makes spatial predictions regarding the location of
subsequent fixations [92].

GTE is conducted by applying the conditional entropy
equation to 1st order Markov transitions of fixations with the
following equation:

Hc(x) � − 􏽘
n

i�1
pi( 􏼁 􏽘

n

i�1
p(i, j)log2 p(i, j) . (3)

Here, Hc(x) is the value of GTE, pi is the stationary
distribution, same as (2), and p(i, j) is the probability of
transitioning from i to j. GTE provides an overall estimation
for the level of complexity or randomness in the pattern of

visual scanning relative to overall spatial dispersion of gaze,
where higher entropy suggests less predictability.

Specifically, to calculate the SGE and GTE, the visual
field is divided into spatial bins of discrete state spaces to
generate probability distributions. In this study, the fixation
coordinates were divided into spatial bins of 100×100 pixels,
following previous studies [94]. To get the trend of gaze
entropy, it is calculated in a rolling window of five seconds
(600 data points in raw gaze data streams).

4. Case Study and Results

In this section, we present two case studies (one for bicyclists
and one for pedestrians) from a pilot study of five partici-
pants to evaluate the proposed framework and highlight the
importance of collecting physiological, speed, and position
data from participants. (e tasks in the IVE are different for
each user type (bicyclists and pedestrians) in the case study.
(e bicyclists are asked to cycle eastbound along the cor-
ridor, as indicated in Figure 2(c). (e pedestrian’s task is to
cross the street using the crosswalk at intersection 2
whenever they feel it is safe to do so. More details about the
bicyclists’ experiment can be found in our previous study
[95]. All five participants have recruited Charlottesville
residents, who are familiar with the modeled Water Street
corridor (have experience cycling and walking along with
corridor in real life) with a mean age of 31 years old
(SD� 3.4). (ese participants have a more positive dispo-
sition to cycling compared to the general population but are
not transportation professionals. In the case study, before
the experiment, videos introducing the simulator are sent to
the participants. Immediately before the experiment, in-
structions on how to control and move within the IVE are
provided to each participant. Furthermore, the participants
are placed into a training scenario to get familiar with the
IVE before the formal experiment. (ey can stay as long as
they would like in the training scenario by walking or cycling
around the IVE until they feel comfortable starting the
formal experiments.
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Several steps have been taken in the case study to
minimize the effect of physical activity on HR in the current
study. (1) Upon the arrival of each participant, they are asked
to have a seat and rest for at least 10minutes in the lab. (en
they are asked to fill out surveys collecting their demo-
graphic information and prior VR experience, the heart rate
in this phase is identified as the resting heart rate. (2) (e
experiment is short in duration and consists of many breaks.
For the pedestrian case study, the crossing takes about
10 seconds with an average walking speed of 1.16m/s, the
whole duration (from entering VR to exit) is about
40 seconds. For the bicyclist case study, the average speed is
about 15 km/h, the pedaling time is about 60 seconds and the
whole duration (from entering VR to exit) is about
90 seconds. (ere is a 10-min break between the pedestrian
study and bicycle study. (3) For data analysis, abrupt changes
in HR are used rather than the mean HR.(us, the analyzed
HR is relative to each individual’s resting HR. It is hy-
pothesized that the HR change points may reflect partici-
pants’ perceived safety of the environment.

We first identify where abrupt changes happen in the HR
readings and then identify the potential reasons behind the
events that take place in each time frame. To achieve this, the
videos are manually annotated to identify an event or be-
havioral change among participants.(en the timestamps of
these event/behavior changes, as well as other physiological
responses, are compared to the time that we observe HR
change points for each participant. (rough this, we can
show whether the effect of HR changes is consistent across
different groups of participants.

(e other physiological variables selected in the case
study are head movement direction, the position of the
bicycle and pedestrian from Unity, gaze direction from the
eye tracker, and the gaze entropy and its BCP probability
from the gaze direction.

4.1. Bicycle Pilot Study. In this experiment, after familiar-
ization with the simulator and calibration for eye tracking
and steering in a training scenario, the participants are asked
to cycle eastbound in the simulated environment as indi-
cated in Figure 2(c).

Figure 5 shows one participant’s physiological responses
to the pilot bike experiment. Using BCP, we can detect the
moments when the underlying distribution of HR data
changes in a short period of time. Figure 5(b) shows the
overall time series of different physiological data. Figur-
es5(b)(I) shows the HR (blue) and the probability of detected
change point events (red) during the whole experiment. In
addition to the HR data, Figure 5(b)(II) shows the head
movement in horizontal direction x (black) and gaze in
horizontal direction x (green), the head movement in the x-
axis indicates the head facing the direction from straight
backward (−1) to straight forward (1). (e gaze direction x
indicates the gaze direction from left (−1) to right (1).
Figure 5(b)(III) shows the stationary gaze entropy (cyan)
and BCP probability of SGE (red), and Figure 5(b)(IV)
shows the gaze transition entropy (yellow) and BCP prob-
ability of SGE (red). Figures 5(a) and 5(c) show the

corresponding screenshots for the two HR change points
detected in Figure 5(b)(I).

(e first change point happens when the participant is
approaching the first intersection on the road that does not
have any traffic signals; at this time, the participant is also
being passed by a vehicle on the left (Figure 5(a)). Mean-
while, the other physiological signals do not show abrupt
changes except for minor peaks in GTE as shown in
Figure 5(b)(IV). (e second HR change point takes place
when the participant is approaching the third intersection,
where there is a traffic signal. While crossing the inter-
section, a looking-around behavior is also observed as
shown in (Figure 5(c)). As a result, we observe changes in
both horizontal head and gaze direction (Figure 5(b)(II)),
a larger variance in SGE, and the change points detected
from the SGE data points (Figure 5(b)(III)). Similarly, we
observe higher variance and more change points in GTE
(Figure 5(b)(IV)). Previous research suggests an increase
in SGE associated with a higher GTE may reflect the
influence of top-down interference on visual scanning,
which results in a greater dispersion of gaze [92]. In other
words, increased SGE together with GTE indicates a
higher visual or cognitive load in the experiment scenario
for this participant.

(is case study indicates that the HR and gaze changes
are sensitive to the environmental changes as well as the
participant/bicyclist behaviors. It is also important to note
that specific contextual factors (e.g., an intersection with or
without a traffic signal) can trigger different physiological
responses; therefore, it is important to collect and monitor
different physiological data when conducting naturalistic or
experimental studies of bicyclists.

To find the reason behind each event, all five of the
participants’ video recordings in the case study are manually
analyzed. Figure 6 illustrates when the HR and gaze (use
GTE as an example) change points happen for each par-
ticipant. For HR, almost all the change points take place,
when participants are approaching an intersection within
15meters, except for participant 2. When participant 2 was
passed by a vehicle in intersection 2 with a very close lateral
proximity, the HR went up immediately (no other partici-
pant in the pilot study had a car pass by them as closely). For
gaze transition entropy, the change point generally happens
earlier than the HR change point but follows a similar trend
as the HR. Although the sample size is small, some of our
observations from the case study include: (1) among the five
participants in the pilot study, there are more HR/GTE
change points prior to reaching the first intersection. As it is
the first intersection in the experiment, participants may feel
more stress than when approaching other intersections, as
they become familiar with the environment. (is implies
that in the early portions of VR experiments, participants
still need time to adjust to the IVE environment, even after a
training scenario before the actual experiment. (2) (e
change points prior to intersections 2 and 3 take place
farther from the intersections compared to the change points
detection prior to intersection 1. (is could be explained by
two possible factors: first, the road segment after intersection
1 has a 4% downhill slope as shown in Figure 2(d), and the
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participant’s �eld of view increases as they pass through
intersection 1 and enter a 4% downhill slope. Second, the
roadway environments for intersections 2 and 3 are more
complex. Intersection 2 is at the end of the downhill road
segment and there is a lane shift after intersection 2, thus
braking and right steering are needed before they enter
intersection 2. Intersection 3, as indicated before includes a
tra�c signal. Although participants are told the signal will
always be green during the experiment, their physiological
(HR and gaze entropy) data still showed a distinct response
at this intersection.

4.2. Pedestrian Pilot Study. ­e pedestrian pilot study is
conducted at intersection 2 in the same IVEs with the

pedestrian simulator, where participants can walk freely as
they would do in real life to cross a crosswalk. As explained
before, the eastbound lane has randomly generated vehicles
with diªerent gaps. At the beginning of the pilot study,
participants are asked to wait until the �rst vehicle passes
before they can cross using the crosswalk. Once the �rst car
passes, whenever they feel safe, they may cross the road.

Like the bicycle case study, we extract the physiological
data with the HR change point analysis results for one of the
participants as shown in Figure 7. ­e de�nition of the data
is the same as the bicycle case study. ­e �rst change point
happened when the pedestrian noticed the �rst approaching
vehicle, as indicated by the red circle in Figure 7(a). A larger
variance in SGE (Figure 7(b)III) and GTE (Figure 7(b) IV) is
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Figure 5: Bicyclist’s HR change point analysis over time with other physiological responses. (a) Video snapshot of HR change point event 1.
­e bicyclist is approaching the intersection. (b) Visualizations of diªerent physiological data. I: HR (blue) and HR BCP probability (red); II:
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­e bicyclist looked left behind to check if cars are approaching from behind.
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observed at the same time. An increase in SGE associated
with lower GTE is likely indicative of distraction (such as the
�rst approaching vehicle in this case). ­e second change
point happened during the crossing in the eastbound lane,
just after the participant looks at the approaching vehicle in
the lane (Figure 7(c)). During the change point event, only a
larger variance in GTE (Figure 7(b)-IV) is observed, while
SGE remains at a low level (Figure 7(b)-III). A reduction in
SGE when GTE is increasing re�ects top-down interference
whereby the viewer focuses on speci�c items within the
visual scene. In this case, the participant is looking straight to
the other side of the road after the last look at the
approaching vehicle in the lane, trying to cross the crosswalk
quickly. In addition, after the pedestrian starts crossing, the
range of horizontal head movement is smaller than before
crossing (Figure 7(b)-II). ­is indicates once they make
the decision to cross, they will not observe the

surroundings (e.g., incoming vehicles) as much as they do
before crossing.

Table 5 shows the video annotation details for the pe-
destrian experiment. A total of 7 HR change points are
identi�ed across the participants. ­ere are three main
categories of HR change points: two HR change points are
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Figure 7: Pedestrian’s HR change point analysis over time with other physiological responses. (a) Video snapshot of HR change point event
1. ­e pedestrian noticed the �rst approaching vehicle. (b) Visualizations of diªerent physiological data. I: HR (blue) and HR BCP
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Table 5: Summary of pedestrian HR change points.

Description of HR change point category Included
participants

Noticed the �rst approaching vehicle in the initial
position 1, 5

Start crossing after the �rst vehicle passed from the
initial position 3, 4

Crossing in the eastbound lane after looking at the
approaching vehicle 1, 2, 5
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detected when participants noticed the first approaching
vehicle, two HR change points are identified when partic-
ipants cross the crosswalk right after the first vehicle passes,
and three HR change points are detected, when participants
are crossing in the vehicle-approaching (eastbound) lane.
Like the bicycle pilot study, these change points correlate to
the changes in the contextual setting, such as a vehicle
approaching a crosswalk. (ese findings indicate, why it is
important to collect participants’ physiological responses
when conducting pedestrian studies. Although our pre-
liminary findings show there exists a correlation betweenHR
and gaze change points to the time that certain events take
place in the environment, analysis of a larger group of
participants is needed to verify the findings.

5. Discussion and Conclusion

In this paper, we present a system architecture (ORCLSim)
for VR simulators to capture physiological and behavioral
changes in bicyclists and pedestrians. Specifically, the aim of
this study is to determine (1) Current research gaps in
physiological behavioral research for vulnerable road users
including what metrics are needed to monitor bicyclists and
pedestrians’ behavioral changes, especially in IVE simulator
studies, (2) what devices are available and how different
hardware and software packages can be integrated into IVEs
to conduct similar studies, (3) how the multimodal data can
be processed for observing the changes in physiological
responses given different contextual settings, and (4)
showcase how the proposed framework can be implemented
by presenting two case studies for bicyclists and pedestrians.

By showcasing the case studies, we aim to demonstrate
that the multimodal data collection with low-cost integrated
or mobile sensing devices of this framework works. Both
case studies’ results are in accordance with findings from
previous literature. For example, in a 2019 study, the eye
tracking results in a real-world experiment from Italy in-
dicated that different intersection types (e.g., traffic signals,
with different merging lanes) affect cyclists’ gaze behavior as
they arrive at an intersection [63]. In another example, the
Federal Highway Administration (FHWA) recommends
using an average walking speed of 1.2m/s when designing
crosswalks [96]. In the presented pedestrian case study, the
average walking speed among the five participants is 1.16m/
s, which is aligned with FHWA’s guidelines. In addition to
objective measurements, subjective ratings about the realism
of the simulator are collected from the postexperiment
survey. All the five participants rated 4 or 5 out of 1–5 rating
scale on the question “To what extent did your experiences in
the virtual environment seem consistent with your real-
world experiences of crossing a street?” where 4 indicates
“consistent” and 5 indicates “very consistent”.

Previous studies on bicyclists’ and pedestrians’ responses
to changes in contextual settings highlight the advantages of
controlled experimentation, especially in IVEs. In this paper,
we demonstrated that it is important to track physiological
metrics to better understand vulnerable user behavior in
different settings. Specifically, we showcased the importance
of gaze tracking and heart rate data in capturing bicyclists’

and pedestrians’ behavioral responses to different events and
roadway contexts. (ese measurements may indicate the
impact of stress levels and cognitive load on the way par-
ticipants interact with the physical environment. In the case
study, our initial findings from the five participants indicate
that physiological data are sensitive to road environment
changes or real-time events, especially for the change in
heart rate and gaze behavior. In the presented framework, we
use Bayesian Change Point (BCP) detection method to
detect abrupt changes in physiological data. First, we use the
HR change point data to identify any potential events and
then use annotated video data to get a better understanding
of the causes behind each event. (e findings are further
verified by two measurements of eye tracking data: sta-
tionary gaze entropy (SGE) and gaze transition entropy
(GTE). (e dynamic changes in the eye tracking data also
support the observations from the video annotation. For the
presented bicycle case study, most change points happen
prior to the intersections, while the eye tracking change
points usually happened earlier than the HR change points.
(e increased SGE and GTE along with abrupt changes in
HR indicate where the participants feel higher levels of stress
in the environment, which are observed to be at the be-
ginning of the experiment and when participants reach the
intersection with a traffic signal. (e physiological changes
in the pedestrian case study are indicative of critical behavior
during the crossing such as observing the first approaching
vehicle or the moment before crossing. It is worth noting
that not all HR abrupt changes reflect visible physical be-
havioral changes. For instance, in the pedestrian case study,
some HR change points occurred when the pedestrian
noticed the first approaching vehicle in the initial position,
but there are no behavioral changes that are visible from the
video. (is is a reason why we need to collect physiological
data as an indicator of the users’ psychophysiological state.
Although these preliminary findings are promising, we need
to further examine whether these change points are observed
when the number of participants is increased for both case
studies.

We have open-sourced the system setup document, code
example, and sample dataset for the research community.
(e integration between the presented devices and software
platforms along with the data processing method provides
the foundation to support IVE experimental studies, where,
we can identify the impact of different roadway designs on
bicyclist and pedestrian behavioral and physiological
changes. Furthermore, this system architecture makes the
development of a VR simulator simpler and more robust
since many of the modules are flexible and scalable to
different systems and improvements. For example, the
smartwatch system can be replaced by more recent and
advanced wearable devices that can collect different data
streams; or the video recording systems can integrate more
event or activity detection through computer vision-based
techniques.

5.1. Limitations and Future Work. While useful in
addressing many of the gaps in virtual simulation research,
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IVEs have limitations. Many of the studies in Tables 2 and 3
indicate that portions of their subject pool’s data had to be
discarded due to the motion sickness participants experi-
enced while in VR.

Furthermore, the removal of risk within the IVE may
also be perceptible to participants: IVE experimentation
relies heavily on the subject’s sense of immersion and while
the environment may look, feel, and behave realistically, the
knowledge that one is in a risk-free virtual space, where
physical injury is not possible remains [59]. It is up to the
realism of the IVE to suspend a subject’s disbelief in the
environment sufficiently to overcome this knowledge, and
this effect varies from person to person.

With the proposed system architecture ORCLSim, future
IVE research can apply any physiological data collection
modules to their own IVE simulators to study the vulnerable
road users’ behaviors, perception abilities, and cognitive
states in different contextual settings. In addition, more
physiological responses may be included in the system with
off-the-shelf sensors such as electrodermal activity and
electromyography. Furthermore, other measurements of eye
tracking, such as the Jensen–Shannon divergence can be
applied to calculate the visual scanning efficiency, which has
been reported to be a better indicator than the SGE/GTE
used in this study [97]. Future IVE can be improved to
increase immersion and tackle more complex research
problems. A feature that would greatly improve the ease of
development of an IVE would be the integration of devel-
opment platforms such as Unity or Unreal Engine, and
commercially available transportation simulation software
such as Synchro and Vissim. (rough such integration,
roadway segments, objects, vehicles, vehicle behaviors, and
traffic networks could be simulated more realistically and
robustly within IVEs. Furthermore, more robust platforms
for integrating multiple users into IVEs would vastly im-
prove immersion and realism.
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