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Accurate traffic state prediction plays an important role in traffic guidance, travel planning, etc. Due to the existence of complex
spatio-temporal relationships, there are some challenges in forecasting. Firstly, in terms of spatial correlation, some models only
consider the road network structure information, and ignore the relative location relationships between nodes. Secondly, some
models ignore the different impacts of nodes in the global road network on traffic. To solve these problems, we propose a new
traffic state-forecasting model, namely, spatio-temporal attention-gated recurrent neural network (ST-AGRNN). In the
proposed model, structure-based and location-based localized spatial features are obtained simultaneously by Graph
Convolutional Networks (GCNs) and DeepWalk. The localized temporal features are obtained by gated recurrent unit (GRU).
The attention-based approach is used to obtain global spatio-temporal features. Experimental validation is performed with two
real-world public datasets, and the results show that the ST-AGRNN model outperforms the state-of-the-art methods.

1. Introduction

Traffic congestion is a common problem faced by almost all
major cities. Because of traffic congestion, a lot of manpower
and material resources are wasted every year. Accurate and
real-time traffic state prediction is the basis to solve the
problem of traffic congestion. On the one hand, people can
plan their trips in advance through traffic-state information.
On the other hand, traffic managers also conduct effective
traffic guidance and management through traffic state pre-
diction information. At the same time, traffic prediction is
a typical spatio-temporal problem, and the inherent nonlin-
earity and complexity of traffic affect the accuracy of predic-
tion. Therefore, integrated consideration of temporal and
spatial characteristics is necessary for traffic state prediction.

Taking the spatio-temporal correlation in Figure 1 as an
example, there are localized spatio-temporal correlations
and global spatio-temporal correlations. Each node will have
influence on the traffic of its neighbors because it is physi-
cally connected with its neighbors and belongs to the rela-

tionship between upstream and downstream, which is
spatial dependence. At the same time, each node will also
affect itself at the next time step, which is temporal depen-
dence. These are localized spatio-temporal correlations. In
addition, a busy intersection has influence on the traffic of
the entire region, which is the global spatio-temporal corre-
lation in the road network. Obtaining this correlation is cru-
cial to spatio-temporal data prediction.

In previous studies, various deep learning approaches
were used to model spatio-temporal correlations, including
stacked autoencoders (SAEs) [1], recurrent neural networks
(RNNs) [2], generative adversarial networks (GANs) [3],
transformer [4, 5], convolutional neural networks (CNNs)
[6], and Spatio-Temporal Graph Convolutional Networks
(STGCN) [7]. The SAEs acquire spatial and temporal corre-
lations through unsupervised learning. The RNNs extract
temporal features through the gate mechanism. The GANs
extract spatio-temporal features through generators and dis-
criminators and the transformer model spatial and temporal
dependencies through encoder–decoder architecture. The
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CNNs and GCNs obtain spatial features through convolu-
tion operation. However, these methods only capture local-
ized spatio-temporal correlations.

Recently, attention mechanisms have received increasing
attention. Because they are effective in identifying the rele-
vance of inputs in prediction, components with high rele-
vance are given greater attention. They are successfully
applied in many fields, such as natural language processing
(NLP) [8], computer vision (CV) [9, 10], and speech recog-
nition [11]. Attention-based traffic forecasting has also
developed rapidly in recent years. For example, attention
temporal graph convolutional network (A3T-GCN) [12]
uses attention mechanism to obtain global temporal and
spatial correlations. However, it ignores location-based
localized spatial information.

To obtain complex localized and global spatio-
temporal correlations, we propose a novel deep learning
architecture—spatio-temporal attention-gated recurrent
neural network (ST-AGRNN)—for traffic state prediction.
To fully exploit the localized spatio-temporal correlations,
ST-AGRNN learns structure-aware graph embedding infor-
mation through a GCN, and obtains position-aware informa-
tion through DeepWalk. To tackle temporal dependencies, a
gated recurrent unit (GRU) is used. Finally, in order to fully
exploit the global spatio-temporal correlations, the attention
mechanism is used to obtain spatio-temporal correlations
about the networks.

The main contributions of this work are as follows:

(i) we propose a new localized spatial feature extraction
method by combining DeepWalk with a GCN,
where DeepWalk obtains position-aware informa-
tion and the GCN obtains structure-aware graph
embedding information

(ii) Traffic state is a time series data. The current traffic
state will affect the traffic state at the next time step.
GRU is used to obtain localized temporal correla-
tion between traffic data

(iii) Attention mechanisms are introduced to obtain
global spatio-temporal correlations about networks.
Different nodes have different impacts on the traffic
state, and the attention mechanism can obtain the
weight of nodes from the historical traffic state, rep-

resenting the global spatio-temporal correlations of
network

(iv) Our experiments applying ST-AGRNN to traffic
state prediction show that ST-AGRNN outperforms
12 state-of-the-art methods in terms of both accu-
racy and robustness on two benchmark datasets

2. Literature Review

2.1. Traffic State Forecasting. Time series data modeling and
prediction are widely used in many fields [13, 14]. Traffic
state data is a typical time series data. There are two main
categories in traffic forecasting: statistical methods and
machine learning methods. Statistical methods include auto-
regressive integrated moving average (ARIMA), the Kalman
filter (KF), Markov chains, exponential smoothing (ES), and
Bayesian networks. In the 1970s, Ahmed and Cook [15] used
ARIMA to predict short-term traffic flow. Hamed et al. [16]
later applied a simple ARIMA model to predict traffic vol-
umes in urban arterials. Subsequently, various variants of
ARIMA have emerged [17–19]. Kalman filtering excels in
regression problems. Guo et al. [20] applied an adaptive
Kalman filtering model to predict short-term traffic flow.
Hinsbergen et al. [21] used a localized extended Kalman
filter (L-EKF) to estimate traffic states. In addition, traffic
prediction methods based on Markov chains, exponential
smoothing (ES), and Bayesian networks also perform well.
For example, Qi et al. [22] proposed a hidden Markov model
(HMM) to achieve short-term freeway traffic prediction dur-
ing peak periods. Chan et al. [23] employed the hybrid expo-
nential smoothing method and the Levenberg–Marquardt
(LM) algorithm for short-term traffic flow forecasting. Wang
et al. [24] used an improved Bayesian combination method
(BCM) for short-term traffic flow prediction.

Statistical methods have some disadvantages, such as the
inability to deal with nonlinear relationships between data.
Machine learning methods, on the other hand, are more
flexible. Machine learning methods are mainly divided into
classical machine learning and deep learning.

Commonly used classical machine learning approaches
include k-nearest neighbors (KNN), support-vector machine
(SVM), random forest (RF), and decision tree (DT)
methods. Cai et al. [25] proposed an improved KNN model
to achieve short-term traffic multistep forecasting. Xu et al.
[26] used kernel k-nearest neighbors (kernel-KNN) to
predict road traffic states in time series. Cong et al. [27] pre-
sented a traffic flow prediction model based on the least
squares support-vector machine, and automatically deter-
mined the least squares support-vector machine model with
two parameters at the appropriate value by FOA. Xu et al.
[28] used genetic programming (GP) and random forest
(RF) techniques to achieve real-time crash prediction on
freeways. Crosby et al. [29] proposed a spatially intensive
decision tree for the prediction of traffic flow across the
entire UK road network. Although classical machine learn-
ing methods are effective in identifying nonlinear relation-
ships in traffic states, they still have many drawbacks, e.g.,
KNN models have low prediction accuracy for rare
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Figure 1: The influence of nodes in spatio-temporal correlations
networks. The solid blue lines represent node spatio correlations.
The red arrow represents the node temporal correlations. The
green dash lines represent the global spatio-temporal correlations.
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categories and require high computational complexity when
there are many features. It is difficult to choose a suitable
kernel function by applying the SVM model. The random
forests do not perform very well on high-dimensional sparse
data. In addition, decision trees are prone to overfitting.

In order to solve the above problems, deep learning has
been developed rapidly in recent years. The key to traffic
prediction is to learn the temporal dependence and spatial
dependence, where the methods to learn the temporal
dependence are mainly recurrent neural networks (RNNs)
and their variants long short-term memory (LSTM) and
gated recurrent units (GRUs). Nejadettehad et al. [30] used
three kinds of recurrent neural networks to predict short-
term traffic flow. Van et al. [31] used recurrent neural net-
works to predict freeway travel time. Tian et al. [32] took
advantage of LSTM to dynamically determine the optimal
time lags to predict short-term traffic flow. Fu et al. [33] used
LSTM and GRU methods to predict short-term traffic flow.
These models consider the temporal dependence but ignore
the spatial dependence in the road network. Therefore, they
cannot accurately predict changes in the traffic state. Obtain-
ing the temporal and spatial dependence is a prerequisite for
accurate traffic prediction. There are also many models for
the learning of spatial features. For example, Lv et al. [34]
proposed a stacked autoencoder model to inherently learn
the spatial and temporal correlations for traffic flow predic-
tion. Yuan et al. [35] proposed a novel variable-wise
weighted stacked autoencoder (VW-SAE) for hierarchical,
layer-by-layer output-related feature representation. Ma
et al. [36] proposed a convolutional neural network
(CNN)-based model to learn traffic as images and predict
large-scale, network-wide traffic speed. Wu et al. [37] pro-
posed a model called CLTFP, which combines CNN and
LSTM, to forecast future traffic flow. Jo et al. [38] adopted
a convolutional neural network (CNN) to deal with map
images representing traffic states and the model adopts
images for both the input and the output of a CNN model
to predict traffic speeds.

Although the above methods can handle spatial depen-
dencies in traffic, CNNs are more suitable for Euclidean spa-
tial structures such as pictures, and grids. Meanwhile, traffic
road networks are complex networks, and the neighboring
nodes are not fixed. Thus, the spatial features of the road
network cannot be fully obtained by CNNs. In recent years,
graph-based convolution operations have developed rapidly
[39], and have become suitable for learning the structural
features of graph types. He et al. [40] used LDA and GCN
to tackle road link speed prediction. Li et al. [41] proposed
a DCRNN model for obtaining spatio-temporal dependence
in traffic flow forecasting; the model uses diffusion convolu-
tion to learn spatial dependence and a GRU to learn
temporal dependence. Wu et al. [42] learned an adaptive
dependency matrix via node embedding to obtain spatial
dependency and temporal dependency through stacked
dilated 1D convolution. Huang et al. [43] proposed a new
graph attention network, cosAtt, to obtain spatial features
through cosAtt and GCN and temporal features through a
GLU. Roy et al. [44] consider important daily patterns and
present-day patterns from traffic data in addition to spatio-

temporal characteristics to improve the accuracy of
predictions. However, these methods only consider the spa-
tial features based on structure-aware graph embedding
information, without considering the location information,
so they cannot effectively obtain the spatial features.

2.2. Attention Mechanism. The attention mechanism has
been a hot topic of neural network research in recent years,
and it has been remarkable in neural machine translation,
image captioning, time series prediction etc. The attention
mechanism originates from the study of human vision,
which determines which part of the input needs to be
attended to and allocates processing resources to the impor-
tant parts. Bahdanau et al. [45] proposed the use of an atten-
tion mechanism in the decoder to decide which part of the
input sentence should be attended to. Xu et al. [46] intro-
duced the application of soft and hard attention mechanisms
to image captioning. Li et al. [47] proposed convolutional
self-attention further improves Transformer’ performance
to achieve time series forecasting. Daiya et al. [48] proposed
a multimodal deep learning architecture for stock movement
prediction. Zhou et al. [49] used ProbSparse self-attention
mechanism and distilling operation to handle quadratic time
complexity and memory usage. In the area of traffic state
prediction, prediction methods based on attention mecha-
nisms are also developing rapidly. Park et al. [50] proposed
the use of temporal attention, spatial attention and spatial
sentinel vectors to obtain temporal and spatial dependencies.
Wang et al. [51] proposed a novel spatial temporal graph
neural network model for traffic flow prediction, and a
learnable positional attention mechanism is applied in the
model to aggregate information from adjacent roads. Guo
et al. [52] proposed a novel attention-based spatio-
temporal graph convolutional network (ASTGCN) to model
recent, daily, and weekly dependencies.

Inspired by the above study, considering traffic location
information and spatio-temporal characteristics, we learned
both location- and structure-based information to obtain
localized spatial features, learned localized temporal features
through a GRU and, finally, considered the global spatio-
temporal features of traffic networks through the attention
mechanism.

3. Methodology

3.1. Data Processing. Given a speed sequence of data T0, T1,
T2,⋯, Tn with a length of n, the time interval is 5 minutes.
To predict the future 15 minutes of data, for example, the
input sample construction process of the model is shown
in Figure 2. The input data of sample 1 is fT0, T1, T2,⋯,
T11g, and the label data is fT12, T13, T14g. The input data
of sample 2 is fT1, T2, T3,⋯, T12g, and the label data is
fT13, T14, T15g. And so on, to obtain the entire input
sample matrix. If predicting the next 30 minutes of data,
the method is similar, i.e., the input data of sample 1 is
unchanged, the label data is fT12, T13, T14, T15, T16, T17g,
and the sample matrix is obtained recursively. The longer
the prediction time, the more the label is increase.
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3.2. Traffic State Prediction Based on ST-AGRNN. The struc-
ture of the ST-AGRNN model is shown in Figure 3. In order
to fully capture the localized spatial dependencies, we pro-
pose a new spatial feature extraction method by combining
DeepWalk with a GCN, where DeepWalk obtains position-
aware information and the GCN obtains structure-aware
graph embedding information. The localized temporal
dependencies are captured using the gated recurrent unit
network, and the road network global spatio-temporal
dependencies are captured using the attention mechanism.
The specific details of each part of the model are presented
in the next subsections.

3.2.1. Localized Spatial Dependency. Consider the urban
road network as an undirected graph G = ðV , EÞ, where V
is the set of vertices in the graph and E is the set of edges.
Denote the adjacency matrix of the graph by W. D =
diag ðd1,⋯, dnÞ denotes the degree matrix of the graph,
where di =∑N

j=1Wij denotes the number of adjacencies of

each vertex. Moreover, the Laplace matrix of the graph is
expressed as L = IN −D−1/2AD−1/2 =UΛUT (where U is an
orthogonal matrix composed of eigenvectors), and the Fourier
transform and inverse transform of the graph can be expressed
as x̂ =UTx and x =Ux̂, respectively. A two-layer graph convo-
lutional neural network can be represented as follows:

Z = f X, Að Þ = sof t max Â Re LU ÂXW 0ð Þ
� �

W 1ð Þ
� �

, ð1Þ

where X denotes the feature of the node, while A denotes the
adjacency matrix of the graph. Calculated in the preprocessing

step Â = ~D
−1/2~A~D

−1/2
, where ~A = A + IN denotes the adjacency

matrix with self-connections, fDi i =∑jAij, W
ð0Þ is the weight

of the input layer to the hidden layer, whileWð1Þ is the weight
of the hidden layer to the output layer.

The GCN aggregates information about neighboring
nodes via convolution, which is a structure-based graph

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T13 T14T12

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16

Tn…Traffic data series:

Sample 1:

Sample 2:

Sample 3:

Figure 2: Sample construction.
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Figure 3: The architecture of the ST-AGRNN.
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embedding algorithm. The obtained embedding representa-
tion cannot retain the position relationship between nodes,
which is a very important relationship between nodes in
the traffic network. Deepwalk’s objective function forces
nodes that are close in the shortest path to be close in the
embedding space representation [53]. In order to fully
exploit the spatial features of the road network, we introduce
the DeepWalk algorithm to learn the position embedding
representation between nodes.

The graph embedding algorithm based on the random
walk is also close in the embedding space for nodes that

are close in the shortest path. This allows the resulting
embedding space to also preserve the relative positional rela-
tionships. These relations are an important complement to
the structure-based embedding space, and are necessary for
spatial features in traffic.

The random walk with vt as the vertex is represented as
fW1

vt
,W2

vt
,⋯,Wk

vt
g, where Wk

vt
denotes the k th node in the

path with vt as the root. For all of the nodes in the graph, each
node has another similar path. We then obtain a sequence
matrixW. The corresponding graph embedding representation
containing the location information is then obtained by the

Input: The training epoch N ; the historical traffic state xt ; the traffic graph G = ðV , EÞ; the window size of historical traffic state p; the
predicted length of traffic state q;
Output: Learned ST-AGRNN model
1: Initialization parameter θ;
2: Data processing;
3: For ∀i ∈N do
4: Select real historical data xt−p,⋯, xt ;
5: Select real future data xt+1,⋯, xt+q;
6: Input real historical data xt−p,⋯, xt and the traffic graph G = ðV , EÞ into GCN and GRU to get hi;
7: Input hi into attention to get ci;
8: Use DeepWalk on G and get the embedding result ~s;
9: Concatenate ci and ~s,o

i
t = ci ⊕~s;

10: Optimize θ by minimizing the loss function;
11: End for

Algorithm 1: Training of ST-AGRNN.

Table 1: Traffic speed prediction performance under different benchmark methods in the PeMSD4 and PeMSD8 datasets (bold is the best;
underline is the second best.).

Model
PeMSD4 (MAE/RMSE/MAPE(%))

15min 30min 60min

HA 2.54/4.96/5.56 2.54/4.96/5.56 2.54/4.96/5.56

ARIMA(2003) 2.51/5.72/5.32 2.75/6.34/5.69 3.21/7.36/6.56

DCRNN(2018) 1.35/2.94/2.68 1.77/4.06/3.71 2.26/5.28/5.10

STGCN(2018) 1.47/3.01/2.92 1.93/4.21/3.98 2.55/5.65/5.39

ASTGCN(2019) 2.12/3.96/4.16 2.42/4.59/4.80 2.73/5.21/5.46

GWN(2019) 1.30/2.68/2.67 1.70/3.82/3.73 2.03/4.65/4.60

LSGCN(2020) 1.45/2.93/2.90 1.82/3.92/3.84 2.22/4.83/4.85

USTGCN(2021) 1.40/2.69/2.81/ 1.64/3.19/3.23 2.03/4.25/4.32

ST-AGRNN 1.19/2.36/2.17 1.45/2.98/2.69 1.76/3.63/3.24

Model
PeMSD8 (MAE/RMSE/MAPE(%))

15min 30min 60min

HA 1.98/4.11/3.94 1.98/4.11/3.94 1.98/4.11/3.94

ARIMA(2003) 1.90/4.87/5.11 2.12/5.24/5.21 2.79/6.22/5.62

DCRNN(2018) 1.17/2.59/2.32 1.49/3.56/3.21 1.87/4.50/4.28

STGCN(2018) 1.19/2.62/2.34 1.59/3.61/3.24 2.25/4.68/4.54

ASTGCN(2019) 1.49/3.18/3.16 1.67/3.69/3.59 1.89/4.13/4.22

LSGCN(2020) 1.16/2.45/2.24 1.46/3.28/3.02 1.81/4.11/3.89

USTGCN(2021) 1.14/2.15/2.07 1.25/2.58/2.35 1.70/3.27/3.22

ST-AGRNN 1.015/2.07/1.82 1.24/2.63/2.21 1.53/3.33/2.71
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update procedure—the skip-gram algorithm. The embedding
representation is denoted as s, and then the final result is
obtained by the fully connected layer.

~s = f W ⋅ s + bð Þ, ð2Þ

where~s denotes the graph embedding representation, whileW
and b are the learnable weights and biases, respectively.

3.2.2. Localized Temporal Feature. Temporal dependence is
another major problem in traffic prediction. Recurrent neu-
ral network (RNN) models are very effective for time-series
data processing, but they suffer from gradient disappearance
and gradient explosion. GRUs and LSTM are variants of
RNN that can effectively overcome these problems.

GRU is used to handle temporal dependence. st is the
output of GCN at time t, xt is the traffic state at the present
moment, and rt is the reset gate that determines whether the
previous moment information is retained or not—if it is 1,
then the message is carried to the next moment; if it is 0,
then the message is ignored. ht−1 is the hidden state at the
previous moment. zt is the update gate, which is a value
between 0 and 1 that determines how much information is

remembered from the previous moment—if it is 1, then
more information is remembered; if it is 0, then more is

forgotten. eht is the current memory content, and ht is the
output of the current moment.

st = GCN xtð Þ,
rt = σ Wr ⋅ ht−1, st ⋅ xt½ � + brð Þ,
zt = σ Wz ⋅ ht−1, st ⋅ xt½ � + bzð Þ,
eht = tanh Wh ⋅ rt ⊙ ht−1, st ⋅ xt½ � + bhð Þ,
ht = 1 − ztð Þ ⊙ ht−1 + zt ⊙ eht :

ð3Þ

3.2.3. Global Spatio-Temporal Correlations. Critical intersec-
tions in cities often have a large impact on regional traffic,
and congestion at critical intersections is likely to evolve into
congestion in the associated areas. In order to strengthen the
modeling ability of traffic networks, this paper obtains global
spatio-temporal correlations through the attention mecha-
nism. All of the hidden states of the GRU network are used
as the input of the attention network, and then the weights
of each hidden state of the GRU are calculated to obtain

Table 2: Traffic flow prediction performance under different benchmark methods in the PeMSD4 and PeMSD8 datasets (bold is the best;
underline is the second best.).

Model
PeMSD4

MAE RMSE MAPE (%)

HA 38.03 59.24 27.88

ARIMA(2003) 33.73 48.80 24.18

STGCN(2018) 21.16 34.89 13.83

DCRNN(2018) 21.22 33.44 14.17

ASTGCN(r)(2019) 22.93 35.22 16.56

GWN(2019) 24.89 39.66 17.29

LSGCN(2020) 21.53 33.86 13.18

STSGCN(2020) 21.19 33.65 13.90

STFGNN(2021) 20.48 32.51 16.77

Z-GCNETs(2021) 19.50 31.61 12.78

STG-NCDE(2022) 19.21 31.09 12.76

ST-AGRNN(ours) 18.97 30.003 12.81

Model
PeMSD8

MAE RMSE MAPE (%)

HA 34.86 59.24 27.88

ARIMA(2003) 31.09 44.32 22.73

STGCN(2018) 17.50 27.09 11.29

DCRNN(2018) 16.82 26.36 10.92

ASTGCN(r) (2019) 18.25 28.06 11.64

GWN(2019) 18.28 30.05 12.15

LSGCN(2020) 17.73 26.76 11.20

STSGCN(2020) 17.13 26.80 10.96

STFGNN(2021) 16.94 26.25 10.60

Z-GCNETs(2021) 15.75 25.11 10.01

STG-NCDE(2022) 15.45 24.81 9.92

ST-AGRNN(ours) 14.95 23.15 9.21
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the traffic information changes in the road network at each
moment. The attention network is calculated as follows:

ei =W 1ð Þ tanh W 0ð Þhi + b 0ð Þ
� �� �

+ b 1ð Þ,

ai =
exp eið Þ

∑n
k=1exp ekð Þ ,

ci = 〠
n

i=1
ai ∗ hi,

ð4Þ

where ei is the attention coefficient, hi is the GRU hidden
state, Wð0Þ and Wð1Þ are the trainable weight parameters,
bð0Þ and bð1Þ are the trainable bias values, ai is the normalized
attention coefficient, and ci is the attention weight.

3.3. Prediction Component. We predict future changes in
traffic state based on historical traffic states. In the prediction
component, we concatenate the attention mechanism and
the location-based graph embedding output as follows:

oit = ci ⊕~s: ð5Þ

The concatenation result is used as the input of the fully
connected layer, and the final traffic state is obtained by the
sigmoid activation function. It is expressed as yit+T, where T
is the predicted time step, in the following form:

yit+T = sigmoid Wso
i
t + bs

À Á
, ð6Þ

where Ws and bs are the learnable weights and biases,
respectively.

The training overview of the model is shown in Algo-
rithm 1. We used Adam to optimize the model. We used
TensorFlow to implement the proposed model.

4. Experiments

4.1. Experimental Settings. The software and hardware envi-
ronments for the experiments were configured as follows:

PYTHON 3.6.2, NUMPY 1.16.0, TENSORFLOW 1.14.0,
and Memory: 64GB.

For this paper, we used speed and traffic flow to
represent traffic states, where 80% of the data were used as
the training set and 20% as the test set. In the experiments,
the speed was predicted for 15, 30, and 60 minutes, and
the flow prediction was predicted from 5 to 60 minutes with
12 time windows.

We use the root mean square error (RMSE), mean
absolute error (MAE), and mean absolute percentage errors
(MAPE) to evaluate the models.

4.2. Dataset Description. In the experiment, we used two
real-world traffic datasets: PeMSD4, and PeMSD8 [43].

PeMSD4 was collected from the Caltrans Performance
Measurement System (PeMS) and the traffic data in the
San Francisco Bay Area, with 307 sensors on 29 roads. The
dataset spanned from January to February 2018.

PeMSD8 refers to the traffic data in San Bernardino from
July to August 2016, with 170 detectors on 8 roads.

4.3. Baselines. In this paper, the traffic state includes traffic
speed and flow. For the traffic speed, we used the proposed
model to predict 15, 30, and 60minutes. The compared baseline
models contain both traditional HA and ARIMA, along with
neural network models such as STGCN [7], DCRNN [41],
ASTGCN [52], GWN [42], LSGCN [43], and USTGCN [44].

In traffic flow forecasting, all models have a prediction
window from 1 to 12, i.e., a prediction time from 5 minutes
to 60 minutes, in 5-minute intervals. The baseline models
compared included both traditional and neural network
models, for a total of 11.

The details of the baseline model are as follows:

(1) HA: the average traffic information of the previous
period is used as the forecast value

(2) ARIMA: autoregressive integrated moving average

(3) STGCN: spatio-temporal graph convolutional net-
work, which consists of several spatio-temporal
convolutional blocks
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Figure 4: Traffic flow forecast visualization in PeMSD4.
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Figure 5: Continued.
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(4) DCRNN: diffusion convolutional recurrent neural
network, which obtains spatial dependencies
through bidirectional random walks and temporal
dependencies through an encoder–decoder struc-
ture with scheduled sampling

(5) ASTGCN(r): three independent components with
the same structure are used to obtain the recent,
daily, and weekly dependencies in the traffic data.
The spatio-temporal attention mechanism and
spatio-temporal convolution are used to obtain
the spatio-temporal dependencies within the com-
ponents. For the sake of experimental fairness, only
the recent components are used

(6) GWN: a new adaptive dependency matrix is
learned by node embedding to capture the hidden
spatial dependencies in the data and obtain tempo-
ral dependence via a stacked dilated 1D convolu-
tional component

(7) LSGCN: the model uses spatial gated block and
gated linear units (GLU) convolution to capture
spatio-temporal features

(8) USTGCN: the model obtains complex spatio-
temporal correlations through the proposed unified
spatio-temporal convolution strategy

(9) STSGCN [54]: spatio-temporal synchronous graph
convolutional network, which uses a spatio-
temporal synchronous graph convolutional module
to capture the complex localized spatio-temporal
correlations and deploys multiple modules to
capture the heterogeneities in localized spatio-
temporal network series

(10) STFGNN [55]: spatio-temporal fusion graph neural
network, which uses spatio-temporal fusion graph
neural modules and a gated CNN module to
capture the spatio-temporal correlations

(11) Z-GCNETs [56]: Z-GCNETs introduce new GCNs
with a time-aware zigzag topological layer

(12) STG-NCDE [57]: spatio-temporal graph neural
controlled differential equation, which extends the
concept and designs two NCDEs to capture the
spatio-temporal correlations

4.4. Experimental Results. The traffic state prediction results
for all baseline models and our model are shown in Tables 1
and 2. In Table 1, we can see that our proposed model per-
forms better overall on the datasets PeMSD4 and PeMSD8
compared to the other baseline models for 15-, 30-, and
60-minute traffic speed predictions. Taking the 15-minute
speed forecast as an example, on the PeMSD4 dataset, our
model is better than HA, ARIMA, DCRNN, STGCN,
ASTGCN, GWN, LSGCN, and USTGCN with 53.14, 52.58,
11.85, 19.04, 43.86, 8.46, 17.93, and 15% lower MAE, with
52.41, 58.74,19.72, 21.59, 40.40, 11.94, 19.45, and 12.26%
lower RMSE, and with 60.97, 59.21, 19.02, 25.68, 47.83,
18.72, 25.17, and 22.77% lower MAPE, respectively. On the
PeMSD8 dataset, our model is better than HA, ARIMA,
DCRNN, STGCN, ASTGCN, LSGCN, and USTGCN with
48.73, 46.57, 13.24, 14.7, 31.87, 12.5, and 10.96% lower
MAE, with 49.63, 57.49, 20.07, 20.99, 34.9, 15.51, and
3.72% lower RMSE, and with 53.8, 64.38, 21.55, 22.22,
42.4, 18.75, and 12.07% lower MAPE, respectively. From
the results, it is clear that ST-AGRNN performs well in both
short- and long-term predictions. In particular, on the
PeMSD4 dataset, the ST-AGRNN model is optimal on all
three-evaluation metrics. Except for the RMSE metric, which
is the second best on the PeMSD8 dataset, the other metrics
are also optimal for long- and short-term prediction.

HA and ARIMA are the worst performers because they
do not capture spatio-temporal correlations effectively. Since
STGCN has cumulative errors, it does not perform as well as
DCRNN. DCRNN can effectively obtain complex spatial
correlations through diffusion convolution. ASTGCN con-
siders the periodicity of prediction, so it is better than
STGCN for long-term prediction.
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Figure 5: Traffic flow forecast visualization in PeMSD8.
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The spatial gate block of LSGCN integrates the proposed
cosAtt and GCN, and in combination with a GLU can effec-
tively extract complex spatio-temporal correlations. Mean-
while, the USTGCN model considers the important
historical and present-day patterns in traffic data, in addition
to the unified spatio-temporal convolution strategy. There-
fore, its prediction performance is the second best.

Table 2 shows the results of traffic flow forecasting per-
formed from 5 minutes all the way to 60 minutes, with a
prediction window from 1 to 12, and all of the results are
averaged. Compared with all of the baseline models, our
proposed model performs the best in traffic flow prediction.
From table 2, on the PeMSD4 dataset, our model is better
than HA, ARIMA, STGCN, DCRNN, ASTGCN(r), GWN,
LSGCN, STSGCN, STFGNN, Z-GCNETs, and STG-NCDE
with 50.11, 43.75, 10.34, 10.60, 17.26, 23.78, 11.89, 10.47,
7.37, 2.71, and 1.24% lower MAE, with 49.35, 38.51, 14,
10.27, 14.81, 24.34, 11.39, 10.83, 7.71, 5.08, and 3.49% lower
RMSE, and with 54.05, 47.02, 7.37, 9.59, 22.64, 25.91, 2.8,
7.84, 23.61, -0.23, and -0.39% lower MAPE, respectively.
On the PeMSD8 dataset, our model is better with 57.11,
51.91, 14.57, 11.11, 18.08, 18.21, 15.67, 12.72, 11.74, 5.07,
and 3.23% lower MAE, with 60.92, 47.76, 14.54, 12.17,
17.49, 22.96, 13.49, 13.61, 11.8, 7.8, and 6.69% lower RMSE,
and with 66.96, 59.48, 18.42, 15.65, 20.87, 24.19, 17.76,
15.96, 13.11, 7.99, and 7.15% lower MAPE, respectively.

The STSGCN model considers both localized spatio-
temporal correlations and the heterogeneities in spatial-
temporal data. Therefore, its performance is better than
STGCN, DCRNN, ASTGCN(R), GWN, and LSGCN. The
SFTGNN obtains hidden spatio-temporal correlations by
fusing spatial and temporal graph operations and integrating
the gate convolution module at the same time. Z-GCNETs
proposed new GCNs with a time-aware Zigzag topological
layer to obtain spatio-temporal correlation. The STG-
NCDE model uses two neural controlled differential equa-
tions (NCDEs) to obtain the temporal and spatial correla-
tions. Since The STSGCN model only extracted localized
spatio-temporal correlations, its performance was inferior
to that of SFTGNN, Z-GCNets, and STG-NCDE. The ST-
AGRNN model obtains both localized and global spatio-
temporal correlation and combines location-based graph

embedding representation to obtain localized spatial correla-
tion. So, the overall performance on both datasets is better
than all baseline models.

4.5. Case Study. We selected two nodes with heavy traffic
from the two datasets to show the ground-truth and pre-
dicted curves: nodes 111 and 261 in PeMDS4 and nodes 9
and 112 in PeMSD8, as shown in Figures 4 and 5, respec-
tively. From the figures, it can be seen that the model fits this
trend well in places with huge traffic flows between 7 : 00 and
9 : 00 a.m. and between 3 : 00 and 6 : 40 p.m. Figure 6 shows
the change in the nodes’ 15-minute speed. From the figure,
the traffic speed also drops sharply at the peak time of corre-
sponding traffic flow.

4.6. Error for each Length of Forecasting. Figure 7 shows the
trend of the prediction error of the model in terms of predic-
tion speed on two datasets. From the figure, it can be seen
that although the error increases for all of the models as
the prediction length increases, the error of our model is
smaller than baselines and the increasing trend of our model
is the flattest. This proves that our model is more stable than
the baseline models.

4.7. Ablation Experiments. In the traffic network, the road
sections at different locations play different roles in traffic.
Road sections in central areas have a greater impact on the
surrounding traffic, while remote road sections play a small
role in influencing traffic. These are the global spatio-
temporal correlations. To verify the importance of global
spatio-temporal correlations, we conduct ablation experi-
ments on speed prediction.

From the comparison of the traffic speed prediction
results in Table 3, it can be seen that the prediction error
of the ST-AGRNN model with the attention mechanism is
smaller overall than the error of ST-DWGRU [58] without
the attention mechanism. As an example of the 60-minute
prediction results, the MAE of ST-AGRNN on the PeMSD4
dataset is 7.3% smaller than that of ST-DWGRU, the RMSE
is 9.4% smaller, and the MAPE is 8.2% smaller. The MAE of
ST-AGRNN on the PeMSD8 dataset is 2.5% smaller than
that of ST-DWGRU, the RMSE is 4.5% smaller, and the
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Figure 6: Speed forecast visualization in PeMSD4 and PeMSD8.
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MAPE is 2.5% smaller. From the results, it is clear that the
ST-AGRNN model is more effective in obtaining complex
spatio-temporal information.

5. Conclusions

A new traffic state prediction model is proposed, in which
localized spatial correlation is obtained by a GCN and Deep-
Walk, localized temporal correlation is obtained by a GRU,
and the global spatio-temporal correlations is obtained by
the attention mechanism. Finally, the proposed model ST-
AGRNN was tested with two publicly available datasets,
namely, PeMSD4 and PeMSD8. In terms of traffic speed pre-
diction, MAE improved by 15-53.14% and 10.96-48.73%,
RMSE improved by 12.26-52.41% and 3.72-49.63%, and
MAPE improved by 22.77-60.97% and 12.07-53.8% on the
PEMSD4 and PEMSD8 datasets, respectively, compared to

the baseline models. Meanwhile, the ST-AGRNN model also
showed different degrees of improvement in traffic flow
prediction compared with the baseline models. From the
results, it is clear that ST-AGRNN outperforms all of the
baseline models, and is more stable.

Data Availability

Previously reported traffic data that were used to support the
study are available. These prior studies (and datasets) are
cited at relevant places within the text as references [43].
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Table 3: Comparison of traffic speed prediction results of the ST-AGRRG and ST-DWGRU models (bold is the best).

T Metric
PeMSD4 PeMSD8

ST-AGRNN ST-DWGRU ST-AGRNN ST-DWGRU

15min

MAE 1.19 1.20 1.015 1.005

RMSE 2.36 2.40 2.07 2.08

MAPE 2.17 2.21 1.82 1.81

30min

MAE 1.45 1.48 1.24 1.25

RMSE 2.98 3.12 2.63 2.70

MAPE 2.69 2.75 2.21 2.24

60min

MAE 1.76 1.90 1.53 1.57

RMSE 3.63 4.01 3.33 3.49

MAPE 3.24 3.53 2.71 2.78
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