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To satisfy the adaptability of forecasting the short-term and abrupt volume of the initial metro network, we build the multiple
enter linear regression (MELR) model to explore the determinants and forecast the intensity during the twice expansion of the
initial metro network in Xi’an.We further compare the prediction of the metro transport capacity between theMELRmodels with
exponential smoothing and autoregressive integrated moving average (ARIMA) models. Results show that the passenger intensity
significantly fluctuates with the months and days, and MELR model is more adapted for the short-term prediction of the abrupt
volume than the ARIMA model during the new metro line opening and the old line expands, which avoids the drawback of time
series models that need a huge database. .is study provides a guide for the prediction of initial metro network volume and
accurate purchase of the rail vehicles during the metro planning and expends stages.

1. Introduction

With the rapid development of urbanization, the metro
becomes the mainstream of public transportation and is a
powerful countermeasure to reduce urban traffic congestion
and build a low-carbon transit system, on account of its
advantages of high efficiency, large capacity, less land oc-
cupation, and convenience [1, 2].

.is study defines the urban initial metro lines are the first
and second operated lines, and the network formed by these
two lines is called the initial metro network. .ey were ap-
proved in the first phase of metro construction. .e passenger
volume collected in this period is the initial metro passenger
volume. .ere are two obvious characteristics of the initial
metro passenger volume: (1) the extreme volume appearing
during the holidays and (2) as the operation time continues, the
gap of passenger volume between stations gradually narrows,
except for the hot stations. .e metro network passenger
volume intensity was defined as the ratio of daily passenger
volume and the operation mileage, which is an important
indicator to reflect the operation efficiency of the network [3].

When there is a lack of scientific forecast of passenger
volume, high metro construction standards will lead to
investment waste, while low construction standards cannot
meet traffic demand. .e planning of the metro should be
based on the maximum capacity of the station or line,
irrespective of the stage of its construction..e prediction of
the metro volume or carrying capacity was based on the
land-use intensity of the city. .en, the potential rail vehicle
quantity can be decided by the predicted volume. .is
traditional method used in the Project Feasibility Study
Report may meet challenges during the metro network
operation, namely, the land-use characteristics and intensity
will change with the operation of the metro. It will lead to
passenger volume increase around the metro lines and
stations [4–7]. .e metro passenger volume always fluctu-
ates in different months and on different days. Meanwhile,
the opening and expansion of the new and old metro lines
will cause the volume experiencing an abrupt increase.
Subsequently, as the metro operation days increase, the
transport capacity of the metro may not be able to meet the
demand of the actual metro passenger volume [8]. We must
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adjust the time schedule or the operation interval of the
metro to satisfy the needs. Based on this, there exist two vital
issues before initial metro network transit system planning
and construction: (1) analyzing the metro lines and net-
works’ passenger volume intensity and their spatial-tem-
poral distribution characteristics, and the influential factors,
and (2) research on the accurate prediction method of metro
lines and networks’ passenger volume intensity [2, 9], which
is part of the short-term prediction. .e most commonly
used short-term forecast method is the time series model
[10], but it cannot characterize the jumpy variation of
volume in the crucial date. In view of the characteristics of a
sudden change of passenger volume in the pivotal con-
struction stage of the initial metro network, it is necessary to
find a valid short-term passenger volume forecasting
method. But the analysis on metro daily volume prediction
focuses on the metro station-level, which cannot reflect
the operation efficiency of the network, lacking the
studies based on metro lines and networks to charac-
terize the abrupt change of the volume at different op-
eration stages [10]. Furthermore, the significant
temporal variation in the initial metro volume has sel-
dom gotten attention and been verified theoretically. So,
to fill in the research gap, taking the initial metro net-
work in Xi’an as an example, aiming at the twice ex-
pansion of the network, we build the multiple enter linear
regression (MELR) model to explore the temporal de-
terminants of the metro volume intensity and applied
MELR in forecasting short-term metro volume intensity.
.e MELR model is the extension of the ordinary least
square (OLS) regression model, and it has the strength of
understanding the relationship between multiple inde-
pendent and dependent variables easily [5, 11]. Because
the optimized time series model has high accuracy in the
short-term prediction of passenger volume, 8 time series
regression models were compared with MELR for daily
passenger volume intensity prediction in the line oper-
ation stage (Line-S: from September 16, 2011 to Sep-
tember 14, 2013), initial network stage 1 (Network-S1:
from September 15, 2013 to June 15, 2014), and initial
network stage 2 (Network-S2: from June 16, 2014 to May
31, 2015). Furtherly, we compare the prediction of the
transport capacity between the MELR and Autore-
gressive Integrated Moving Average (ARIMA) model.
.e time series regression models include the Simple
Nonseasonal Exponential Smoothing model (SNES),
Holt Nonseasonal Exponential Smoothing model (HNES),
Brown Nonseasonal Exponential Smoothing model (BNES),
Damped Nonseasonal Exponential Smoothing model
(DNES), Simple Seasonal Exponential Smoothing model
(SSES), Winters Additive Exponential Smoothing model
(WAES), Winters Multiplicative Exponential Smoothing
model (WMES), and ARIMA model. Results find that the
concise and valid MELR model is more adapted for the
short-term prediction especially toward the jumpy volume
than the ARIMA model. .e results provide a rapid and
convenient way for initial passenger volume intensity pre-
diction. It can guide urban metro plan, design, facility
equipment configuration, metro train purchase, and operation

schedulemanagement in themetro planning and expend stages
in urban cities [10].

.e major contribution of this study can be summarized
as following three aspects:

(1) We discover the temporal influential factors and
predict the initial metro volume intensity in different
operation stages in Xi’an initial metro network, in-
stead of at the metro station level.

(2) Furthermore, the initial metro network intensity on
each expansion stage is easily influenced by the
temporal determinants including the month of the
year, day of the week, and the days since the metro
opened.

(3) Compared with the ARIMAmodel, theMELRmodel
has higher accuracy and is more adapted to the
influential factors’ exploration and the short-term
prediction of the jumpy initial metro passenger
volume.

.is paper is organized as follows. Section 2 reviews
literature referring to methodologies of short-term metro
passenger volume prediction and influential factors. Section
3 describes the research flowchart, dependent and inde-
pendent variables, and the MELR and ARIMA models. .e
regression and prediction results were shown and discussed
in Section 4. Finally, the conclusions are given in Section 5,
including a summary of findings and limitations, as well as
the future works.

2. Literature Review

2.1. PredictionMethodologies. In terms of passenger volume,
forecasting is mostly based on the traditional four-step (trip
generation, trip distribution, mode split, and trip assignment)
method, multiple regression model, or their variants [12–14].
.e four-step method is more applicable to the long-term
passenger volume prediction on a regional or traffic zone scale
at the planning stage, and a large set of explanatory variables
need to be calibrated [12, 14, 15]. Meanwhile, there are some
difficulties in data collection, authenticity, and reliability. .e
defects involve low accuracy and response, imprecise data,
insensitivity to land use, institutional obstacles, and high cost
[15]. It consequently cannot meet the accuracy requirements
of the short-term passenger volume prediction.

Recently, the direct demand model has gotten attention
as an alternative to the traditional four-step model. It is
advantageous and makes up for deficiencies of the tradi-
tional four-step model. It estimates ridership via regression
models and treats ridership as a function of its influencing
factors which helps to predict the rail passenger volume
[4, 5]. .e OLS regression is the widely used direct demand
model, and it assumes that the parameters are stable [5, 11].
Liu et al. [11] proposed the Direct Ridership Model (DRM)
which can provide an estimation of rail station ridership
without relying on a complicated transportation demand
model and extensive data collection. He et al. [1, 8] sys-
tematically reviewed and summarized the related studies on
direct demand models for metro ridership prediction.
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Compared with the traditional four-step demand forecasting
method, the main strength of the direct demand model in
ridership modeling is simple usage, easy interpretation,
quick response, and low expense [8].

From another classification perspective, the short-term
traffic passenger volume forecasting methods can be gen-
erally divided into two categories: parametric and non-
parametric regression algorithms. .e characteristics of
widely used models were summarized by Vlahogianni et al.
[16]. .ey provide a comprehensive thought before building
short-term volume forecast methods. .e parametric re-
gression algorithm includes the time series forecasting
model [17], linear regression model [18], ARIMA model
[19, 20], and so on. .e nonparametric regression algorithm
includes Kalman filtering model [21], support vector re-
gression (SVR) [22–24], neural network model (NN)
[3, 16, 25, 26], Genetic Algorithm (GA) [27], and so on. And,
robust statistics should work well on both parametric and
nonparametric methods to avoid their misuse [17]. To give
intuitive and reliable results for readers, researchers are
accustomed to making a comparison between their pro-
posed method with the traditional parametric and non-
parametric methods, in terms of the study on metro
passenger volume prediction.

Besides the methods mentioned above, some research
tried to integrate both the parametric and nonparametric
methods to achieve better performance. A hybrid EMD-BPN
forecasting approach combines empirical mode decompo-
sition (EMD) and back-propagation neural network (BPN).
Results showed that the proposed approach performs well
and stably in forecasting the short-term metro passenger
volume in Taipei; the prediction accuracy of the neural
network is better than that of the ARIMA model and
Seasonal Autoregressive Integrated Moving Average
(SARIMA) model [9]. But, the problem of mode mixing
caused by the intermittency of metro volume is reducing the
predicted capability of EMD-BPN [9]. Sun et al. [23] con-
structed a hybrid method of wavelet and SVM to predict
Beijing subway passenger volume, especially in the morning
and evening peak hours. Results found that it is the most
promising and robust method among Wavelet-NN and
EMD-NN by overcoming the shortcomings of Wavelet and
SVM, respectively. Compared with several conventional
statistical algorithms and computational intelligence algo-
rithms in the emergent event, Li et al. [26] concluded that the
Artificial Neural Network (ANN) model has the highest
accuracy and shortest training time in evaluating passenger
volume, but it does not take the transfer passenger demand
from neighboring bus stops into consideration. .e math-
ematical and neural network models (ANN, long short-term
memory (LSTM)) used to predict metro stations’ passenger
volume in Qingdao found the LSTM model to be better and
suitable for capturing the long-term and short-term char-
acteristics of metro passenger information [6]. Based on a
deep recurrent neural network (DRNN), a time series
prediction model was proposed for the short-term metro
passenger volume prediction in Shanghai, and it has good
robustness compared with the traditional SVR and the BPN
method, in the processing of time series data [2].

However, we also found some shortcomings in tradi-
tional forecasting methods. For example, the Artificial
Neural Network (ANN) trains models by using a large
amount of historical data to obtain a more accurate mapping
relationship between output and input, so it has a strong
dependence on the data [28]. It always has issues with
overtraining, local optima, and a high computational bur-
den. But, the SVR is an alternative to ANN for short-term
prediction problems when the amount of data is less or when
the training data was not a good representative sample of the
testing data [24]. In addition, understanding the results is a
major challenge in terms of the interpretability of the
function modeled by the machine-learning algorithm.

Besides, the time series method is based on the trend of
available operational historical data, combined with the
current situation to calculate the growth coefficient through
various regression analyses (e.g., exponential smoothing
model and multiple regression model). Particularly, ARIMA
has become one of the common parametric forecasting
approaches since the 1970s. Rui et al. [29] found that the
time series model has defects in predicting the short-term
passenger volume but it is more suitable for predicting the
long-term passenger volume. .ere also have some studies
demonstrating that ARIMA is superior to other models in
short-term metro volume forecasting. By investigating the
effect of temporal and spatial features, as well as the in-
fluence of weather on metro station passenger volume, the
time series model ARIMA, linear regression, and SVR are
employed for forecasting short-term passenger volume in
Shenzhen metro stations [18]. In Beijing, an ARIMA model
was established to carry out the short-term prediction of rail
transit stations’ passenger volume, which has high predic-
tion accuracy and can characterize periodic changes in time
series data [20]. By comparing with the autoregressive (AR)
model, SVR, and back-propagation (BP) neural network
model, results show that the optimized time series model of
ARIMA has high forecast accuracy in the short-term pre-
diction of passenger volume in Xi’an metro [19]. ARIMA
performs well and robustly in modeling linear and stationary
time series. .ese studies give us the inspiration to conduct
analysis on the initial metro line and network volume in-
tensity prediction in Xi’an by using the ARIMA model.

In summary, the aforementioned research widely focuses
on making comparisons between parametric and non-
parametric regression algorithms, to determine what
method has the best prediction accuracy and robustness.
Although these methods can capture the stable and regular
fluctuation of metro passenger volume, they are seldom
designed to forecast extremely irregular fluctuation in
passenger demand due to the new and old lines opening and
expanding which may attract a huge volume. Furthermore,
most of the previous methodsmainly focus onmetro volume
prediction at the station-level; there has been little research
directly on the initial line or network level [10, 30].

2.2. Influential Factors. .e metro passenger volume is af-
fected by different land-use patterns around the metro
station [4, 6]. Particularly, Zhao et al. [31] have shown the
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relationship of station ridership on Sundays at obvious peaks
with different types of land use. Kuby et al. [5] evaluated the
impact of the surrounding environment of stations on light
rail occupancy in the United States, and proposed significant
influencing factors including employment, population, and
the rental ratio of the house within light rail walking dis-
tance. Liu et al. [11] found that the bus connection at station
and employment density have significant impacts on rail
station ridership. Other factors affecting metro passenger
volume include accidents, crimes, road safety, weather, etc.
[32].

.us, many factors have impacts on the metro station
passenger volume [7], which is mainly divided into four
categories including land-use variables, station character-
istics, socioeconomic and demographic characteristics, and
intermodal connection or transit accessibility [33–37]. .e
OLS model is the most widely used method of ridership
modeling and influencing factor analysis
[5, 11, 15, 33, 37, 38]. Combined with OLS and other re-
gression models, the analysis on metro volume influencing
factors investigation obtained fruitful findings in cities all
over the world. Based on OLS regressions, Zhao et al. [38]
found 11 variables related to land use, external connectivity,
inter-modal connection, and station context may signifi-
cantly correlate to metro station-level ridership in Nanjing.
Furthermore, they utilized OLS and spatial error models
(SEM) to explore the determinants of transit ridership,
found that land-use type, transit accessibility, income, and
density are strongly significant predictors [33].

Bymultiple regression analyses, Loo et al. [34] found that
major interchange rail station and car ownership are sig-
nificant and positively associated with railway ridership in
New York City and Hong Kong. In addition,Wang et al. [36]
demonstrated that shopping and recreational factors have a
statistically significant relationship with metro trips during
the afternoon and evening peak hours in the commercial
districts of Hong Kong by linear regression. .e regression
model also discovered that land-use density and station-level
accessibility (the number of bus routes at rail stations, and
the number of stations’ entrances or exits) are positively
related to rail transit ridership in Seoul [7]. Based on the
logistic regression model, dwelling density was found to be
an important factor in increasing the Hamilton street rail-
way share in Canada [35].

For the sake of inquiring the local and global determi-
nants of metro station-level ridership, the OLS and geo-
graphically weighted regression (GWR) were used by
Cardozo et al. [15]; they found that the number of metro
lines, workers, employment, and suburban bus lines have a
statistically positive influence on both models. He et al. [8]
explored the local potential influencing factors of the metro
station ridership in Shenzhen by the GWR model; they
found population, network degree centrality, betweenness,
days since metro opening, shopping land use, and distance
to the city center have a positive or negative impact onmetro
station ridership, to a certain extent. An adapted geo-
graphically weighted LASSO (Ada-GWL) model was used to
explore the influence factors (land use, network structure,
social economics, and inter-modal traffic access) of

Shenzhen metro stations’ ridership from the spatial per-
spective, which demonstrates high interpretability and
goodness-of-fit [1].

In a word, scholars have done a lot of research on the
spatial influential factors of metro station passenger volume
and have made fruitful results. .e independent variables
include land use (residential, restaurant, retail, shopping,
office, banks, hospital, and hotels), network structure (dis-
tance to the city center, degree centrality, betweenness
centrality), social economics (population, days since
opened), and inter-modal traffic accessibility (number of bus
stations), but it does not specifically consider the temporal
variation in the current methodology [1, 8]. Research on
investigating the temporal influential factor of the initial
metro network passenger volume especially remains in-
sufficient in the literature. In the past, more research focused
on passenger volume forecasting and influencing factors at
the station level, and few pieces of research were directly
aimed at the level of the initial metro networks. So, this study
specializes in exploring the temporal determinates on pas-
senger volume intensity based on the MELR model.

3. Dataset and Methodologies

Xi’an is the fourteenth city to build the metro and the
thirteenth city to open and operate in China. .e population
of Xi’an in 2015 was 8,705,600 and there are 1,984,561 em-
ployees [39]. .e number of metro passengers in 2015 was
342,093,500 (person-times), which took up to 8.66% of the
main urban public transportation modes in 2015 [39]. By the
end of 2016, its operating mileage ranked 11th among the 28
metro operation cities in China. From September 2011 to
November 2016, before the opening of Line 3, it formed the
initial network and transferred between Line 1 and Line 2..e
network has 39 stations in total. .e locations and names of
these stations are shown in Figure 1. .e development of
Xi’an Metro has undergone the following three stages.

Line-S: .e 1st phase of Line 2 (BEI KE ZHAN-HUI
ZHAN ZHONG XIN) was operated on September 16,
2011, with a length of 20.5 km and 17 stations.
Network-S1: .e 1st phase of Line 1 (FANG ZHI
CHENG-HOU WEI ZHAI) was operated on Sep-
tember 15, 2013, with a length of 25.4 km and 19
stations. Form an initial network and transfer at the BEI
DA JIE station on Line 2.
Network-S2: .e 2nd phase of Line 2 (HUI ZHAN
ZHONG XIN-WEI QU NAN) was operated on June
16, 2014, with a length of 6.3 km and 4 stations. .e
total operation length of Line 2 is 26.8 km at this
moment.

.e data of this study were collected from the Xi’an
Metro Limited Liability Company, which is calculated from
the automatic fare collection (AFC) transaction data. .e
data of Line 2 was collected from the daily passenger volume
report from September 16, 2011, to May 30, 2015 (1354 days
in total). .e data of Line 1 were collected from the daily
passenger volume report from September 15, 2013, to May
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30, 2015 (623 days in total). So, we divided the research
periods into 3 stages: stage 1 (S1) is from September 16, 2011
to September 14, 2013, stage 2 (S2) is from September 16,
2011 to June 15, 2014, and stage 3 (S3) is from September 16,
2011 to May 31, 2015.

To show the research content and steps logically, we first
elaborate on the perspicuous research flowchart (Figure 2).
.e independent variables were identified from the temporal
distribution characteristics of daily and monthly passenger
volume intensity, including days since the metro opened,
months of the year, and days of the week. .e dependent
variables are daily passenger volume intensity of the initial

network in S1, S2, and S3 stages. .e methodologies are
mainly used to investigate the influencing factors and vol-
ume intensity prediction..e Pearson correlation coefficient
of the independent variables in MELR models can avoid
multicollinearity with significant factors, and the model
explainability can be measured by Adjusted R2, Variance
Inflation Factor (VIF), and Durbin-Watson (U). MELR
model was compared with exponential smoothing and
ARIMAmodels to predict volume intensity in S1, S2, and S3.
In the process of prediction, 6 model comparison metrics
and 2 model comparison tests were conducted to verify the
accuracy and robustness of forecasting models. Finally, we
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Figure 1: Map of the initial metro network in Xi’an.
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verified the predicted model by the difference of passenger
volume and intensity, 1,000 days cumulative volume, and
the actual load factor in 6-carriage B2 trains.

3.1. Dependent and Independent Variables. By exploring the
temporal distribution characteristics of metro passenger
volume intensity, we can initially determine the candidate
independent variables.

3.1.1. Days since the Metro Opened. Figure 3 shows the
temporal distribution of the daily passenger volume in-
tensity of the initial network in 3 operation stages. A big
change in daily passenger volume intensity exists among
Line-S and Network-S1, indicating that the opening of Line
1 in the initial network may bring about an abrupt variation
of passenger volume..en, the extension of the metro Line 2
in Network-S2 leads to the mileage increase in the network;
it also brings a great increase in passenger volume intensity
in Network-S2. Namely, there exists a linear upward ten-
dency between the accumulated operation days and the
volume intensity of the initial network..us, “days since the
metro opened” can be used to explore the influential factors
of the initial metro network passenger volume intensity in
Xi’an.

3.1.2. Months of the Year. Months likely lead to changes and
function as decision factors of passenger volume intensity. In
July and August, the growth of tourists in the summer
holidays led to an increase in metro passenger volume in-
tensity. In addition, months with special holidays also can
influence passenger volume. In most cases, the Mid-Autumn
Festival and National Day are celebrated in September and
October, respectively. .erefore, tourists gather rapidly on
holidays, resulting in the metro passenger volume intensity
growing. In Figure 4, the monthly average daily passenger
volume intensity shows a sharp and moderate increase along
with the opening and extension of the metro Line 1 and Line
2 in Network-S1 and Network-S2, respectively. .e pas-
senger volume intensity has an increase of 67.75% in Net-
work-S1 with the opening of Line 1, then the increasing
slowdown in Network-S2 to 20.51%. .e monthly average
daily passenger volume intensity in Line-S, Network-S1, and
Network-S2 were 8601, 14428, and 17387 persons/km∗day,
respectively..ere has been an increasing trend in passenger
volume intensity with the months, except for the special
months of February and March with Spring Festival in-
volved. .e intensity keeps relatively stable around Sep-
tember, so the independent variable of September is chosen
as a comparative variable in the MELR model, making the
comparison between other months with September in
Section 4.1.

Autocorrelation test

Independent
variables

Daily metro passenger
volume intensity

S1:20110916-20130914
S2:20110916-20140615
S3:20110916-20150531

Dependent
variables

Pearson correlation
coefficient

RMSE, MAPE, MAE,
Normalized BIC (L), Ljung-Box

Q (18), Adjusted R2

Wilcoxon signed-rank test,
Friedman test

Days since the metro
opened

Months of the year

Days of the week

Adjusted R2, Variance
Inflation Factor (VIF),

Durbin-Watson (U)

Exponential smoothing
models

ARIMA
model

Predicted model
verification

Difference of passenger
volume and intensity, 1,000

days cumulative volume,
actual load factor

MELR
model

Model comparison

Model test

Influencing factors
regression model

Figure 2: .e research flowchart.

6 Journal of Advanced Transportation



3.1.3. Days of the Week. .e daily passenger volume in-
tensity maintains at a stable level fromMonday to.ursday;
then it experiences a great increase from Friday to Sunday
(Figure 5). Especially, the intensity on Friday is 11.11%
higher than .ursday. So, the daily passenger volume in-
tensity often varies in days of the week or between the
weekdays and weekend [10]. Xi’an is a tourism city with deep

historical and cultural heritage; citizens tend to take a short
tour during weekends, resulting in the increase of metro
passenger volume. .erefore, it is necessary to compre-
hensively consider the influence of temporal factors on
ridership intensity and the prediction of metro network
passenger volume. It is evident that the daily passenger
volume intensity remains stable on Wednesday. Hence, the
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Figure 4: .e temporal distribution of monthly average daily passenger volume intensity.
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Figure 3: .e temporal distribution of daily passenger volume intensity.
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independent variable of Wednesday is chosen as a com-
parative variable in the MELR model to investigate the
temporal influencing factor of intensity in Section 4.1. .e
regression coefficients of other days can be compared with
Wednesday and show the difference of the influencing
intensity.

3.2.Methodology. .e purpose of this research is to find out
the significant influencing variables of the daily passenger
volume intensity of initial metro network and predict its
short-term volume intensity at S1, S2, and S3. Based on some
indices and statistic tests, exponential smoothing and
ARIMA models were compared with MELR model for the
fitting and prediction accuracy of S1, S2 and S3’s daily
passenger volume intensity. Specially, all the models were
processed with the help of SPSS 23.

3.2.1. MELRModel. .e general form of the MELR model is
shown in (1). In terms of the response variable in direct
demand models, daily ridership has been the most common
concern [5, 34, 37, 40]. In order to effectively show the
transport efficiency of the initial network, the dependent
variable Y indicates the daily passenger volume intensity
(10000 persons/km∗day) of S1, S2, and S3; there are k in-
dependent variables, which are X1, X2, . . . Xk; β0 is the
constant; β1, β2 . . . βk are partial regression coefficients; and
ε is the error term. .e estimators of equation (1) can be
obtained by using the least square method based on the
estimation of the multiple linear regression equation ob-
tained from the sample data.

Y � β0 + β1X1 + β2X2 + · · · + βkXk + ε. (1)

We can find the daily passenger volume intensity mainly
influenced by temporal factors in Section 3.1. Firstly, the
days since the metro opened can be used to characterize the
process of metro volume accumulation. .e longer the
operation mileage of the subway, the more people it takes.

Secondly, the indicator of periodical variation is expressed
by the month of the year and the day of the week.

In the process of regression, the factor of days since the
metro opened can be measured, but the day of a week and
the month of a year cannot be measured quantitatively. To
verify the influence of these unqualified factors on the de-
pendent variables, it is necessary to introduce dummy
variables (e.g., 0 or 1). We take two dummy variables of
September and Wednesday as reference variables in the
MELR models. .e regression coefficients of the rest of the
independent variables are compared with them..e detailed
statistical description of the dependent and independent
variables is summarized in Table 1.

3.2.2. ARIMA Model. .e traditional statistical time series
forecasting approaches include exponential smoothing,
moving average, and ARIMA, in which future values are
constrained to be a linear function of past observations. .e
ARIMA model is easy to understand and implement, and is
computationally tractable [41]. It has been widely applied in
forecasting short-term traffic volume [10, 41, 42]. In this
section, the basic model of moving average and ARIMA are
briefly reviewed. .e ARIMA model originates from the
autoregressive (AR) model, moving average (MA) model,
and the combination of AR and MA (ARMA) models [43].
For the AR model of order p, known as an AR(p) model, the
current value of time series can be expressed based on (2).

yt � ϕ1yt− 1 + ϕ2yt− 2 + · · · + ϕpyt− p + εt. (2)

.e MA(p) model, which expresses the current value of
time series as a current and q previous values of random
errors, can be expressed as follows:.

yt � εt − θ1εt− 1 − θ2εt− 2 − · · · − θqεt− q. (3)

.us, the general expression for a combined AMRA(p, q)
process can be defined as (4), where yt is the predicted value,
ϕi represents coefficients associated with each previously
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observed value, yt− i are the previously observed values, θi are
coefficients associated with previous white noises, εt is a
normal white noise process with zero mean and variance σ2,
and εt− 1 are previous noise terms.

yt � ϕ1yt− 1 + ϕ2yt− 2 + · · · + ϕpyt− p + εt − θ1εt− 1

− θ2εt− 2 − · · · − θqεt− q.
(4)

Generally, the ARMAmodel is applied to stationary time
series. However, if the series are nonstationary, these series
are transformed into a stationary time series using the d’th
difference process, and the difference d is usually 0, 1, or at
most 2 [43]. .erefore, the ARIMA(p, d, q) can be obtained
as (5). Where wt � ∇dyt. Note that if we replace wt by yt;
that is to say, when d= 0, (5) represents a mixed ARMA
model.

wt � ϕ1ωt− 1 + ϕ2ωt− 2 + · · · + ϕpωt− p + εt − θ1εt− 1

− θ2εt− 2 − · · · − θqεt− q.
(5)

From the above equation, it is clear that the past pas-
senger volume usually influences the present and future
volume. We take the independent and dependent variables
as same as MELRmodel for volume prediction in time series
models.

3.2.3. Model Evaluation Index. .e results of the root mean
square error (RMSE), the mean absolute percentage error
(MAPE), the mean absolute error (MAE), Ljung-Box Q(18),
and Adjusted R2 were used to examine the model robustness
and measure the prediction accuracy and reliability.
Bayesian information criterion (BIC) is also a criterion for
selecting a more fitted model based on the likelihood
function and penalty term. Its penalty is heavier than the
Akaike information criterion (AIC) for the complexity of the
model [44]. .e model with a smaller RMSE, MAE, MAPE,
and BIC, and a larger Adjusted R2 indicates the model is
more stable and accurate. .e Equations of MAE, RMSE,
and MAPE are defined as (6)–(8). Where yi is the actual

passenger volume intensity, yi is the predicted passenger
volume intensity, and n is the sample size.

MAE �
1
n



n

i�1
yi − yi


, (6)

RMSE �

������������

1
n



n

i�1
yi − yi( 

2




, (7)

MAPE(%) �
1
n



n

i�1

yi − yi

yi




∗ 100. (8)

In addition, the Wilcoxon signed-rank test and Friedman
test are carried out to ensure the significance of the superiority
of the compared model for metro volume intensity prediction
[45]. We also make a comparison between the true passenger
volume and predict values in S1, S2, and S3. As shown in (9),
the passenger volume is the product of the intensity and the
operationmileage..e unit of the passenger volume ismillion
persons/day. .e unit of the operation mileage is kilometers.
In addition, the unit of the passenger volume intensity is
10000 persons/km∗day in this study.

Passenger volume �
passenger volume intensity ∗ operationmileage

100
.

(9)

.e vehicle used in the initial metro network is 6-car-
riage B2 trains, with a rated passenger capacity of 1468
people. .e number of departures, the actual capacity, and
the actual load factor in 6-carriage B2 trains can be obtained,
respectively, from (10) to (12). In (10), the departure interval
of the train is set as 6.5 minutes. It operates from 6 : 00am to
23 : 00 pm, 17 hours in total. We think one more train as an
auxiliary vehicle. In (11), the initial metro network includes
two lines and the train runs in both directions. We consider
the actual load factor of the train to be no more than 90% as
the comfort limit that passengers can endure.

Table 1: Statistic description of dependent and independent variables.

Variable Notation Description Mean Standard
deviation Min Max

Daily metro passenger
volume intensity of S1 Y 1 Ten thousand person/km∗ day 0.865 0.195 0.227 1.593

Daily metro passenger
volume intensity of S2 Y 2 Ten thousand person/km∗ day 1.029 0.337 0.227 2.148

Daily metro passenger
volume intensity of S3 Y 3 Ten thousand person/km∗ day 1.214 0.441 0.227 2.405

Days since the metro
opened Ti Number of days/day (i � 1, 2, . . . , 1354) 668 391.0 1 1354

Month X j
Month of the year (j � Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,

Sep, Oct, Nov, Dec, (Xj is 0,1 variable)) — — — —

Day X k
Day of the week (k �Mon, Tues,Wed,.ur, Fri, Sat, Sun, (Xk

is 0,1 variable)) — — — —
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The number of departures �
(23 − 6)∗ 60

6.5
+ 1, (10)

The actual capacity �
(daily passenger volume/the number of departures∗ 1000000)/2

2
, (11)

The actual load factor �
the actual capacity

1468
∗ 100%. (12)

4. Results and Discussions

4.1. MELR Results of Influencing Factors. .ere are inter-
actions among candidate independent variables, so the
Pearson correlation coefficients of 18 independent variables
in Table 1 are calculated..e Pearson correlation coefficients
of all independent variables are less than 0.5 in S1, S2, and S3,
and the Variance Inflation Factor (VIF) are less than 5
(range from 1.338 to 4.151) in Table 2, suggesting that these
independent variables are well selected and the multi-
collinearity issues can be avoided in the regression models
[38]. .e detailed regression results are discussed as follows:

(1) .e goodness-of-fit of the 3 MELR models are 0.957,
0.970, and 0.976, reflecting the highly linear rela-
tionship between the dependent variable and the
independent variables with a good explanatory
ability and no constant. .e explanatory ability of S3
is the highest compared with S1 and S2, indicating
that the MELR model has high accuracy with the
dataset increase in the later initial metro network
stage.

(2) .e days since the metro opened can be used to
characterize the process of metro volume accumu-
lation. It has a significant positive impact on daily
passenger volume intensity as shown by He et al.
[1, 8]. .is study shows that it has lower influencing
intensity than that reported in He et al. [8] which
takes Shenzhen as an example. .e metro is much
more maturely developed in Shenzhen, with 5 lines
and 118 stations and the least operation days of 839,
whereas, in Xi’an initial metro network, the quantity
of lines and stations are way less than Shenzhen..is
causes the influencing difference of operation
mileage between Shenzhen and Xi’an.

(3) In Figure 6(a), the coefficient in other months is
positive and significantly higher than that of Feb-
ruary in S1, S2, and S3. Among them, March, April,
July, and October have relatively high significant
positive impact intensity. .is is mainly because the
return after the Spring Festival in March and April.
Another factor playing a role is the tourists pro-
moting the growth of metro volume during these two
tourist golden months of the summer holidays and
the National Day holiday. For S1, S2, and S3, the
coefficient on Friday, Saturday, and Sunday is sig-
nificantly higher than that on Wednesday in
Figure 6(b). Studies find that the metro passenger
volume shows an increasing trend on Friday and

Saturday [10]. Among them, the impact intensity on
Saturday and Sunday is higher than the weekday,
because a short tour around Xi’an may increase the
metro volume.

(4) .e values of the F-statistic are 912.715, 1783.871,
and 3068.325. .e independent variable significance
is less than 0.001, indicating that the dependent
variables have a significant impact on the indepen-
dent variables. In addition, the value of Dur-
bin–Watson(U) is 0.627, 0.523, and 0.533 of the 3
MELRmodels, and they are all close to zero, showing
the regression residuals of the MELR models have
autocorrelation. Hence, some other time series
models are further chosen to predict the daily pas-
senger volume intensity and a comparison of them is
investigated in Section 4.2.

4.2. Comparison of the Volume Intensity Prediction

4.2.1. =e Overall Comparison Results of the Intensity. .e
exponential smoothing series models are relatively simple
and effective methods for time series forecast in the short-
term range. Nowadays, ARIMA and exponential smoothing
models have been used for comparison purposes whenever a
new forecasting model is proposed for short-term traffic
[46]. To explore the accuracy of MELR models for metro
volume prediction, we compare them with the 8 commonly
used time series models.

Before conducting the time series model, the dependent
variable needs to be tested for autocorrelation. Afterward,
the Box-Ljung test is applied to verify the correlation be-
tween the squared residuals of the dependent variables in
Table 3 [44]. .e autocorrelation of the dependent variables
is high from 0.497 to 0.954, the Box-Ljung all pass the
significance test at the level of 0.05, demonstrating that there
is a certain relationship between these dependent variables,
that is, the past data can affect the following data, and we can
use the time series prediction model.

After comparing 8 time series models, 6 better time
series and 1 MELR model are retained eventually in Table 4
and Figure 7. .e Adjusted R2 of SNES and DNES models
are close to 0. Hence, these two models are excluded from
the original prediction models. In Table 4, the Adjusted R2

values of the MELR model are greater than those of the
corresponding time series regression models, demonstrating
that the MELR model has the strongest explanatory power
and stability among these time series models. .e closer the
value is to 1, the better the performance. But the value of

10 Journal of Advanced Transportation



MAE, RMSE, and MAPE in the MELR models are larger
than the corresponding time series regression models.
.us, the results show that the MELR models generally
perform better in understanding the determinants, and the
time series regression models perform better in modeling
linear volume forecasting. .e same observation is drawn
in references [19, 44]. Based on the value of MAPE, ranging
from 6.597% to 7.011% in ARIMA models, it can be seen
from Table 4 and Figure 7 that the prediction result of S3 is
the most accurate among S1 and S2. Because the days since
the metro opened in S1 are shorter than that of S2, the
ARIMA models have advantages in the short-term pas-
senger volume intensity prediction with rich datasets. .e
observations are the same as Ma et al. [19], but opposite to
Chen et al. [44]. Except for the model of ARIMA in S1 and
S2, the Ljung-Box Q(18) rejects the test and the p-value is
all less than 0.05, showing that the residuals in the past
affect the present residuals. It is believed that the residuals
are not white noise sequences, and the model needs to be
improved because it cannot fully recognize the real data. So,
only the differences between the fitting/predicted and ac-
tual values of the intensity for MELR and ARIMA models
of S1, S2 and S3 in Xi’an are compared, see Figures 8(a) and
8(b). If the difference changes around 0, it means that the
fitting and prediction performance of the model is better.
Otherwise, it means that the model should be improved
with a bad prediction capacity. Figure 8(a) shows that the
fitting effect of ARIMA is higher than MELR. While the
MELR model predicts better results than ARIMA, as in-
dicated in Figure 8(b), because the differences of the true
and the predicted value in MELR model fluctuate around 0.
Compared to the predicted value in S1 and S2, the

difference in MELR models remains stable, but the ARIMA
models perform better in S2. .is reveals the accuracy of
ARIMA model is more dependent on the dataset size.

Because the model performance of SNES and DNES is
less satisfactory, the Wilcoxon signed-rank test and Fried-
man test are not conducted for them. Only the significant
comparison results of the statistical tests are shown in Ta-
ble 5. Under the two-tail-test with one significance level of
α� 0.05, it is further found that the MELR model signifi-
cantly outperforms the other models in metro passenger
volume intensity prediction, except for the model com-
parison of MELR vs. SSES/WAES/WMES in S1.

Eventually, compared with the ARIMA models, the
MELR models have good performance in metro volume
determinants exploration. .ey also show sufficient ex-
pandability and robustness in short-term initial metro
volume prediction.

4.2.2. =e Further Verification of the Prediction Results.
Table 6 shows the accumulated differences between the
fitting/predicted value and the actual value of the intensity
and volume by the MELR and ARIMA models in Line-S,
Network-S1, and Network-S2. Results show that the
MELR and ARIMA models have good fitting and pre-
dictability in each stage. .e ratio of accumulated fitting
differences in ARIMA models is less than MELR models,
whether the model is focused on S1 or S2. However, the
ratio of accumulated predicted differences in MELR
models is less than ARIMA models, when the model is
focused on the S1. As the amount of dataset increases, the
ratio of accumulated predicted differences in MELR and

Table 2: Results of the MELR models in S1, S2, and S3.

Variables
MELR-S1 MELR-S2 MELR-S3

B Pvalue VIF B Pvalue VIF B Pvalue VIF
T i 0.001 <0.001 4.151 0.001 <0.001 3.746 0.001 <0.001 3.605
X Jan 0.293 <0.001 1.411 0.282 <0.001 1.504 0.237 <0.001 1.491
X Feb 0.209 <0.001 1.389 0.189 <0.001 1.476 0.105 <0.001 1.456
X Mar 0.293 <0.001 1.473 0.309 <0.001 1.567 0.273 <0.001 1.535
X Apr 0.322 <0.001 1.486 0.304 <0.001 1.563 0.271 <0.001 1.520
X May 0.249 <0.001 1.520 0.260 <0.001 1.607 0.217 <0.001 1.560
X Jun 0.241 <0.001 1.558 0.214 <0.001 1.466 0.218 <0.001 1.352
X Jul 0.261 <0.001 1.613 0.214 <0.001 1.338 0.256 <0.001 1.365
X Aug 0.237 <0.001 1.660 0.185 <0.001 1.354 0.219 <0.001 1.383
X Sep
X Oct 0.425 <0.001 1.359 0.382 <0.001 1.446 0.370 <0.001 1.443
X Nov 0.334 <0.001 1.357 0.308 <0.001 1.453 0.305 <0.001 1.450
X Dec 0.322 <0.001 1.401 0.322 <0.001 1.499 0.304 <0.001 1.482
X Mon 0.201 <0.001 1.684 0.162 <0.001 1.673 0.176 <0.001 1.665
X Tues 0.201 <0.001 1.683 0.157 <0.001 1.681 0.162 <0.001 1.671
X Wed
X =ur 0.202 <0.001 1.683 0.155 <0.001 1.681 0.161 <0.001 1.677
X Fri 0.300 <0.001 1.678 0.267 <0.001 1.677 0.295 <0.001 1.674
X Sat 0.338 <0.001 1.682 0.300 0.041 1.678 0.317 <0.001 1.675
X Sun 0.267 <0.001 1.671 0.233 0.084 1.671 0.247 <0.001 1.669
F(Sig.) 912.715 1783.871 3068.325
Adjusted R2 0.957 0.970 0.976
Durbin–watson(U) 0.627 0.523 0.533
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ARIMA models becomes lessened in S2. Unless the
ARIMA-S1 model of the intensity, all of the ratio of ac-
cumulated predicted differences in other models are less
than 9%. We can conclude the MELR model can adapt to
the abrupt change volume when the new and old lines
open and expand. Especially, the MELR model can avoid
the drawback of insufficient datasets. .e MELR and
ARIMA models have good predictability in short-term
daily passenger intensity.

Based on the predicted intensity, the passenger volume
can be calculated. According to the data recorded in Baidu
Encyclopedia, the 1,000 days (from June 11, 2014 to
September 16, 2011) cumulative passenger volume of
Xi’an Metro has reached 313 million person-times. .e
predicted result of the MELR-S1 model is 291 million
person-times, which is only 7.01% less than the actual
value. While the predicted result of the ARIMA-S1 model
is 291 million person-times, which is 10.68% less than the
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Figure 6: Variation of the regression coefficients in months (a) and days (b).
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actual value, the MELR-S2 model predicts 305 million
person-times, which is only 2.70% less than the actual
value. While the predicted result of the ARIMA-S2 model
is 309 million person-times, which is 1.16% less than the
actual value. .erefore, if there are sufficient historical
data, it is further verified that the MELR and ARIMA
models have superiority in short-term passenger volume
forecasting for the initial metro network.

To further verify the models’ predicted ability, we choose
the beginning day and the National Day in the Network-S1
and Network-S2 as the comparative days. .e daily pas-
senger volume and intensity, the actual capacity, and load
factor in 6-carriage B2 trains can be retrieved from Table 7. It
is found that the real passenger volume canmeet the needs in

the Network-S1, and the actual load rate reaches 85% in the
National Day in Network-S1. But after entering the Net-
work-S2 stage, the actual load factor increased to 90.7%,
almost in a saturated situation and up to the comfort limit on
October 11, 2014. .e actual load factor calculated by the
MELR-S2 and ARIMA-S2 models is closer to the actual
value. Only when the amount of data is large, the ARIMA
model can predict the value of holidays more accurately,
while the MELR model has lower requirements for the
dataset size and can be more accurate. .e MELR model
owns good predictions for normal and holidays. It shows
that the MELR model has good adaptability to the initial
passenger volume prediction with jumpy characteristics in
each stage.

Table 3: Autocorrelation test of the dependent variables.

Delay
S1 S2 S3

Autocorrelation Box-Ljung test Autocorrelation Box-Ljung test Autocorrelation Box-Ljung test
Sig Sig Sig

1 0.843 0.000 0.935 0.000 0.954 0.000
2 0.669 0.000 0.869 0.000 0.907 0.000
3 0.575 0.000 0.829 0.000 0.876 0.000
4 0.538 0.000 0.810 0.000 0.861 0.000
5 0.552 0.000 0.811 0.000 0.866 0.000
6 0.637 0.000 0.838 0.000 0.885 0.000
7 0.689 0.000 0.850 0.000 0.893 0.000
8 0.624 0.000 0.820 0.000 0.869 0.000
9 0.535 0.000 0.784 0.000 0.842 0.000
10 0.504 0.000 0.765 0.000 0.828 0.000
11 0.497 0.000 0.764 0.000 0.827 0.000
12 0.525 0.000 0.777 0.000 0.840 0.000
13 0.613 0.000 0.807 0.000 0.861 0.000
14 0.659 0.000 0.821 0.000 0.872 0.000
15 0.599 0.000 0.800 0.000 0.855 0.000
16 0.514 0.000 0.770 0.000 0.834 0.000

Table 4: .e comparison of passenger volume prediction in MELR and time series models.

Model RMSE MAPE (%) MAE Normalized BIC (L) Ljung-Box Q (18) Adjusted R2

MELR-S1 0.181 15.271 0.123 — — 0.957
MELR-S2 0.187 14.237 0.128 — — 0.970
MELR-S3 0.199 13.506 0.139 — — 0.976
ARIMA (2, 0, 0) (1, 1, 1)-S1 0.088 7.011 0.057 − 4.825 0.161 0.667
ARIMA (1, 0, 6) (1, 1, 1)-S2 0.100 6.884 0.065 − 4.577 0.012 0.690
ARIMA (0, 0, 4) (1, 1, 1)-S3 0.108 6.597 0.071 − 4.406 0.000 0.702
HNES-S1 0.107 9.225 0.077 − 4.443 0.000 0.464
HNES-S2 0.119 8.794 0.085 − 4.243 0.000 0.489
HNES-S3 0.131 8.234 0.092 − 4.048 0.000 0.491
BNES-S1 0.125 11.742 0.094 − 4.148 0.000 0.273
BNES-S2 0.138 10.683 0.101 − 3.958 0.000 0.314
BNES-S3 0.152 10.029 0.110 − 3.757 0.000 0.315
SSES-S1 0.094 7.660 0.063 − 4.721 0.000 0.376
SSES-S2 0.105 7.331 0.070 − 4.500 0.000 0.417
SSES-S3 0.115 6.908 0.077 − 4.314 0.000 0.398
WAES-S1 0.094 7.690 0.063 − 4.709 0.000 0.375
WAES-S2 0.105 7.337 0.070 − 4.492 0.000 0.417
WAES-S3 0.115 6.917 0.077 − 4.308 0.000 0.398
WMES-S1 0.093 7.693 0.064 − 4.714 0.000 0.378
WMES-S2 0.105 7.414 0.071 − 4.491 0.000 0.416
WMES-S3 0.114 6.932 0.077 − 4.325 0.000 0.408
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Figure 7: .e comparison of key evaluation indices in MELR and time series models.
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Figure 8: Continued.

14 Journal of Advanced Transportation



20
13

09
15

20
13

09
28

20
13

10
11

20
13

10
24

20
13

11
06

20
13

11
19

20
13

12
02

20
13

12
15

20
13

12
28

20
14

01
10

20
14

01
23

20
14

02
05

20
14

02
18

20
14

03
03

20
14

03
16

20
14

03
29

20
14

04
11

20
14

04
24

20
14

05
07

20
14

05
20

20
14

06
02

20
14

06
15

20
14

06
28

20
14

07
11

20
14

07
24

20
14

08
06

20
14

08
19

20
14

09
01

20
14

09
14

20
14

09
27

20
14

10
10

20
14

10
23

20
14

11
05

20
14

11
18

20
14

12
01

20
14

12
14

20
14

12
27

20
15

01
09

20
15

01
22

20
15

02
04

20
15

02
17

20
15

03
02

20
15

03
15

20
15

03
28

20
15

04
10

20
15

04
23

20
15

05
06

20
15

05
19

1.0

0.5

0.0

–0.5

D
iff

er
en

ce
 o

f d
ai

ly
 p

as
se

ng
er

 v
ol

um
e i

nt
en

sit
y 

be
tw

ee
n

pr
ed

ic
tio

n 
an

d 
tr

ue
 v

al
ue

 (1
00

00
 p

er
so

n/
km

*d
ay

)

–1.0 ARIMA–S1 MELR–S1

MELR–S1
MELR–S2
ARIMA–S1
ARIMA–S2

MELR–S2ARIMA–S2

Network–S1 Network–S2

ARIMA–S1 MELR–S1

(b)

Figure 8: (a) .e difference between fitting and actual daily passenger volume intensity in the initial network for MELR and ARIMAmodels.
(b) .e difference between predicted and actual daily passenger volume intensity in the initial network for MELR and ARIMA models.

Table 5: Results of Wilcoxon signed-rank test and Friedman test in S1, S2, and S3.

Dataset stages Compared models Wilcoxon signed-rank test
α� 0.05 P value Friedman test

S1

MELR vs. HNES 0.0060

F� 98.515
P� 0.000
(Reject H0)

MELR vs. BNES 0.0280
MELR vs. SSES 0.1020
MELR vs. WAES 0.0780
MELR vs. WMES 0.0730
MELR vs. ARIMA 0.0380

S2

MELR vs. HNES 0.0140

F� 310.634
P� 0.000
(Reject H0)

MELR vs. BNES 0.0040
MELR vs. SSES 0.0150
MELR vs. WAES 0.0080
MELR vs. WMES 0.0120
MELR vs. ARIMA 0.0040

S3

MELR vs. HNES 0.0000

F� 388.945
P� 0.000
(Reject H0)

MELR vs. BNES 0.0000
MELR vs. SSES 0.0010
MELR vs. WAES 0.0000
MELR vs. WMES 0.0010
MELR vs. ARIMA 0.0010

Table 6: .e difference between fitting/predicted and actual daily passenger intensity and volume in MELR and ARIMA models.

Stages and models
Difference of daily passenger intensity (and the ratio) Difference of daily passenger volume (and the ratio)
MELR-S1 MELR-S2 ARIMA-S1 ARIMA-S2 MELR-S1 MELR-S2 ARIMA-S1 ARIMA-S2

Line-S − 20.8254 − 14.4570 1.7207 6.5048 − 4.2692 − 2.9637 0.3527 1.3335
(− 3.30%) (− 2.29%) (0.27%) (1.03%) (− 0.03%) (− 0.02%) (0.00%) (0.01%)

Network-S1 − 34.7964 − 7.8562 − 68.0916 − 4.2372 − 15.9715 − 3.6060 − 31.2541 − 1.9449
(− 8.65%) (− 1.95%) (− 16.93%) (− 1.05%) (− 0.13%) (− 0.03%) (− 0.25%) (− 0.02%)

Network-S2 − 42.1463 8.0836 − 118.7175 9.5106 − 22.0003 4.2196 − 61.9705 4.9645
(− 6.90%) (1.32%) (− 19.44%) (1.56%) (− 0.12%) (0.02%) (− 0.34%) (0.03%)

Note. .e bold text indicates the fitting value and the normal text indicates the predicted value. Values in parentheses indicate the ratio of the accumulated
difference to the true intensity or volume.
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5. Conclusion

.is study aims to explore the influencing factors and
predict the passenger volume of the initial metro network,
which makes up for this insufficiency based on the station
level. Using the MELR and time series models, we build the
MELR model to explore the determinants and forecast the
intensity during the twice expansion of the initial metro
network, based on the 1354 and 623 days historical operation
data of the Xi’an initial metro network. We further compare
the prediction of the metro transport capacity between the
MELR models with exponential smoothing and ARIMA
models..e following observations are found: (1).eMELR
model exhibits high explanatory ability of temporal influ-
encing factors exploration in Xi’an initial metro network. (2)
.e days since the metro opened can be used to characterize
the process of metro volume accumulation. It has a sig-
nificant positive impact on daily passenger volume intensity.
(3) .e passenger intensity fluctuates with the months and
days. .e return volume after the Spring Festival in March
and April, and the tourists promote the growth of metro
volume during the summer holidays and the National Day
holiday. And, a short tour around Xi’an may increase the
metro volume increase on Saturday. (4) .e MELR is a
concise and valid model to predict the abrupt volume during
the new metro line opening and the old line expanding,
which avoids the drawback of time series models that need a
huge database. .e results of short-term passenger volume
forecasting can provide useful information for decision-
makers of metro systems. .ey can appropriately adjust the
operation plans (e.g., headway and train dispatching), ac-
tivate the station passenger crowd regulation plan and
emergency response plan provided that the predicted pas-
senger volume is higher than the predetermined threshold.

.e proposed MELR models can be used to examine the
influencing factors of ridership or its density in various
transportation modes. Furthermore, ARIMA and expo-
nential smoothing models can be used for comparison
purposes whenever a new forecasting model for short-term
traffic volume or time is proposed in the future.

We also summarize the limitations, as well as the future
works as follows. At first, we mainly consider temporal
influencing factors, and some results can be explained from a
deeper spatial perspective (e.g., urban structure, built en-
vironment) in the initial line and network level. Secondly, a
suitable fine-grained time granularity is studied to predict
subway passenger volume, which provides decision-makers
with accurate schedule and operation management results.
Finally, more other models that can simultaneously explore
the influencing factors and predict the passenger volume of
metro lines with high accuracy should be considered in the
future.

Data Availability

Some or all data, models, or codes that support the findings
of this study are available from the corresponding author
upon reasonable request. (Date (day/month/year), Daily
passenger volume, Days since the metro opened).

Additional Points

Discovering the temporal influential factors of the initial
metro network volume intensity. .e MELR model is more
adapted for the short-term prediction of the abrupt volume.
.e ARIMA model’s predicted accuracy is more dependent
on the dataset size.

Table 7: .e comparison of daily passenger volume and intensity on special days.

Model Stage Date Daily passenger volume
(million persons/day)

Daily passenger volume
intensity (10000 persons/km)

.e actual
capacity in 6-

carriage B2 trains

.e actual load
factor in 6-carriage

B2 trains (%)
True value Network-S1 20130915 0.419 0.913 663 45.2

20131001 0.789 1.718 1248 85.0
Network-S2 20140616 0.842 1.612 1332 90.7

20141011 0.924 1.770 1462 99.6
MELR-S1 Network-S1 20130915 0.447 0.974 708 48.2

20131001 0.619 1.350 980 66.8
Network-S2 20140616 0.739 1.415 1169 79.6

20141011 0.965 1.849 1527 104.0
MELR-S2 Network-S1 20130915 0.487 1.061 771 52.5

20131001 0.636 1.385 1006 68.5
Network-S2 20140616 0.791 1.515 1251 85.2

20141011 1.020 1.954 1614 109.9
ARIMA-S1 Network-S1 20130915 0.576 1.255 911 62.1

20131001 0.523 1.140 828 56.4
Network-S2 20140616 0.671 1.285 1061 72.3

20141011 0.736 1.409 1164 79.3
ARIMA-S2 Network-S1 20130915 0.586 1.277 927 63.2

20131001 0.753 1.642 1192 81.2
Network-S2 20140616 0.837 1.603 1324 90.2

20141011 0.947 1.814 1498 102.0
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