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Placements of Road Side Units (RSUs) are an important issue of vehicular networks in urban areas. %e merged cost of procurement,
installation, andmaintenance of intelligent RSUs is high, and therefore, cost-effective deployment strategies are necessary. In this article,
we propose a scheme that optimally deploys intelligent roadside units using a travel matrix scheme based on the classical delta strategy
where urban vehicles are involved in RSUs communication in the course of their travel times. Four (4) vehicular communicationmodes
are studied, namely, (a) travel matrix based on delta RSUs deployment communication, (b) road intersection-based RSUs deployment
communication, (c) road segmentation, and (d) free vehicle-to-vehicle communication. A baseline algorithm is suggested to determine
the optimal locations of RSUs in terms of their geographical positions. A travel matrix technique is proposed to trace vehicles’ routeways
and travel times in some points of interest (POI). Our intention is to seek an approach that reduces the required number of RSUs and
ensures greater network performance effectiveness in terms of packets delivery ratio, throughput, message delay, and jitter; from our
study, travel matrix delta-based placement of RSUs becomes the best in our case study scenario.%e simulation results indicate that the
travelmatrix deployment is a suitable deployment scheme in the case study area since it can reduce the number of RSUswhile enhancing
the vehicular communication abilities under different vehicle density scenarios.

1. Introduction

Vehicular ad hoc network (VANET) is a subclass of mobile
ad hoc networks (MANET) that consists of dynamic and/or
stationary vehicles connected by the wireless network
through specialized protocols like IEEE 802.11p based on
Dedicated Short-Range Communication (DSRC). With the
development of the smart city and the Internet of %ings
(IoT), VANET and Intelligent Transport Systems (ITS) at
large have gained a lot of popularity with IoT and its
frameworks [1]. IoT is a materialization of the connected
world where physical entities are equipped with sensing,
processing, and communication capabilities. %ese entities
interact with each other following user-defined rules. IoT
network has seamlessly introduced several opportunities
that initiate value-added services, which presently accelerate
the development of smart city [2]. With the advancement of

smart city and smart infrastructures, vehicles have contin-
ued to gain a paramount consideration for IoT [3] and the
services they render to the smart city are very clear [4].
Despite a multitude of components that constitute an in-
tegral smart city ecosystem, ITS plays a vital role beyond
vehicles communicating to the infrastructures and has
demonstrated prominent improvement to the lives of urban
commuters, mainly in the aspects of city traffic control [5].

From the existing literature, we find that the combined
costs of procurement, deployment, and maintenance of
RSUs are prohibitively high. For instance, according to the
study in the U.S. Department of Transportation in 2018, a
single Dedicated Short-Range Communication (DSRC) RSU
needs USD 1300, USD 850, and USD 2000 for procurement,
deployment, and configuration, respectively [6]. %erefore,
intelligent RSU deployment strategies are very crucial to
minimize the number of RSUs and still satisfy the desired
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network performance. RSU deployment is usually density-
based, where RSUs are strategically positioned considering
the number of vehicles in a particular region of interest [7].
In a city, at any given time, the vehicles are not evenly
distributed. For instance, traffic densities in downtown,
commercial, and industrial zones are much higher than
those in the outskirts, and an inverse proportion deployment
strategy is preferred in these circumstances [8]. In addition, a
coalition of various placement schemes may be opted to
leverage the trade-offs between deployment cost and en-
hanced network performance.

%e authors of [9, 10] proposed a genetic algorithm for
RSUs deployment using a method named delta deployment.
%eir goal is to meet a deployment that allows a specific
number of vehicles to have access to RSUs during a certain
percentage of their trip time. %eir work assumes that not
every time all the vehicles need to be connected to the RSUs;
instead, some transport agencies may require a certain
number of vehicles to connect to the RSUs for a certain
percentage of their trip time. Our work is closer to theirs in a
way that we employ a delta-deployment strategy tominimize
the deployment cost of roadside units in urban scenarios.
Even though RSUs deployment optimization has been ex-
tensively studied in various ways, such as formulating de-
ployments as linear integer programs optimization problems
and RSU-vehicle contact duration problems, the delta-de-
ployment strategy still needs improvement and investigative
contributions. In [11], a graph-based roadside unit place-
ment model is suggested, all the urban and VANETs limi-
tations are employed for a weighted graphic representation
to solve the Steiner tree formulation problem. Whereas
different dimensional deployment problems of hybrid
VANET-sensor networks are presented in [12], the purpose
of the study is to reduce the total distance and the total
number of hops from the sensing nodes to the nearest
roadside. As far as our knowledge goes, research works have
been conducted for joint optimization of the placement of
RSUs considering cost minimization and Quality of Service.
However, the body of knowledge regarding RSUs deploy-
ment strategy based on the delta deployment stills needs
contribution. Our study compares delta deployments using
typical urban traffic flows, RSUs deployment at road in-
tersections, and free intervehicular communications. %e
best solution could be adopted for the physical placement of
the RSUs for different traffic scenarios in an urban area.

Delta- (Δ) deployment is a good metric that ensures
minimum installation costs and at the same time guarantees
good network performance. A deployment is Δβ2β1 if at any
moment β2 percentage of all available vehicles needs to be in
contact with roadside infrastructures during β1 percentage of
their travel times. Suppose in vehicular communication 95% of
the vehicles need to communicate with RSUs for 95% of their
travel times. %en its delta deployment will be expressed as
Δ0.95
0.95 [13].%is metric can be adopted by network designers for

new network setups and to make economic decisions for
network infrastructures. Δ-installation strategy may also help
compare and contrast the performance of different vehicular
communication networks and their quality.

%e main contributions of this article are listed as
follows:

(1) We use a travel matrix technique to trace the
routeways of all vehicles in the case study area and
the length of time each vehicle spends in every point
of interest (POI) in the city. %is approach is very
crucial as it gives us the length of time a vehicle
spends in the target area

(2) We utilize a classical delta-deployment strategy to
model the optimal placement of RSUs in urban
scenarios ensuring basic network performance. %e
scheme reduces the number of RSUs while im-
proving network effectiveness in the case study area.

(3) We demonstrate a sequence of simulations envi-
ronments that are convenient for vehicular networks
modeling and simulations, where output from one
tool could be employed as an input in the next tool.

(4) %rough simulations, we show that delta-deploy-
ment minimizes a significant number of roadside
units in wide-area placement. %e deployment
studied in this research work considers a small scale
area; however, the methodology is applicable to
wider urban scenarios.

2. Related Work

Several works have been proposed for RSUs deployment
mechanisms that ensure coverage and connectivity. %e
authors of [14] suggested RSU deployment alongside road
infrastructure for vehicular communications in urban sce-
narios. %eir work aims at improving the network connec-
tivity and coverage of maximum vehicles using a minimum
number of RSUs. %e work in [15] proposed a genetic al-
gorithm known as the Genetic Algorithm for Roadside Unit
Deployment (GARSUD) to automatically establish RSUs in
optimal locations to enhance traffic warning notifications
delivery in a variety of terrain layouts. %e work in [16]
postulated an optimization technique that employs a mixed-
integer linear programming method for the deployment of
RSUs by emphasizing vehicular communications. %e re-
searchers here aim to provide network coverage and meet
computational demand.Whereas [17] introduced the optimal
installation of RFID-integrated VANETs for ITS, the authors’
contribution is to investigate the deployment of base stations
and RFID-reader-embedded roadside units to obtain a good
network architecture by taking into account communication,
coverage, and connectivity requirements. Optimal cost-ef-
fective placement of roadside units in VANET has been
studied and algorithms have been proposed in the literature.

In [18], a novel algorithm that guarantees low-cost wide-
area urban deployment of RSUs by ensuring the use of the
selected roadside unit and intervehicle communication
between any two adjacent points of the highway. In contrast,
in [19], the authors discussed an optimal and greedy algo-
rithm for one-dimensional roadside unit placement and
their new model involves the curved and nonuniformity
nature of the roads. %eir research work considers the
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characteristics of the one-dimensional RSU deployment
problem and designed an optimal deployment algorithm.
Reference [20] revealed a delay-bound and cost-effective
RSU positioning in urban vehicular ad hoc networks. Here,
the authors showed it as a nondeterministic polynomial-
time hard problem and intended to augment the number of
roads covered by the deployed RSUs using the binary dif-
ferential evolution method. %e results show improvement
on road coverage ratio, packet loss ratio with controlled
delay, and downsized deployment budget. Reference [21]
proposed an optimal mechanism to determine the RSUs
stations in urban vehicular networks by employing analytic
binary integer programming and balloon expansion analogy
to propose a heuristic method, whereas a budgeted maxi-
mum coverage-based mmWave RSUs deployment in urban
vehicular ad hoc network is suggested in [22].

In [23], the authors put forward an effective RSU de-
ployment scheme that covers a possible big number of in-
tersections aiming at maximizing network connectivity while
utilizing a small number of RSUs. %eir deployment algorithm
helps find an optimal number and deployable locations of
RSUs to cover all intersections of interest. Liang et al. [24]
showed an optimal deployment strategy in a 2D vehicular
network where the work formulates RSUs placement as an
integer linear program optimization problem that seamlessly
finds the trade-off between coverage and cost considering
signal propagation impaired by the presence of buildings and
other terrain obstructions on RSU antenna. Authors in [25]
formulated the RSU placement problem for urban and high-
way scenarios as binary integer programming where the aim is
to reduce the placement and servicing expenses on RSUs. In
particular, several researches have been conducted regarding
vehicular infrastructure deployment using delta-metric. In [9],
delta genetic algorithms were proposed to estimate the min-
imum required infrastructure to supplement vehicular net-
works. %e findings of the study have proved that delta
deployment needs fewer RSUs while ensuring a similar de-
ployment efficiency. %e work of [13] suggested a delta-r
greedy heuristic algorithm to find out the solution of RSUs
allocation tomeet delta-deploymentmetric. In contrast, in [26],
a novel greedy randomized adaptive search procedure
(GRASP) heuristic was proposedto solve the RSUs placement
problem for vehicular networks with mutihop transmission
and synchronous communication. %e scheme supports both
vehicle-to-vehicle and vehicle-to-infrastructure communica-
tion. Reference [27] proposed a Gamma-Reload Deployment
strategy to deploy roadside units along with road networks of
complex topology by creating islands of coverage for data
dissemination. From the literature, we observe that the
placement of the roadside units in urban areas for vehicular
environments requires a big number of RSUs. %is explains
why sophisticated studies ensure a minimized number of RSUs
and, at the same time, improve the network performance.

3. Methodology

In Figure 1, we show the methodological description that
governs our RSUs deployment process.%e routes of interest
and the pathways of all vehicles under consideration are

obtained from an open street map (OSM) [28].%ereafter, we
convert the OSM map to the simulation of urban mobility
(SUMO) [29] environment whose output is convenient for
both optimization and network simulation processes. Under
the CPLEX optimization environment [30], Δ-parameters
are introduced to obtain the optimal solution, presenting the
number of RSUs, and their corresponding geographical
positions. Finally, we do the network performance analysis
using Network Simulator 3 (NS3)[31] to evaluate the target
network performance metrics.

3.1. Area of Interest Demonstration. In Figures 2 and 3, we
portray the topology of the region of interest. Initially, we
extract the target area from an OSM as a dataset. Most
importantly, our area of interest is represented in a grid cell
form and partitioned into several grid cells to simplify
deployment simulation activities, as explained in the later
sections of this article. In the context of SUMO, the nodes
demonstrate roads intersections, while edges represent roads
in the target area.

OSM has an application program interface(API) that
allows us to import/export geographical data to its reposi-
tory. It provides essential features that facilitate urban
mobility simulation, including roads, buildings, and wa-
terways. We convert our OSM file into a net.xml file that
virtually generates routes in the map and configures it with
the SUMO. With the python scripts, we are able to extract
and execute the exact real number of vehicles in real maps,
i.e., our area under consideration.

Our study scope highly depends on the traffic volumes;
this elucidates why we rely on the traffic flow information
from the case study area. Although the SUMOmap presents
both main roads and lanes that link residential areas with
major roads, our simulation explicitly considers the arterial
roads with heavy traffic volumes. As it is essential to know
the traveling time of the vehicles and the routes they follow,
here we introduce a travel matrix that depicts the vehicle’s
travel route and travel time.

Our simulation studies consider the main road
junctions for roadside units deployment. In Figure 4, we
depict the SUMO map that clearly highlights the major
road junctions, which could serve as the target deployable
pints for roadside infrastructure for vehicular
communication.

OSM Dataset

Convert to
SUMO

Macroscopic
Models (SUMO)

Mobility Files

Mobility Files

Output

Delta-
Thresholds

Network Simulation
(NS3)

Optimization
(ILP in Cplex)

Figure 1: %e architecture of RSUs deployment process.
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3.2. Road Segmentation for RSUs Deployment. %e deploy-
ment of roadside units for vehicular use appears in different
modes. In Figure 5, we demonstrate a RSUs placement
method based on the transmission range of the RSU
transmitter TX. Considering a road of length X and a
transmitter with a range ofTX, we simplify the road coverage
by the roadside units. While several other methods consider
partitioning the area with roads included into a number of
grid points for RSUs deployment, this particular method will
place the RSUs randomly along the road based on their
transmission range.

3.3. Traffic Flows Representation. %e traffic flow is observed
from six different routes that convert the area of interest. For
simplicity, the estimation of vehicles at a certain instance is
assumed as the summation of vehicles from all six routes, as
shown in Figure 6.%e road traffic information was collected
from the city of Kigali (Rwanda) on a working day. Figure 7

demonstrates the average vehicle densities at different time
slots.

%e total number of vehicles in the considered area Vtotal
is calculated as follows:

VTotal � 􏽘
R

r�1
Vr, (1)

where VTotal is the total number of vehicles in the area of
interest at a moment, R is the collection of routes in the same
area, and Vr is the the number of vehicles in route r.

Figures 8–13 indicate the traffic flow from all the six
routes that cover the target area. All routes were surveyed for
24 hours of the day. All moving entities are recorded in our
dataset that includes bikes, motorcycles, and other vehicles
(cars, minibus, bus, and trucks). However, only cars,
minibuses, buses, and trucks are considered in our cases
since our proposal suits these vehicles. %e collected in-
formation gives us a proper picture of the traffic sizes and
traffic volumes in the respective routes. At every time in-
terval, we have done the simulation based on the average
number of vehicles available.

Figure 4: Main road intersections.

Figure 2: OSM map.

Figure 3: SUMO map.

Figure 5: Road segmentation for RSUs deployment.

Figure 6: Routes in the case study area.
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It may be noted that the deployment process may incur
reasonable additional variable costs based on the terrain
complexity of grid cells. However, in this work, for sim-
plicity, we have considered that all grid cells are assumed to
be of uniform topology. Our model considers the substantial
cost of roadside units in terms of their numbers with a
logical understanding that once the number of roadside
units is reduced, the overall cost, including procurement,
configuration, and servicing costs, is also reduced. Our
deployment simulations use a scenario of 6 km2 whose week
traffic flow information is known and presented above.
Moreover, we employ python scripts to model the

dimensions of the simulated area in a macroscopic simu-
lation of the urban mobility network of roads and other
urban structures. %is clearly grants us the exact locations of
every physical feature, including the position obtained op-
timal positions of the RSUs.

3.4. RSUs Delta-Based Deployment Algorithm. In this sec-
tion, we give more details about our baseline Algorithm 1.
%e realistic traffic sizes are randomly moved in the road
sections M. Other urban features that greatly affect the
performance of vehicular communications are included in
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these models. Additional features include buildings, trees,
waterways, and parks.%is demonstrates a virtual realization
of the actual network once deployed at the designated urban
points. Here, Vβ1 ,β2 are the percentages of vehicles that re-
quire delta connection and the required percentage of trip
time connection, respectively; Vr is the instantaneous
number of vehicles in road r. n is the number of iterations
through which our simulation is carried out.

Our baseline algorithm shown below plays a key role in
determining the RSU optimal positions. %e algorithm
runs our solution in sequential order. %e input step loads
the number of vehicles vr, road network M, delta pa-
rameters Δparameters, the vehicles average speed Savg, and
the iterations number n for the algorithm. While SUMO
provides the traffic flow simulations in the target area, our
integer linear problem is solved using CPLEX and the
results from these two models are fed to the network
simulating environment to understand how the network
performs after the deployment. %is provides the testing of
the virtual network performance and thereby increases the
level of confidence for the physical placement of the RSUs
in the predetermined points. In the next section, we present
the delta-deployment problem and use it to solve our
deployment problem using the typical traffic flow in the
case study area.

In Table 1, we explain the key notations that are used in
the model. %e core of this model is to determine a minimal
number of RSUs that allow a desired percentage of moving
vehicles β2 to stay intact with RSUs for the planned travel

time percentage β1. %is is based on the fact that not all the
time all vehicles need to communicate to the roadside units,
and even if they do, the drivers may decide otherwise.
Further, a vehicle may be under the coverage area of more
than one RSU; however, for simplicity, a vehicle can utmost
be connected to one RSU at an instant. In our model, all
RSUs are assumed to be deployable in a 2-dimensional
plane, each at a point. %e coverage separation of any two
grid cells is represented as Euclidean distance. If, for in-
stance, a vehicle at grid cell I(xi, yi) communicates to a RSU
placed at a point J(xj, yj). %e Euclidean distance between
these points d is represented as follows:
d(i, j) � |i − j| �

�������������������
(xi − xj)

2 + (yi − yj)
2

􏽱
. %e distance af-

fects the communication signal status:

P vi,j􏼐 􏼑 �
1, if d(i, j)≤ r

0, Otherwise
.􏼨 (2)

In equation (2), we define a connectivity probability of a
vehicle vi to a roadside unit deployed at a point j using a
Boolean coveragemodel.We assume that the roadside units are
placed in a 2-dimensional plane having equal communication
range (r). d(i, j) is the Euclidean distance between the vehicle
vi and roadside unit placed at point j. %e connectivity
probability of vehicle v is its probability of getting connected. In
the following equations (3)–(8), we present the objective
function and constraints it is subjected to. %e objective
function is to minimize the number of roadside units.
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Figure 13: Traffic flow: route F.

(1) Inputs M, 􏽐
R
r�1 Vr, n, savg,Δparameters

(2) Output ←S1, S2, S3
(3) For i←0 to n ⊳ Represent the number of iterations
(4) Generate SUMO Solution: S1 ⊳ S1 Contains Trace file
(5) Incorporate S1 in CPLEX Optimization
(6) Generate CPLEX Optimization Solution: S2
(7) Use S1 & S2 in NS3 to get QoS solution: S3
(8) Output←S3 ⊳ %e solution S3 provides us with the desired Network QoS Metrics
(9) End for
(10) return Output

ALGORITHM 1: RSUs Deployment Algorithm.
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Min􏽘
i∈C

FCxi, (3)

s.t. (4)

􏽘
i∈C

tin

ttn

􏼠 􏼡xi ≥ β1vn, ∀ n εV, (5)

􏽘
n∈V

vn ≥ β2|V|, ∀ n εV, (6)

xi ε [0, 1], ∀i, (7)

vn ε [0, 1], ∀n. (8)

%eobjective function of thismodel equation (3)minimizes
the deployment cost of the RSUs. Here FC signifies the fixed
cost of a roadside unit where the constraints are mainly the
number of vehicles available, the percentage of vehicles that
need to be connected, and the percentage of connectivity during
the trips. We have considered the actual vehicle densities from
the area of interest. Equation (5) ensures that if a vehicle is
connected to RSU for β1 time, it belongs to the solution,
whereas equation (6) makes sure that a required percentage of
the vehicles (β2) is connected to RSUs. %e rest are Boolean
variables 7 and 8;xi is 1 if a particular partition is a candidate for
roadside unit placement and 0 otherwise. Likewise, vn is 1 if a
vehicle n is connected during the percentage of its travel time
and 0 otherwise. To ensure maximum reasonable connectivity
of the mobile vehicles, we have considered that 95% of the
available vehicles are connected in each simulation instance,
during 95% of their trip time, i.e., β1 and β2 � 95%. In the
following subsection, we introduce a simulation technique that
traces the travel time of each vehicle from the POI. Since the
movement of the vehicles is random in the target areas, not all
vehicles traverse all the POIs; hence, their travel times are 0 s.

3.5. Travel Matrix. In this subsection, we introduce a travel
matrix technique that assists us in tracing the paths and the time
(in seconds) every vehicle under study spent in each POI. Since
there are no publicly available mobility data in terms of time
slots the vehicles spend in grid cells, we have used real traffic
sizes of urbanmobility in the simulations and have used python
scripts to obtain their random mobility files that contain the
routes each vehicle follows in terms of geographical coordinates.

%e elements of the travel matrix in row one tc1v1
, tc2v1

tc3v1
,

. . ., tcNv1
show the travel history of vehicle v1 and the amount of

time it spends in grid cells c1, c2, c3, and cN, respectively. %e
travel history of every vehicle is extracted from the mobility file
and the grid cells that vehicles traverse are obtained as well. Travel
information retrieved from the mobility files is used to get the
amount of time it takes to traverse each POI. As mentioned, we
realize that not each of the vehicles passes in all of the grid cells
and therefore the travel times in such grid cells are considered to
be 0 s. %is information is very important to calculate the per-
centage of time that vehicles could be connected to the roadside
unit placed at a certain grid cell i. For instance, the total travel
times of six vehicles v1, v2, v3, v4, v5, v6 are given in Figure 14.

%e change of position of all the vehicles under study is
recorded in a mobility file that keeps track of the geographical
coordinates of vehicles and their traveling times, as shown in
Figure 15. For instance, node 0 (vehicle) at 0th second of
simulation is at position P(x, y)� (740.24, 654.54), which is set
to P(x, y)� (740.24, 654.54) as its new position at the 21th
second.%e travelmatrix keeps a record of all the vehicles under
consideration, and the summation of all the time slots each of
the vehicles spent in various POIs results in its total travel time.
%e other important parameters are the uplink and the
downlink signal strengths between the vehicle and the deployed
infrastructures. Studying the signal strength between the ve-
hicles and RSUs determines the dimensions of the gridcells of
which some are deployable candidates of RSUs.

4. Simulation Result Analysis

4.1. Optimization with CPLEX. We have simulated the net-
work using Network Simulator-3 (NS-3) and Simulation of
Urban Mobility (SUMO) to study the vehicle-to-infrastructure
and infrastructure-to-vehicle communications. While SUMO is
used to generate road traffic flow, NS-3 is used for network
performance simulations. Initially, we have modeled the opti-
mal placement of the RSUs using the IBM ILOG-CPLEX
Optimization tool through its solver to obtain optimal solutions
in terms of the number of RSUs and their optimal locations.%e
locations of RSUs are indicated by the geographical coordinates
(x1, y1), (x2, y2), (x3, y3), . . ., (xn, yn). In the CPLEX solu-
tion, as shown in Figure 16, 1 represents that a grid is a can-
didate for RSU deployment, else 0.

As mentioned, the above string of 1 s and 0 s denotes the
optimal positions of RSUs in the area of interest and the ones
that are not selected. %e entire area is divided into a number
of grids with each grid‘s centroid coordinates recorded. Here

Table 1: Notations used in the Optimization Problem (Parameters used and their descriptions).

Symbol Description
FC Fixed cost of a Road Side Unit
β1: %e percentage of travel time that a vehicle will be connected
β2: %e percentage of vehicles required to be connected
ttn
: Total travel time of a vehicle n

V %e number of vehicles available
tin %e time taken by vehicle n in grid cell i
xi: A binary variable that is 1 if a road side unit is placed at grid cell otherwise 0
Vn Binary variable for a vehicle n travel beta1 and belong to beta2
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each grid is individually represented by its geographical co-
ordinates x and y.%e coordinates of the grids represented by
ones are considered for optimal placements of the RSUs.
Figure 17 shows the optimal solution, whereas Figure 18
shows the variations of β1, β2 and the the number of RSUs.

In Figure 19, we demonstrate the distribution of RSUs
using the delta deployment and the main intersection-based
deployment schemes are demonstrated, respectively. %e
delta-deployment method follows the placement of RSUs in
the optimal locations obtained from the ILOG-CPLEx so-
lution. %e locations are geographically represented by the

x,y coordinates. %e intersection-based deployment method
assumes the placement of RSUs at 13 identified road in-
tersections in the area of study, whereas the delta-deploy-
ment places RSUs based on the CPLEX solution.

In the delta-deployment method, the target area is
partitioned into a total of 24 small square grid cells each of an
area of 0.25 km2 (500m by 500m). Here only 10 of these are
identified as the optimal positions for RSUs deployment
according to our traffic flow simulations with all β1 and β2
set to 95%.

2 km

0.5 km

3 
km

0.5 km

Figure 14: Vehicle paths.

Figure 15: Vehicle positions in the mobility file.

0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0

Figure 16: Optimal locations of roadside units.

Figure 17: Optimal solution from the solver.

50

50

60
6070

70

80

80

90

90

2

4

6

8

10

RS

Beta2 (%
)

Beta1 (%)

Figure 18: beta1, beta2 vs. RSUs.

Figure 19: Optimal solution and delta-dimension values.
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Based on the delta-deployment method, all is fine if RSU is
exactly deployed at the center of the chosen grid cell. To ensure
this, we have employed the center geometry theorem of a
square since all grids are equal in size and have the same shape.
For simplicity, we assume that all road sections in the same grid
cell are covered by the RSU placed at the grid cell only. All
vehicles connected to RSU i in candidate grid cell Ci operate
based on the principle stated in equation (2). Considering
Figure 20, for example, RSU deployed at point C is expected to
connect all vehicles that follow the road sections in the grid cell
during β1 percentage of their travel time. %is mechanism
would flexibly allow planners to decide how many RSUs
transceivers would be active at a time, based on the expected
traffic flows. In real cases, urban traffic drastically changes
according to the city’s business nature. In this study, we utilize
RSUs antennas that have longer transmission ranges than the
half-length of grid cells’ dimensions, i.e., 350m and 250m,
respectively.%is ensures that all road portions in a grid cell are
covered once the RSU is deployed at the grid cell centroid.

4.2. Network Simulation Setup. In Table 2, we present the
simulation setup. We evaluate the effectiveness of our de-
ployment strategies by simulations. Vehicles communicate
with stationary RSUs through the IEEE 802.11p standard.%e
transmission power is kept at 25 dBm. We have simulated a
small area of 6 km2 with dimensions 2 km by 3 km of
downtown Kigali city. We have solved our deployment model
using CPLEX (version 12.8) that gave outputs after 10 msecs
for all instances with various values of β1 and β2. Using
SUMO, we extracted the main roads with heavy traffic. %e
main roads are demonstrated here as line segments, while city
buildings are demonstrated as polygonal shapes.

4.3. Network Performance Analysis. In this subsection, we
discuss the effectiveness of the network performance and
investigate four important performance metrics to evaluate
our network, i.e., overall success packets delivery ratio in %,
throughput in Kbps, message delay in seconds, and, finally,
jitter in nanoseconds. %e purpose of the study is to improve
the performance of the optimally deployed roadside units so
that we save the costs related to a big number of RSUs and
connect a desired number of vehicles. We introduce four (4)
vehicular communication modes: (a) road intersection RSUs
placement communication, (b) travel matrix based on delta-
deployment communication, (c) road segmentation RSUs
placement communication, and (d) infrastructure-free ve-
hicle-to-vehicle communication. In all the simulation in-
stances, the delta-enabled scheme has shown good
performance in terms of high message success rate,
throughput, low jitter, and message delays. In this study, we
have employed the IEEE 802.11p media access control
protocol that is convenient for dedicated short-range com-
munication and dynamic topology vehicular communications
(DSRC). Particularly, the message success rate is a measure of
packets’ reachability, i.e., overall data packets that successfully
reach the receivers from the transmitters. Travel matrix-based
deployment communication shows better results than the rest
methods for all four (4) network metrics.

We start by carrying out a study that learns the perfor-
mance of the travel matrix based on the classical delta de-
ployment compared to other approaches using five (5) different
traffic volumes. Figure 21 shows the overall packets delivery
ratio that counts for the message loss in both uplink and
downlink, i.e., packets sent by vehicles to RSUs and RSUs to the
vehicles, respectively. We can see from the figure that TM-
enabled delta deployment performs better with the increasing
vehicular densities while it requires a fewer number of RSUs.
Under the same vehicular densities, the travel matrix requires
only ten (10) RSUs and thirteen (13) main road intersections
were identified from the case study area. 13 RSUs are placed for
this study to compare this placement scheme with others.
Another generic placement method has been conducted, i.e.,
road segmentation. %e six main roads from the same case
study area have been segmented, and eighteen (18) RSUs are
deployed based on the transmitter radius coverage. %e
communication networks supported by the previous method
are compared for network performance effectiveness, and fi-
nally, free V2V communication is studied to motivate the need
for RSUs placement from the case study area.

PDR% is the % ratio of the data packets arriving at the
receivers to those generated at the sources. In all our traffic flow
volumes of the day, PDR% is greater in the delta-deployment
method than that in the other three methods. Figure 22 shows
the network throughput thatmeasures the rate at which bits are
successfully delivered over the network channel.

Additionally, message transmission time variation
metrics are also studied in terms of jitter and delay, as shown

Y-
ax

is

X-axis

C (X, Y)

O

Figure 20: Square grid cell centroid.

Table 2: Simulation parameters (parameters used and their values).

Parameters Parameter value
Vehicle densities 30, 60, 90, 120, 150 vehicles
RSUs 10, 13, 18.
Routing protocol AODV
MAC layer protocol IEEE 802.11p
Traffic generator SUMO
Mobility model Log distance path loss
Antenna height 5M
Transmission power 25 dBm
Simulation area 6 kM2

NS3 3.6
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in Figures 23 and 24, respectively. Likewise, delta deploy-
ment has demonstrated good results as it yields less message
delay than intersection-based deployment and free inter-
vehicle communication. It is worth mentioning that the
traffic sizes considered in the delta deployment were equally
considered for the other two strategies. While the study
considers a small part of the urban area, a significant number
of RSUs could be saved for the entire city deployment. %e
model also enables the vehicle owners to participate in
vehicular networking during the time length of their choices.

Interestingly, travel matrix-based delta deployment
requires fewer RSUs (10) than the intersection-based de-
ployment that places 13 RSUs. If we assume the installation
of DSRC-RSUs mentioned in [6], keeping other features,
such as grid cell accessibility complexity constant and delta
deployment, could need a budget of USD 41, 500 in our case
of study. While intersection-based deployment would need
a larger budget of USD 53, 950, road segmentation will
require 74, 700. %e delta-deployment strategy is less ex-
pensive, but, at the same time, it outperforms other
methods in terms of communication effectiveness, as
presented above. In conclusion, based on our typical traffic
volumes and case study area, the delta-placement scheme
becomes cost-effective and is more efficient in terms of

operation. From the analysis of the results, we realize that
connecting only a number of vehicles that wish to be in-
volved in the communication for some specific duration
will ensure good communication from the case study area.
%e results from this study demonstrate that the travel
matrix supported that delta-based roadside deployment
from the case study could yield a fewer number of the
required infrastructure and still ensure good communi-
cation compared to other methods presented in this re-
search work. %e study could support policymakers, such
as urban transport officials and communication infra-
structure planners.

5. Conclusion

In this article, optimal deployment of RSUs and network
performance analysis study is presented based on a travel
matrix strategy that connects a specific number of vehicular
entities in the identified POIs, road segmentation, and in-
tersection-based deployment plus V2V communication.%e
research work further introduces a baseline procedural al-
gorithm that guides the RSUs deployment process. CPLEX-
solver is employed to optimally determine the best geo-
graphical positions for RSUs deployment where the optimal
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number of RSUs is obtained through integer linear pro-
gramming (ILP) formulation. %e network effectiveness of
three communication forms with different traffic volumes is
evaluated here and compared with infrastructure-free ve-
hicular communication. Interestingly, all the results using all
the different traffic volumes showed that the delta method
outperforms the rest requiring fewer RSUs. As future work,
we would like to carry out a study that encompasses cost-
effective intelligent RSUs for monitoring intravehicular
contexts, driver and passengers behaviors, driving patterns,
and other related vehicular contextual information using the
intelligent RSUs. From the results discussion, we observe
that travel matrix delta-based RSUs placement mechanism is
the suitable RSUs deployment method in the case study area.

Data Availability

All data files have been stored in our repository, and URLs
are provided for the download of the data.
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