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Different urban transportation flows (e.g., passenger journeys, freight distribution, and waste management) are conventionally
separately handled by corresponding single-purpose vehicles (SVs). )e multi-purpose vehicle (MV) is a novel vehicle concept
that can enable the sequential sharing of different transportation flows by changing the so-called modules, thus theoretically
improving the efficiency of urban transportation through the utilization of higher vehicles. In this study, a variant of the pick-up
and delivery problem with time windows is established to describe the sequential sharing problem considering both MVs and SVs
with features of multiple depots, partial recharging strategies, and fleet sizing. MVs can change their load modules to carry all item
types that can also be carried by SVs. To solve the routing problem, an adaptive large neighborhood search (ALNS) algorithm is
developed with new problem-specific heuristics. )e proposed ALNS is tested on 15 small-size cases and evaluated using a
commercial MIP solver. Results show that the proposed algorithm is time-efficient and able to generate robust and high-quality
solutions. We investigate the performance of the ALNS algorithm by analyzing convergence and selection probabilities of the
heuristic solution that destroy and repair operators. On 15 large-size instances, we compare results for pure SV, pure MV, and
mixed fleets, showing that the introduction of MVs can allow smaller fleet sizes while approximately keeping the same total travel
distance as for pure SVs.

1. Introduction

)e growing urban transportation brings challenges. Taking
Stockholm as an example, it faces the problem of congestion
[1] and ensures reliable transport as the number of inhab-
itants increase [2]. At the same time, Sims et al. [3] pointed
out that unless transport emissions can be strongly
decoupled from GDP growth, the increasing transport ac-
tivities could outweigh all mitigation measures to reduce
global transport greenhouse gas emissions. As a potential
solution, Savelsbergh and Woensel [4] and Los et al. [5]
stressed the importance of integrated and/or collaborative
transportation.

Transportation demand tends to substantially vary
across space and over time. )e demand profiles differ

depending on the type of transportation. Figure 1 shows an
example of unevenly distributed demand of multiple
transportation types. Passenger flows peak in the morning
and evening, while freight is concentrated during the day-
time and recycling demand is solely distributed in the
morning.

Passenger, freight, and recycling transportation oper-
ations are currently handled by separate fleets of vehicles of
distinct types. )ese single-purpose vehicles (SVs) can
transport items of only one type each. When one kind of
demand is low, the utilization of corresponding vehicles
becomes less efficient as they stand idle or run with lower
fill rates, while the vehicle capacity for other demand types
may be insufficient. Chen and Li [6] and Liu et al. [7]
discussed the similar underutilization of nonmodular
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vehicles. Each kind of SV is specially designed for a specific
demand type and thus cannot efficiently carry items of
other types. For example, vehicles for passengers have
plenty of seats, which only allow few parcels in the small
storage room or on the seats. Some vehicles are not able to
carry items of any other types (e.g., using vehicles for waste
to carry people).

)e concept of multi-purpose vehicles (MVs), which can
change their load modules at dedicated change stations to
transport items of multiple types while keeping the drive train
and other parts, is schematically shown in Figure 2. Given the
current rapid development of autonomous vehicles, future
MVs may be automated (i.e., no drivers). If not, the vehicle cab
for drivers should be located on the fixed component.

)e overall cost for operating a fleet including MVs is the
fixed cost of vehicles, the variable cost of the total travel dis-
tance, and the module change cost at change stations. MVs
enable sequential sharing of vehicles, thereby potentially in-
creasing the utilization of vehicles and achieving a lower overall
cost by fewer vehicles for the fixed cost and more flexible
choices of routes for the variable cost. In the example in
Figure 1, parts of the MV fleet may transport passengers and
waste, respectively, in the morning peak. )en, MVs can be
changed for freight during the daytime. Before the evening
peak, the MVs can be changed back to transport people. )e
MVs utilized for recycling in the morning peak can also
transport passengers and freight later. As a result, fewer MVs
than SVs are potentially required for urban transportation.

Future urban transportation should be sustainable to
cope with the challenges of global warming. Great efforts in
developing electric vehicles have been devoted to such
ambitions. )erefore, we assume all vehicles are electric in
the future. However, even if electric vehicles are environ-
mentally friendly in operation, manufacturing electric ve-
hicles will still cause many emissions. Higher utilization of
MVs can theoretically solve this problem to a certain extent
by using fewer vehicles.

From the view of MVs, the module change needs extra
distance for visiting a change station. Fortunately, if theMVs
are electric, this shortcoming will be overcome since in-
creasing the driving distance of electric vehicles does not
cause excessive emissions. )erefore, electric MVs can enjoy

more flexible route choices and higher utilization without
significantly increasing emissions.

Although various forms of shared mobility systems are
widely studied (see [8]), little research has been devoted to
the sequential sharing problem. In a recently published
study by Hatzenbühler et al. [9], the authors propose a
pick-up and delivery problem with time windows and
sequential sharing. )e authors state that the operation of
sequentially sharing MVs leads to a reduction in fleet size,
while the level of service for passengers and freight requests
can be maintained. We will extend it by introducing the
mixed fleet including both SVs and MVs to study the
transition from the current pure SV fleet to the pure MV
fleet or the mixed fleet. )e performed numerical experi-
ments will fill the aforementioned research gap by en-
hancing the understanding of the impacts of MVs in future
urban transportation systems.

To understand the potential of MVs, there are two
important questions: i) what are the most suitable vehicle
fleet characteristics (i.e., a pure MV fleet or a mixed fleet
containing both SVs and MVs)? and ii) how to plan routes
and fleet configurations (i.e., howmany vehicles of each type
should be used)? To answer these questions, an adaptive
large neighborhood search (ALNS) algorithm is developed,
which is able to determine the best routes and fleet con-
figurations. We then compare the best solutions for pure SV
operations, pure MV operations, and operations with mixed
fleets.

)e contributions of this study can be summarized as
follows:

(i) To the best of our knowledge, we are the first to
consider mixed fleets and MVs in the pick-up and
delivery problem and present the mathematical
formulation of the problem.

(ii) We integrate the aspects of multiple depots, partial
recharging strategies, fleet sizing, and mixed fleets
including both MVs and SVs.

(iii) We propose an efficient ALNS algorithm for the
proposed problem, which introduces new mecha-
nisms to deal with MVs.

(iv) We validate the performance of the proposed
heuristic by comparing its results to the solutions
from an exact algorithm.

(v) We show that the mixed fleet may improve the
solutions obtained with pure SVs in scenarios with
unevenly distributed demand of several types. Both
a pure MV fleet and a mixed fleet may lead to fewer
vehicles, while the total travel distance is compa-
rable to a SV fleet.

)e remainder of the study is organized as follows.
Section 2 reviews related work in the literature. Section 3
proposes the problem and gives it the mathematical for-
mulation. Section 4 presents the proposed ALNS algorithm.
)e results and performances of the ALNS operators are
displayed in Section 5 followed by discussions. Section 6
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Figure 1: Example demand distribution for passengers, freight,
and recycling in an urban context.
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contains conclusions, future possible applications, and re-
search directions.

2. Literature Review

2.1. Pick-Up and Delivery Problem with Time Windows.
One variant of the widely studied vehicle routing problem
(VRP) is the PDPTW. In the PDPTW, a set of vehicle routes
are determined so that a set of transportation requests are
served at a minimum cost with the given vehicle fleet [10].
)e PDPTW uses a heterogeneous vehicle fleet stationed at
multiple depots to satisfy a set of predetermined trans-
portation requests. Each request consists of a pick-up lo-
cation, a delivery location, and a certain number of items
that should be transported. )e pick-up time and delivery
time of a request should fall in the time windows of both
locations. )e objective function may include the fixed cost
of vehicles and various variable operational costs (see [11]).

)e dial-a-ride problem (DARP) is a variation of the
PDPTW in which the transported items are people and thus
focuses more on the quality of service and the convenience of
passengers [11, 12]. For more comprehensive reviews, we
refer the interested reader to articles about PDPTW [13] and
DARP [12, 14].

2.2. Combining Different Types of Transportation. In urban
transportation, different types of items move in heteroge-
neous carriers. Most studies on combined transportation
discuss the combination of two types of items in the same
vehicles, which can be mainly classified into two categories:
single-tiered and two-tiered models.

In a single-tiered model, vehicles can simultaneously
transport goods and passengers to their delivery points. Li
et al. [15] introduced a new kind of model called the share-a-
ride problem (SARP) based on the dial-a-ride problem. In
the SARP, goods and passengers are transported by taxis in
the city.

As for the two-tiered model, the first tier typically de-
scribes a scheduled transportation mode such as bus and
train, whose spare space can be used to carry goods. In the
second tier, smaller vehicles transport goods or passengers to
their final destinations. )us, strict synchronization at the
transfer points of each tier is necessary [8].

2.3. Fleet Size and Mixed-Fleet Problem. )e fleet size and
mixed-fleet (FSM) problem was first proposed by Golden
et al. [16] in a VRP study, in which multiple types of vehicles
(varying in capacity, range, etc.) are available and the size of
the fleet is unlimited. Hiermann et al. [17] introduced the
electric fleet size and mix VRP with time windows (E-
FSMFTWs) and recharging stations, which considers the
choice of recharging times and locations.

2.4. Partial Recharging. Electric vehicles (EVs) have rapidly
developed in the last decade. However, EVs suffer problems
like long recharging times and insufficient charging station
locations. )us, the optimization of EVs has become an
important and timely research topic.

Conrad and Figliozzi [18] considered a recharging ve-
hicle routing problem (GVRP), which allows EVs to be
recharged at selected customer locations. Erdoğan and
Miller-Hooks [19] proposed a green vehicle routing problem
and presented a mathematical formulation with recharging
stations. EVs can be fully recharged at recharging stations in
a predefined time. However, time window and capacity
constraints are not considered in their problem. Schneider
et al. [20] introduced the electric vehicle routing problem
with time window (E-VRPTW) and recharging stations
based on the GVRP, in which the recharging time depends
on the remaining electricity when an EV arrives at a
recharging station. Time window and capacity constraints
are also considered in the proposed E-VRPTW. Grandinetti
et al. [21] discussed electric pick-up and delivery problem
with time windows, which extends the PDPTW with
recharging stations.

2.5. Adaptive Large Neighborhood Search. ALNS, first in-
troduced by Ropke and Pisinger [22], is a heuristic algorithm
consisting of competing subheuristics whose selection fre-
quencies are adjusted based on their historical performance.
ALNS has been widely used and proven effective for solving
the general VRP. Ropke and Pisinger [22] applied ALNS to
the PDPTW and improved the best-known solution in
benchmark instances. Li et al. [23] designed an ALNS al-
gorithm for the SARP proposed in Li et al. [15] and proved
its effectiveness in instances generated from real taxi trails
and benchmark instances of DARP. Hiermann et al. [17]
solved the E-FSMFTW utilizing branch-and-price and an

Passenger

PassengerLoad Module

The MV for transporting passengers Changing the module

Change Station

The MV for transporting freight

Freight

Freight

Figure 2: Schematic concept of multi-purpose vehicles.
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adaptive large neighborhood search with an embedded local
search and labeling procedure for intensification. )e ef-
fectiveness of their proposed algorithms is evidenced by a
newly created set of benchmark instances for the
E-FSMFTW and the existing single vehicle type benchmark
using an exact method. Keskin and Çatay [24] proposed an
innovative ALNS for the EVRP-PR, which introduces new
removal and insertion mechanisms of recharging stations.
)e computational results of benchmark instances showed
that their proposed method is effective and of high quality.

3. Methodology

3.1. Model Description. In this study, we consider a mixed
fleet including MVs and several types of SVs, in which the
load modules of MVs can be switched at dedicated change
stations to transport any item type served by the SVs. )e
entire vehicle fleet is assumed to be electric. Each vehicle can
be either partially or fully recharged at recharging stations.
Each capacity-limited vehicle starts from one of the depots
and returns to the depot where it originated. Requests, which
contain several types of items with pick-up locations, de-
livery locations, and time windows, are served by the mixed
fleet. As an illustration, Figure 3 displays one route by a
vehicle. )e vehicle serves two passenger requests and re-
charges the battery at the recharging station. After visiting a
change station, it serves one freight request and returns to
the same depot where it originated.

We aim to find the best vehicle configuration of the
mixed fleet and routes of these vehicles in the network
composed of customer points (pick-up and delivery points),
recharging stations, change stations, and depots to achieve
an overall minimum cost including the fixed cost of vehicles,
the variable cost of the total travel distance, and the change
cost at change stations. )e problem can be regarded as a
variant of the pick-up and delivery problem with time
windows (PDPTWs) as defined in the literature review. We
refer to it as the multi-depot pick-up and delivery problem
with time windows, partial recharging strategies, fleet sizing,
and mixed fleet of single-purpose vehicles and multi-pur-
pose vehicles.

3.2. Mathematical Problem Formulation. In this section, we
present the mathematical model of the proposed problem.
)e nomenclature and parameters are displayed in Table 1.
In this model, all points except depots can be visited only

once. )us, multiple duplicates of change stations and
recharging stations are added to the network to allow
multiple visits to a station. Each duplicate can be visited
once, and the number of duplicates is large enough to cover
the maximum number of possible visits at a change or
recharging station. To distinguish the arrival time, load, and
electricity when a vehicle starts and ends at a depot, we add
one copy of depots as the end depots differed from the start
depots. Given nd depots, depot vertices 1, . . . , nd􏼈 􏼉 denote
the start depots and depot vertices nd + 1, . . . , 2∗ nd􏼈 􏼉 de-
note the end depots. MVs must empty their loads before
entering a change station.

)ere are two classes of vehicles. One is MV, and the
other one is SV containing three vehicles types. )e request
of an item type can be handled by an SV or an MV of the
corresponding vehicle type. Although MVs can transport
items of multiple types at different moments, the type of the
MV is defined as the type of item it can carry at a particular
moment.

Let N∗ denote all points in the network and p denote the
class of a vehicle (i.e., 0 for MV and 1 for SV). We define the
binary decision variable x

p

ijkd as equal to 1 if a vehicle of the
class p carries items of type k, travels along the arc (i, j) for
i, j ∈ N∗, and originates from the depot d. Otherwise, the
variable is 0. Let R denote the request set for all types. We
define the binary decision variable zr

j for tracking the item of
request r in the vehicle route. It equals 1 if a vehicle carries
the item of request r when arriving at the point j, and 0
otherwise. Given the request r ∈ R, r+ ∈ C denotes its pick-
up point and r− ∈ C denotes its delivery point.

3.3. Objective Formulation. )e objective function (1)
minimizes the overall costs including the fixed costs of
vehicles and variable costs proportional to the distance
traveled. )e first and second terms denote the fixed costs of
SVs and MVs, respectively. )e fixed cost of vehicles con-
tains the purchase cost and the labor cost (e.g., driver and
packing if any) amortized to each trip. )e third and fourth
terms represent the variable costs brought by SVs and MVs,
respectively. )e variable cost contains the cost of energy
consumption per distance unit. )e fifth term represents
change costs, which are proportional to the number of
module changes. )e meaning of its parameters is displayed
in Table 1.

min 􏽘
k∈K

f
k

􏽘
d∈D

􏽘
i∈D

􏽘

j∈C∪ S′

x
1
ijkd + f

0
􏽘
k∈K

􏽘
d∈D

􏽘
i∈D

􏽘

j∈C∪ S′

x
0
ijkd + 􏽘

k∈K
αk

􏽘
i∈N

􏽘

j∈N′
􏽘
d∈D

dijx
1
ijkd

⎡⎢⎢⎢⎢⎢⎣

+ α0 􏽘
k∈K

􏽘
i∈N

􏽘

j∈N′
􏽘
d∈D

dijx
0
ijkd + fc 􏽘

i∈F′
􏽘

j∈N′
􏽘
k∈K

􏽘
d∈D

x
0
ijkd

⎤⎥⎥⎥⎥⎥⎦.

(1)

3.4. Constraints. )e model characteristics are defined in
this subsection. )e constraints related to depots and the

mixed fleet are based on the formulation proposed by Salhi
et al. [25], which considers multiple depots and a mixed fleet
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Table 1: Sets of points, parameters, and decision variables.

K Vehicle types (i.e., transported item types)
Ck Customer points for item type k

C Customer points for all item types, C � ∪Ck

R Requests, in which a request has r a pick-up point r+ and a delivery point r−

C+
k Pick-up points for item type k

D Depots where vehicles start
D′ Depots where vehicles end
F′ Duplicated change stations
S′ Duplicated recharging stations
N Customer and change points with start depots, N � C∪D∪F′ ∪ S′
N′ Customer and change points with end depots, N′ � C∪D′ ∪F′ ∪ S′
N∗ All points in the network, N∗ � N∩N′
P Vehicle classes, 1 for SVs, 0 for MVs
fk Fixed cost of the SV type k

f0 Fixed cost of the MV
αk Variable cost of the SV type k

α0 Variable cost of the MV
fc Change cost of the MVs at any change station
dij )e distance/cost for traveling from i to j

[ei, li] Time range for i ∈ C∪D∪D′
si Service time for a customer point i.
τi Starting time of a point i when visited by a vehicle at arrival.
Ek Energy storage capacity for SVs of type k.
E0 Energy storage capacity for MVs.
gk Recharging time per energy unit for vehicle type k.
g0 Recharging time per energy unit for MVs.
ηk Energy consumption per unit distance for vehicle type k.
η0 Energy consumption per unit distance for MVs.
Qk Load capacity for SVs of type k.
Q0 Load capacity for MVs
qj Volume of the item at customer point j

Mt Upper bound of time.
My Upper bound of energy, My � max Ek􏼈 }
Mq Upper bound of load, Mq � max Qk􏼈 􏼉.
x

p

ijkd 1, if a vehicle of the class p, carrying items of type k, traveling along arc (i, j) for i, j ∈ N∗, and originating from depot d. 0, otherwise
zr

j 1, if a vehicle carries the item of request r when arriving at point j. 0, otherwise
yi Energy level when a vehicle arrives at point i

Yi Energy level when a vehicle leaves the recharging station i

ui Remaining capacity at point i when being visited

Journal of Advanced Transportation 5



in a VRP. We extend the formulation by using the variables
zc

j tracking movements of items on vehicle routes and in-
troduce features of MVs, change stations, and recharging
stations.

􏽘
p∈P

􏽘
i∈N

􏽘
d∈D

x
p

ijkd � 1, ∀k ∈ K,∀j ∈ C
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x
p
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(9)

􏽘
i∈N

􏽘
k∈K

x
0
ijkd � 􏽘

i∈N′
􏽘
k∈K

x
0
jikd, ∀j ∈ F′,∀d ∈ D, (10)

􏽘

j′∈N′
x
0
jj′kd − M 1 − x

0
ijkd􏼐 􏼑≤ 0,

∀i ∈ N,∀j ∈ F′, ∀k ∈ K, ∀d ∈ D,

(11)

􏽘
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􏽘
k∈N

􏽘
d∈D

x
p

iikd � 0 ∀i ∈ N
∗
, (12)

x
p

d1ikd2
� 0, ∀p ∈ P,∀i ∈ C∪F′ ∪ S′, ∀k ∈ K,

∀d1, d2 ∈ D, d1 ≠ d2,
(13)

x
p

id1kd2
� 0, ∀p ∈ P,∀i ∈ C∪F′ ∪ S′, ∀k ∈ K, ∀d1 ∈ D′,

∀d2 ∈ D, d1 ≠d2 + nd,

(14)

􏽘
p∈P

􏽘
k∈K

􏽘
d∈D

x
p

ijkd � 0, ∀i, j ∈ D, (15)

􏽘
p∈P

􏽘
k∈K

􏽘
d∈D

x
p

ijkd � 0, ∀i, j ∈ D′, (16)

􏽘
p∈P

􏽘
k∈K

􏽘
d∈D

x
p

ijkd � 0, ∀i ∈ D, ∀j ∈ D′, (17)

􏽘
p∈P

􏽘
k∈K

􏽘
d∈D

x
p

ijkd � 0, ∀i ∈ D′,∀j ∈ D, (18)

x
p

ijkd ∈ 0, 1{ }, ∀p ∈ P,∀i ∈ N
∗
, ∀j ∈ N

∗
, ∀k ∈ K, ∀d ∈ D.

(19)

Constraints (2) and (3) ensure that each pick-up point is
served by a vehicle of the corresponding type. Constraint (4)
guarantees that each recharging station may be visited by all
vehicles at most once. Constraints (5)-(7) enforce that
module change stations can be exclusively visited by MVs.
Constraint (8) ensures MVs cannot drive from a depot to a
change station. )e flow conservation for customer points
and recharging stations is handled by Constraint (9).
Constraint (10) ensures the conservation of flow for change
stations. Constraint (11) guarantees that a vehicle, which
visits a change station, must change its vehicle type. M is a
sufficiently large parameter for the conditional constraint.
Constraint (12) avoids self-circles for all points. Constraints
(13) and (14) ensure that vehicles return to the same depot
where they depart. Constraints (15)-(18) prevent vehicles
directly traveling from depots to depots. Constraint (19)
defines the binary decision variable.

)e following set of constraints record the carrying
status of requests:

􏽘
r∈R

z
r
j � 0, ∀j ∈ D∪D′ ∪F′, (20)

􏽘
p∈P

􏽘
k∈K

􏽘
d∈D

x
p

ijkd � 1⟶ z
r
i � z

r
j, ∀i ∈ N, ∀j ∈ N, ∀r ∈ R, i≠ r

+
, i≠ r

−
, i≠ j, (21)

􏽘
p∈P

􏽘
k∈K

􏽘
d∈D

x
p

r+jkd � 1⟶ z
r
j � 1, ∀j ∈ N′,∀r ∈ R, r

+ ≠ j, (22)
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􏽘
p∈P

􏽘
k∈K

􏽘
d∈D

x
p

r− jkd � 1⟶ z
r
j � 0, ∀j ∈ N′,∀r ∈ R, r

− ≠ j, (23)

z
r
r− � 1, ∀r ∈ R, (24)

z
r
j ∈ 0, 1{ }, ∀j ∈ N

∗
,∀r ∈ R, (25)

Constraint (20) defines the initial situation for all start
depots and guarantees that vehicles have emptied their loads
before visiting end depots and change stations. Constraint
(21) passes the carrying status of requests from i to j if they
are not picked up or delivered at i. Constraint (22) ensures
that vehicles collect items at pick-up points of requests.
Constraint (23) guarantees that vehicles drop items at de-
livery points of requests. Constraint (24) ensures that the
delivery point must be served after its corresponding pick-
up point. Constraint (25) defines the binary decision
variable.

)e last set of constraints record the arriving time,
energy level, and load. To track the energy usage, the de-
cision variable yi is defined as the energy level when a vehicle

arrives at the point i. )e decision variable Yi is defined as
the energy level when a vehicle leaves the recharging station
i. )e recharged amount of electricity is (Yi − yi), which
follows the definition first introduced by Keskin and Çatay
[24].)e decision variable τi records the time when a vehicle
visits the point i.

In the proposedmodel, each type of SV and theMV has a
different energy storage capacity, recharging time per energy
unit, and energy consumption per unit distance. When
expressing parameters of vehicle types, we use the index of
{1, . . ., K } representing SV types and 0 representing MVs.
)e decision variable uj describes the current remaining
capacity at the point j.

ej ≤ τj ≤ lj,∀j ∈ C∪D∪D′, (26)

τi + tij + si􏼐 􏼑x
p

ijkd − Mt 1 − x
p

ijkd􏼒 􏼓≤ τj, ∀p ∈ P, ∀i ∈ C, ∀j ∈ N′, ∀k ∈ K, ∀d ∈ D, i≠ j, (27)

τi + tijx
0
ijkd + tswap − Mt 1 − x

0
ijkd􏼐 􏼑≤ τj, ∀i ∈ F′, ∀j ∈ N′, ∀k ∈ K, ∀d ∈ D, i≠ j, (28)

τi + tijx
1
ijkd + g

k
Yi − yi( 􏼁 − Mt 1 − x

1
ijkd􏼐 􏼑≤ τj, ∀i ∈ S′, ∀j ∈ N′, ∀k ∈ K, ∀d ∈ D, i≠ j, (29)

τi + tijx
0
ijkd + g

0
Yi − yi( 􏼁 − Mt 1 − x

0
ijkd􏼐 􏼑≤ τj, ∀i ∈ S′, ∀j ∈ N′, ∀k ∈ K, ∀d ∈ D, i≠ j, (30)

0≤yj ≤Yj, ∀j ∈ S′, (31)

0≤Yi ≤E
0

+ My 1 − x
0
ijkd􏼐 􏼑, ∀i ∈ S′, ∀j ∈ N′, k ∈ K, d ∈ D, i≠ j, (32)

0≤Yi ≤E
k

+ My 1 − x
1
ijkd􏼐 􏼑, ∀i ∈ S′, ∀j ∈ N′, k ∈ K, d ∈ D, i≠ j, (33)

0≤yj ≤yi − η0dij􏼐 􏼑x
0
ijkd + My 1 − x

0
ijkd􏼐 􏼑, ∀i ∈ C∪F′, ∀j ∈ N′, k ∈ K, d ∈ D, i≠ j, (34)

0≤yj ≤yi − ηk
dij􏼐 􏼑x

1
ijkd + My 1 − x

1
ijkd􏼐 􏼑, ∀i ∈ C∪F′, ∀j ∈ N′, k ∈ K, d ∈ D, i≠ j, (35)

0≤yj ≤E
0

− η0dij􏼐 􏼑x
0
ijkd + My 1 − x

0
ijkd􏼐 􏼑, ∀i ∈ D, ∀j ∈ N′, k ∈ K, d ∈ D, i≠ j, (36)

0≤yj ≤E
k

− ηk
dij􏼐 􏼑x

1
ijkd + My 1 − x

1
ijkd􏼐 􏼑, ∀i ∈ D, ∀j ∈ N′, k ∈ K, d ∈ D, i≠ j, (37)

0≤ uj ≤ ui − qix
p

ijkd + Mq 1 − x
p

ijkd􏼒 􏼓, ∀p ∈ P, ∀k ∈ K, ∀i ∈ C∪F′ ∪ S′, ∀j ∈ N′, d ∈ D, i≠ j, (38)
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0≤ uj ≤Q
0

+ Mq 1 − x
0
ijkd􏼐 􏼑, ∀k ∈ K, ∀i ∈ D, ∀j ∈ N′, d ∈ D, i≠ j, (39)

0≤ uj ≤Q
k

+ Mq 1 − x
1
ijkd􏼐 􏼑, ∀k ∈ K, ∀i ∈ D, ∀j ∈ N′, d ∈ D, i≠ j. (40)

Constraint (26) defines the time windows of depots and
customer points for all types. Constraints (27) and (28)
describe the time changes at customer points and change
stations, respectively. Constraints (29) and (30) consider the
time changes at recharging stations for MVs and SVs, re-
spectively. Constraint (31) ensures that the energy level of a
vehicle leaving a recharging station is higher than the energy
level of the vehicle when arriving. Constraints (32) and (33)
guarantee that the energy levels are no more than the
maximum energy capacity of the corresponding vehicle
types when leaving the recharging station. Constraints (34)
and (35) describe the energy change at recharging stations
for MVs and SVs, respectively. Constraints (36) and (37)
describe the energy consumption from depots to other
points for MVs and SVs, respectively. Constraint (38) de-
scribes the load changes at customer points, change stations,
and recharging stations. Constraints (39) and (40) describe
the load changes when leaving start depots for MVs and SVs,
respectively.

4. Adaptive Large Neighbourhood Search

)is section details the ALNS algorithm for the proposed
problem. Section 4.1 gives an overview of the proposed
algorithm. Section 4.2 defines the process to generate initial
solutions. Section 4.3 discusses the strategy for sequential
sharing. Section 4.4 discusses the strategy for partial
recharging. Section 4.5 describes the evaluation of solutions.
Sections 4.6, 4.7, 4.8, and 4.9 introduce the customer destroy
(CD) operators, customer repair (CR) operators, station
destroy (SD) operators, and station repair (SR) operators,
respectively.

4.1. Solution Generation. )e pseudocode of the proposed
ALNS is displayed in Algorithm 1. In the first step, an initial
solution is created (see Section 4.2). )en, the algorithm
iteratively destroys and repairs the current solution. For each
iteration, if the new solution is not energy feasible (i.e.,
nonfulfillment of energy constraints), the station insertion
algorithm Greed (see section 4.9) is applied to get an energy
feasible solution.

)e new solution is accepted or rejected based on a
simulated annealing (SA) approach: Let XNew and XCurrent
be the new solution and the current solution, respectively.
If f(XNew ) is less than f(XCurrent ), where f is the objective
function of the model plus load penalty El and time penalty
Et (defined in Algorithm 2), the new solution is accepted as
the current solution. Otherwise, the new solution may still
be accepted with a probability of e− (f(XNew )− f(XCurrent )/T).
After each iteration, the temperature T is multiplied by the
cooling rate α and the best solution will be updated if the
new solution is best so far. )e initial temperature guar-
antees that the first new solution worse than the current

solution will be accepted with a probability of 0.5. If
f(XNew ) is less than f(XCurrent ) and if El and Et are zero,
the new solution will be updated as the best solution.
Infeasible solutions with better f will be accepted as the
current solution, which increases the flexibility of ALNS.

)e analysis function f contains the objective of the
model given the solution plus a load penalty El and a time
penalty Et scaled by parameters βl and βt, respectively, as
shown in Algorithm 2. El � 0 guarantees the fulfillment of
load constraints. Et � 0 ensures the fulfillment of the time
windows. )e new solution is always energy feasible
according to Algorithm 1. )erefore, a penalty for electricity
is not needed.)e outputsf, Et, and El are utilized in the SA
approach.

)e ALNS algorithm’s structure is based on the algo-
rithm proposed by Keskin and Çatay [24], which is proven
useful for recharging stations in the vehicle routing problem.
An iteration of operators for charging stations is followed
after everyNSO − 1 iterations of operators for destroying and
repairing requests.

When choosing the destroy operator and repair operator
during each iteration, we use a roulette wheel selection. )is
mechanism is proposed by Ropke and Pisinger [22]. As
shown in Algorithm 1, iterations are divided into segments
with the lengths of Nc and Ne for customers and recharging,
respectively. )e probability Pi of selecting an operator i

during a segment s depends on its weight in the previous
segment Ws− 1

l (i.e., Ps
i � Ws− 1

i /􏽐
m
l�1 Ws− 1

l ). In particular, the
weight of the operator i in the segment s is
Ws

i � Ws− 1
i (1 − rp) + rpπs− 1

i /ϑs− 1
i , where rp is the roulette

wheel parameter, ϑs− 1
i represents the usage of the operator i

during the segment s − 1, and πs− 1
i is the score of the op-

erator i during the segment s − 1. For each iteration, the
score of the chosen operator πs

i is increased by σ1, σ2, or σ3,
which are scores if the iteration generates the best solution so
far, improves the current solution, or accepts a worse so-
lution according to the SA criterion.

After each customer/recharging segment, the scores and
weights of the customer/recharging operators are reset. In the
reset of the segment s, if the operator i is not selected within
the segment (i.e., πs

i � 0), the weight of this operator in the
next segment s + 1 will be Ws+1

i � Ws
i (1 − rp) + rpσ3/3. )e

small value σ3/3 guarantees that Ws
i does not approach zero

so that every operator can be selected even if they have bad
performance for a period.

4.2. Initial Solution. In the generation of the initial solution,
requests are handled according to their type. Out of all
requests from the same type, one request is randomly se-
lected as the base request to generate a vehicle. )e start
depot is chosen so that f increases the least for this vehicle
carrying only the base request. )e request is randomly
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assigned to an MV or SV. )en, the remaining requests will
be inserted into the best position while considering the
feasibility of time and load. Requests with earlier possible
visiting times have priorities in the insertion order. If it is
impossible to insert any remaining request into this vehicle,
a new vehicle is generated based on one request randomly

chosen from the remaining requests. )e request insertion
and vehicle generation processes are repeated until all
remaining requests of this type are inserted. )e process is
then for all types. Finally, the station insertion algorithm (see
Section 4.9) is performed to make the initial solution feasible
in energy constraints.

(1) Generate an initial solution
(2) j←1
(3) while j≤Maximum do
(4) if j ≡ 0(modNSO) then
(5) Select SD operator and remove stations on the current solution
(6) Select SR operator and repair solution to get a new solution
(7) else
(8) Select CD operator and remove customer on the current solution
(9) Select CR operator and repair solution to get a new solution
(10) Updating change stations of the new solution
(11) if energy infeasible solution then
(12) Perform the station insertion algorithm Greed on the new solution
(13) end
(14) end
(15) Apply the sequential sharing strategy
(16) Apply the partial recharging strategy
(17) Algorithm 2: Assignment of vehicles’ class and solution evaluation
(18) Using the SA criterion to accept/reject the new solution as the current solution and updating the best solution if it is feasible

and best so far
(19) T←α∗T

(20) if j ≡ 0(modNc) then
(21) reset scores and update weights of CD and CR operators
(22) end
(23) if j ≡ 0(modNe) then
(24) reset scores and update weigths of SD and SR operators
(25) end
(26) j←j + 1
(27) end

ALGORITHM 1: ALNS.

(1) Input new solution X

(2) Output f(s), Et and Et

(3) for each vehicle in the solution do
(4) if requests of different types in the vehicle then
(5) Assign the vehicle as a MV
(6) else
(7) calculate the objective value Obj0 contributed by the vehicle if it is multi-purpose
(8) calculate the objective value Obj1 contributed by the vehicle if it is single-purpose
(9) Assign the vehicle with the class p of lower Objp
(10) end
(11) If the arriving time of point i: τi is earlier than its time-window, the vehicle will wait
(12) If the vehicle load at point i is beyond its load capacity, record the excess load as vi

(13) end
(14) Calculate the load penalty El � 􏽐i∈N∗vi

(15) Calculate the time penalty Et � 􏽐i∈C∪D∪D′max(τi − li, 0)

(16) Sum up the objective value contributed by each vehicle as Objective

(17) f(s)←Objective + βl ∗El + βt ∗Et

ALGORITHM 2: Assignment of vehicles’ class and solution evaluation.

Journal of Advanced Transportation 9



4.3. Strategy for Sequential Sharing. Sequential sharing does
not allow vehicles to simultaneously carry different types
of items. New change stations may be in need when
inserting a request into a vehicle with at least one different
type of request. Conversely, existing change stations may
be removed when deleting a request whose neighboring
points on both sides belong to the same type. After ap-
plying destroy and repair operators, the proposed algo-
rithm checks every two successive customer points. )en,
if the two customer points on both sides are not of the
same type, the change station adding the lowest distance
increment is inserted. If the two customer points are of the
same type, the change station is removed from the
solution.

However, the insertion of new change stations into a
vehicle route is performed after the destroy and repair
operators have been applied. )e insertion of a change
station adds additional travel distance to the route, which is
initially not considered when applying the destroy and repair
operators. )erefore, the distance matrix equivalent as the
direct distance plus the possible additional travel distance
(see Equation (41)) is used in order to integrate the addi-
tional travel distance into the route, hence correctly
updating the cost values.

dij
′ �

minf∈F′ dif + dfj + fc􏽨 􏽩 ∀i ∈ Ck1
, ∀j ∈ Ck2

, k1 ≠ k2

dij Otherwise

⎧⎨

⎩

(41)

If two points are not of the same type, their equivalent
distance is the distance same as the two points as endpoints
to pass the nearest change station. Otherwise, their equiv-
alent distance is the same as the direct distance.

4.4. Partial Recharging Strategy. Keskin and Çatay [24]
showed that: “if an optimal solution exists such that an EV
leaves the depot with its battery partially charged, then the
same EV departing from the depot fully charged is also
optimal since fully recharging the battery at the depot does
not delay the departure time of the EV.” )erefore, vehicles
start with a fully recharged battery in our proposed
algorithm.

We propose a simple and optimal partial recharging
strategy that avoids any time window violations. Since the
recharging time increases with the energy that is recharged,
after obtaining an energy feasible solution, our proposed
algorithm sets the recharged amount of energy at each
station to a minimum value, which ensures that the EV
arrives at the next station/depot with an empty battery.

4.5. Assignment of Vehicles’ Class and Solution Evaluation.
In the proposed problem, there are K kinds of SVs and one
kind of MV.)e purpose of a vehicle is important since each
kind of vehicle has a different capacity, maximum energy
capacity, recharging speed, and energy-consuming speed. In
Algorithm 2, the objective function is computed and the

purpose of vehicles is changed based on the evaluation
result.

4.6. Customer Destroy Operators. )e customer destroy
operators delete or move customer requests.

(i) Random location: in the current solution, a
number cc of points are selected including cus-
tomer points, change stations, and recharging
stations. )en, requests containing the selected
customer points are removed.

(ii) Path: inspired by Demir et al. [26], a request is
randomly selected. )en, stations and requests
with at least one point within the sequence between
the pick-up point and the delivery point of the
preselected request are removed.

(iii) Worst distance: inspired by Keskin and Çatay [24],
the request with the 􏼆

􏼌􏼌􏼌􏼌R|μκ􏼇th largest distance in-
crement, calculated as the total distance of the
vehicle minus the total distance after the removal,
is removed. Here, |R| means the total number of
requests, μ is a random number from 0 to 1, and κ
is a parameter influencing the randomness.

(iv) Shaw: inspired by Ropke and Pisinger [22], the idea
of this operator is to remove similar requests. For
two requests r1, r2 ∈ R, the similarity is defined as
follows:

R r1, r2( 􏼁 �
1

dr+
1 r+

2
+ dr−

1 r−
2

+ λ τr+
1

− τr+
2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + τr−
1

− τr−
2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

,

(42)

where τi is the arriving time at the point i. Equation
(42) considers the differences in distances and
arriving time between the two pick-up points and
the two delivery points. )e two requests with
maximum similarity are removed.

(v) Random vehicle: a random vehicle is selected and
deleted.

(vi) Pair: two requests are selected and removed. )e
information of their original vehicles (i.e., the
vehicle from which each request is removed) is
swapped between those vehicles.

(vii) Cross-swap: two vehicles are randomly selected.
All points with empty loads, when being visited,
are recorded. For each vehicle, the route is broken
into two parts based on their one random recorded
point. )e back half of each vehicle route is
connected to the front half of the other vehicle
route. Finally, a time feasibility check is conducted
from the breaking point to the end depots for the
two vehicles, which deletes the requests containing
infeasible points until all remaining requests are
time feasible.
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(viii) Swap: two requests are randomly selected, and
their pick-up points and delivery points are
swapped. )erefore, no requests are deleted.

4.7. Customer Repair Operators. )e customer repair op-
erators insert requests deleted in destroy operators. )e best

position for inserting a request i is defined as the position
leading to the lowest distance increment compared to the
ones brought by other positions. )e distance increment
brought by the insertion of request i is defined as follows:

Δdi �
dprev i+( ),i+ + di+ ,next i+( ) − dprev i+( ),next i+( ) + dprev i−( ),i− + di− ,next i−( ) − dprev i−( ),next i−( ), i

+and i
− are adjacent,

dprev i+( ),i+ + di+ ,i− + di− ,next i−( ) − dprev i+( ),next i−( ), Otherwise,

⎧⎨

⎩ (43)

where prev and next mean the previous point and the next
point, respectively.

(i) Original vehicle: the insertion order of requests is
first randomly shuffled. )en, each request is
inserted into its original vehicle where it is removed
at the best position. If the request’s original vehicle
does not exist after destroy operators, it will be
inserted into a random vehicle.

(ii) Inter vehicle: the process is similar to the first repair
operator. )e only difference is that the insertion
considers all positions among all vehicles.

(iii) New vehicle: the operator generates vehicles and
inserts requests following the same method in the
generation of the initial solution.

(iv) Random insertion: the order is randomly disrupted
in which vehicles are inserted. Requests are sorted

Table 2: Results of parameter tuning (Obj ∗104).

Default Tested
βt Penalty for the time infeasibility

6 1 5 5.5 6.5 7 8 10 20
Obj 2.240 9 2.417 4 2.395 2 2.221 9 2.213 5 2.238 5 2.195 4 2.336 5 2.362 4
βl Penalty for the load infeasibility

100 10 50 80 90 120 150 200 300
Obj 2.227 2.217 7 2.204 5 2.195 2 2.216 3 2.230 6 2.223 2.211 5 2.199 4
Nso Period to destroy and repair recharging stations

10 3 4 5 6 7 8 9 11
Obj 2.208 6 2.361 7 2.222 2 2.252 6 2.201 5 2.235 7 2.192 3 2.1951 2.199 8
Nc Length of customer segment for resetting scores

25 10 20 22 27 30 32 35 40
Obj 2.243 3 2.301 2.192 2 2.206 4 2.188 3 2.187 3 2.2081 2.224 5 2.204 2
Ne Length of station segment for resetting scores

200 100 150 175 190 210 220 250 300
Obj 2.191 2.239 7 2.208 6 2.209 5 2.252 2 2.2171 2.175 5 2.180 6 2.197 7
rp Roulette wheel parameter

0.25 0.15 0.2 0.3
Obj 2.1851 2.267 2 2.181 6 2.191 1
κ Randomness in the Worst Distance

5 2 3 4 6 7 8
Obj 2.198 0 2.181 8 2.276 8 2.180 0 2.182 3 2.2451 2.206 2
λ Parameter for time differences in the Shaw removal

2 0.1 1 1.25 1.5 2.5 5 10 100
Obj 2.204 8 2.283 8 2.197 4 2.195 7 2.179 0 2.189 2 2.211 2 2.201 6 2.248 4
cc Proportion for deleting customers in destroy operators

0.2 0.1 0.125 0.15 0.175 0.225 0.25 0.3
Obj 2.193 8 2.23 2.205 2.242 4 2.197 6 2.243 5 2.230 6 2.237 4
cs Proportion for deleting stations in destroy operators

0.2 0.1 0.15 0.25
Obj 2.201 8 2.197 7 2.193 9 2.213 4
σ1,2,3 Scores in the simulated annealing

15,10,5 15,5,10 15,10,13 15,10,8
Obj 2.180 7 2.210 3 2.235 4 2.193 4
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by their earliest possible visiting time for insertion.
)en, each request in the list is inserted by order
into the best position within the vehicle while
considering the time and load feasibility. If all
remaining requests cannot be inserted into the
vehicle, the next vehicle will be considered. If there
are still remaining requests and all vehicles have
been considered, operator New Vehicle will be ex-
ecuted for these requests.

4.8. StationDestroyOperators. )e station destroy operators
are used to eliminate or move recharging stations in the
solution, which may improve the overall performance by
removing inefficient ones or adjusting their positions. Four
operators are implemented. A fixed number cs of recharging
stations are selected for destroying operators, except for the
inefficient visit operator.

(i) Worst usage: following the operator proposed by
Keskin and Çatay [24], this operator aims to make
use of the battery as much as possible. )us,
recharging stations are sorted by the energy levels
when they are visited. cs recharging stations are
removed with the highest energy level.

(ii) Inefficient visit: we propose a new destroy operator
for recharging stations. To be recharged, vehicles
need to visit recharging stations, which increases the
total travel distance. )us, avoiding a large incre-
ment with a short recharging stop is reasonable.)e
proposed operator sorts the recharging stations by
the ratio of the recharged amount to distance in-
crement by station and counts the number of sta-
tions with zero recharging amount as c0. )en, the
first max(c0, cs) stations are removed.

(iii) Random station: cs recharging stations are ran-
domly removed in order to diversify the solution.

(iv) Random walk: cs recharging stations are selected
and then moved one position forward or backward
in their vehicles’ routes.

4.9. Station Repair Operators. )e station repair operators
are utilized to make the solution electric feasible by inserting
recharging stations. )ere are three operators implemented,
and all of them are based on Keskin and Çatay [24].

(i) Greed: this operator checks the route from the start
depot. Once a point is visited with a negative battery
state, a recharging station is inserted into the arc
between this point and its previous point, which
brings the least distance increment. If the insertion at
this arc is not feasible, the previous arc is considered.

(ii) Comparison: this operator checks the first point
visited with a negative battery state and looks at arcs
before this point. If the nearest feasible arc for in-
sertion has an infeasible previous arc or a feasible
previous arc for insertion of more distance incre-
ments, a recharging station with the least distance

increment is inserted into the arc. Otherwise, the
previous arc is considered in the same way.

(iii) Best arc: once a point is visited with a negative
battery state, all arcs between the point and the
previous station or depot are considered. )e least
distance increment brought by the insertions of a
recharging station at all feasible arcs is calculated.
)e station at the arc generating the shortest dis-
tance increment is inserted.

To avoid the special case that there is no feasible arc
between the last station/depot to the point visited with a
negative battery state, we assume a relatively large amount of
vehicle energy capacity in the experiments.

5. Numerical Experiments and Analysis

In order to validate our proposed ALNS algorithm, 15 small
instances are solved using ALNS and the solver Gurobi 7.5.2.
)e results of both methods for each instance are presented.
)e problems are solved using an 8-core i7-8700 CPU of a
3.20GHz computer. In addition to the numerical results, we
record and analyze the selection probabilities of operators
and the objective values of one optimization run. Finally, 15
large-size cases are tested to compare the results by pure SV,
pure MV, or mixed fleets.

5.1. Parameter Tuning. Inspired by the tuning approach of
Ropke and Pisinger [22], Demir et al. [26], and Keskin and
Çatay [24] for testing each setting of a parameter, the
proposed ALNS is executed 20 times for only 1,500 itera-
tions. )en, the average objective value of 20 trials is
recorded. Finally, the setting with the best average objective
value is chosen as the parameter for the numerical experi-
ments in the remainder of this study. Only one parameter is
varied at a time while keeping the others as default values if
they are not tuned or tuned values otherwise. We tuned
parameters according to the order in Table 2. An artificial
instance of nine requests with three types is used in tuning.
Table 2 displays the details of the parameter tuning results.
)e best parameter values are indicated in bold. We set a
high cooling rate α of 0.995 to make the first 1,500 iterations
converge fast while manually tuning the cooling rate as
0.999 5 for experiments tomake the program result in a good
performance in the entire iterations.

5.2. Small-Size Instances. We have manually created 15
instances. Table 3 displays general information about the
number of requests, the number of recharging stations,
depots, and change stations for each instance. As for the
request vector, the number in position i of the vector rep-
resents how many requests are there for each type i. )e
instances have different numbers of recharging stations,
change stations, depots, requests, and request types to ensure
that the instances represent a varied set of possible scenarios.
)e fixed costs of SVs and the MV are randomly chosen
from the range [2000, 4000], which enables our program to
tradeoff between shorten routes and fewer vehicles.)e fixed

12 Journal of Advanced Transportation



cost of MV can be higher than all, some, or none of the
modeled SV types. )e positions, time windows, loads of
customer points, and capacity of vehicles are also varied
from instance to instance to increase their diversity.

Each instance is solved by the proposed ALNS algo-
rithm five times and the MIP solver one time. )e
maximum number of iterations of ALNS is set to 10,000 in
Case 1-13, 15,000 in Case 14, and 20,000 in Case 15. In
Table 3, nS, nd, nF are the numbers of recharging stations,
depots, and change stations, respectively. Avg.tl means the
time to find the best solution. Avg.ta means the time to
finish all iterations. te denotes the time obtaining the
optimal solution by the exact algorithm. Avg.Dev denotes
the average percentage of the result obtained by the ALNS
algorithm that deviates from the optimal solution ob-
tained by the MIP solver. Optimum records how many
times the ALNS reaches the optimal solution within 5
trials.

As Table 3 shows, the Avg.tl of cases 1-13 is less than 1
second, which indicates that the proposed algorithm can
reach a good solution fast. )e Avg.ta of cases 1-15 except
the last case is less than 2.5 seconds, which suggests that the
proposed ALNS normally has stable and fast computation
time under the same stopping conditions. Comparing the
Avg.tl and the Avg.ta with the te for all cases, hence, we could
show that the proposed ALNS is efficient to solve the
problems.

At the same time, there is at most a 0.71% average
deviation for all the 15 cases. )e ALNS reaches the opti-
mum solution for all 5 trials in 11 out of 15 cases. Although
the ALNS is stuck in a locally optimal solution in Case 10, the
deviation is small. )erefore, the quality of solutions gen-
erated by the ALNS is high.

5.3. Operator Analysis. To analyze the operators implemented
in this study, we run the proposed algorithm on instance L90-3
(see detailed instance description in 5.4). As mentioned in
Section 4, iterations are divided into fixed-length segments and
the probability for choosing one operator at one segment
depends on its performance on the previous segment. Figures 4
and 5 display the objective curves and selection probabilities at
all segments for customer and station operators, respectively.
Components of the stacked bar at a segment represent the
probabilities of operators at this segment.

Looking at the customer destroy operators in Figure 4(a),
before the objective starts to decrease, the probabilities of the
operators Cross-swap and Random Vehicle increase, while the
probabilities of operators Swap, Pair, and Shaw decrease. At the
same time, the operators Worst Distance and Path keep their
probabilities.)e probability of the operator Random Location
increases first, then decreases, and later increases again. With
the decrease in objective value, the probabilities of the operators
Worst Distance, Path, and Cross-swap dominate while the
probability of the operator Random Vehicle continuously
decreases. Additionally, the operators Random Location, Shaw,
Pair, and Swap remain at low probabilities throughout the
entire optimization, indicating poor optimization performance.

Considering the customer repair operators in
Figure 4(b), Original Vehicle and Inter Vehicle have low
probabilities throughout the entire optimization, indicating
poor possibilities to improve the objective value. Before the
drop of the objective, the algorithm tries to generate lots of
new vehicles proven by the increasing probability of the
operator New Vehicle while the operator Random Insertion
keeps a high probability at the same time. After the objective
value reduces, the operator Random Insertion dominates
and fewer new vehicles are generated.

Table 3: Results for small instances.

Instance Requests [nS, nd, nF] Avg.tl(s) Avg.ta(s) te(s) Avg.dev Optimum

1 [3,1] [2,1,1] 0.316 807 2.112 883 105.22 0.00% 5
2 [3,1] [2,1,1] 0.194 065 2.003 296 269.6 0.00% 5
3 [3,1] [1,2,1] 0.322 63 1.768 072 5.16 0.00% 5
4 [3,2] [1,2,1] 0.178 373 2.017 891 30.42 0.00% 5
5 [3,2] [1,1,2] 0.513 943 1.901 372 4.09 0.00% 5
6 [3,1] [2,2,1] 0.254 505 2.347111 2787.43 0.00% 5
7 [3,1] [3,1,1] 0.517 603 2.162 484 2887.55 0.71% 3
8 [2,2] [1,2,1] 0.104138 1.809 524 2.94 0.00% 5
9 [3,3] [1,1,2] 0.572 434 2.186 973 21.37 0.00% 5
10 [3,1] [1,3,1] 0.968 397 1.630 676 180.1 0.57% 0
11 [3,2] [1,2,2] 0.708 596 1.73811 341.12 0.00% 5
12 [2,2,2] [1,2,1] 0.54916 1.611 34 19.06 0.00% 5
13 [2,1,3] [1,2,2] 0.659 06 1.597 949 267.50 0.00% 5
14 [2,2,3] [1,2,2] 1.496 54 2.440 7 7200+1 0.01% 4
15 [2,2,3] [1,2,2] 2.158 38 3.102 671 2481.43 0.34% 2
1)e objective bound limit was not reached within 2 h. )e objective value reported is the last value computed by the MIP solver.

Table 4: Time window settings of base instances (pick-up ⟶ delivery, hour).

Type 1 Type 2 Type 3

[0,10] ⟶ [1,12] Half requests: [5,14] ⟶ [6,15] [6,18] ⟶ [6,18]Half requests: [12,24] ⟶ [12,24]
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Before the decrease in the objective in Figure 5(a), the
probability of the station destroy operator Random Walk
continuously decreases while the other three operators share
approximately equal probabilities. After the objective starts
to decline, the operator Inefficient Visit dominates while the
other three operators fluctuate at relatively lower proba-
bilities. Toward the end of the optimization, all four oper-
ators share roughly equal probabilities.

In Figure 5(b), the three implemented station repair oper-
ators have approximately equal probabilities before the objective
starts to decrease. Subsequently, the operators oscillate for the
majority of the optimization until returning to an equal share.

In ALNS, we apply both conventional operators and
problem-specific operators. Among the conventional opera-
tors,Worst Distance and Path are frequently chosen during the
optimization, suggesting superior performance. )e problem-
specific operators Cross-swap, Random Insertion, and Ineffi-
cient Visit show good performance, while Pair performs worst
according to the reported selection probabilities.

5.4. Large-Size Cases. To evaluate the effectiveness of the
consolidated urban transport by MVs given requests with
uneven time distribution, we create three base instances. For
requests of each type in all base instances, their time win-
dows are concentrated in specific time periods during the
day to simulate demands of different types, which are un-
evenly distributed in time. )ese three base instances have a
total number of requests of 30, 50, and 90 each. )e total
number of requests is divided into three item types. Base
instance L30 has 9, 14, and 7 requests, respectively, for three
item types, while base instance L50 has 17, 16, and 17 re-
quests, respectively. Base instance L90 contains 30 requests
for each type. )ree base instances have the same distri-
bution of time windows as shown in Table 4.

In Table 4, the left side of an arrow denotes a time
window of the pick-up points. )e right side of an arrow
denotes a time window of the delivery points. )e time
windows for type 1 are concentrated around the first half of a
day. Time windows for type 2 have two kinds representing
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Figure 4: )e probabilities of customer operators at each segment. (a) Customer destroy operators. (b) Customer repair operators.
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morning and evening peaks of passengers. )e time win-
dows for type 3 cover the whole daytime. Requests of dif-
ferent types need to be served in different periods (i.e.,
unevenly distributed time windows for different demand
types).

To study the performance of pure SVs, pure MVs, and
the mixed vehicle fleet, the proposed program can be slightly
modified to obtain solutions for pure MVs and pure SVs
besides the mixed vehicle fleet. To consider pure SV fleets, a
large enough value may be assigned as the fixed cost of MVs
so that no MV will be utilized. For pure MV fleets, all ve-
hicles may be assigned as MVs in Algorithm 2.

At the same time, the MV’s fixed cost f0 is an important
factor for decision-makers to consider the fleet configura-
tion. For simplicity, we assume that all SV types have the
same fixed cost f∗ � 2000. Furthermore, we create two
different situations for MVs based on their fixed costs. One
situation assumes that MVs have equal fixed cost f∗ as SVs
and the other situation assumes that MVs have a slightly
higher fixed cost of 1.2 f∗ � 2400. To control other factors,
all SVs and MVs have the same parameters of recharging
performance, energy capacity, and volume capacity.

As Table 5 and Figure 6 show, the three base instances are
computed with different vehicle fleet characteristics and MV
cost structures. Each instance is computed 3 times using
50,000 iterations, and the solution with the overall best
objective is displayed. )e program uses the same parameter
settings as shown in Table 2 except larger Nc of 80, which
extends the length of resetting customer operator scores to
accommodate longer maximum iteration andmore requests.
We record the total travel distance, objective value, and
vehicle configuration for each instance.

In instances with the same fixed cost structure (i.e., L30-1
to L30-3, L50-1 to L50-3, and L90-1 to L90-3), MVs and
mixed vehicle fleets can improve the objective value by 5-
15% compared to SVs. At the same time, fewer vehicles are
utilized in pure MV and mixed vehicle fleet solutions. )e
introduction of MVs (i.e., both mixed fleet and pure MVs)
implies fewer vehicles and lower objectives if the same fixed
costs are assumed.

In instances L30-4 to L30-5, L50-4 to L50-5, and L90-4
to L90-5, the improvement of the objective value in L30-4 is
much smaller than those in L30-2, L30-3, and L30-5. )e
pure MV fleet even has a higher objective value than the SV
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Figure 5: )e probabilities of station operators at each segment. (a) Station destroy operators. (b) Station repair operators.
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fleet in L50 and L90. However, the mixed vehicle fleet can
still improve the objective value compared to the SV fleet
when the MV has a slightly higher fixed cost than SVs. )is
is surprising, but a potential explanation for the increased
objective values for large-scale instances with pure MV
fleets and increased fixed costs (i.e., L50-4 and L90-4) can
be the underlying demand pattern. )e more the customer
requests are in a certain area, the less the time and space
gaps of the customer points are. Hence, the more evenly
distributed the requests are within that area. Since the
operational benefit of MVs mainly stems from the efficient
consolidation of unevenly distributed demand in time and/
or space, the higher demand density potentially neutralizes
this operational advantage of MVs. However, the total
number of vehicles for both fleets, mixed and MV, can be
reduced compared to SVs.

As for the total travel distance, there are no significant
trends regarding the number of requests, fleet characteris-
tics, and MV cost structures given the results. As a potential
explanation, fewer vehicles require more travel distance
although MVs enable more flexible routes. )erefore, fewer
or more total distance depends on the adversarial rela-
tionship between more flexible routes and fewer vehicles.
However, compared with pure SVs (i.e., L30-1, L50-1, and
L90-1), the total distances of other instances have not
changed more than 5%.

In the analyzed instances, it can be seen that MV and
mixed vehicle fleets utilize fewer vehicles to serve the
requests. )is is true for scenarios with an equal or a
higher fixed cost for MVs than for SVs. )e introduction
of MVs (i.e., both mixed fleet and pure MVs) brings
improvements in terms of the objective value and fleet
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Table 5: Results of large-scale instances.

Instance Fleet f0 Distance Objective
Value Percentage Value Percentage

L30-1 SV Inf 11 498.47 100.00% 27 498.47 100.00%
L30-2 MV f∗ 11 405.70 99.19% 23 705.70 86.21%
L30-3 Mixed f∗ 11 247.01 97.81% 23 547.01 85.63%
L30-4 MV 1.2 f∗ 11 247.01 97.81% 25 947.01 94.36%
L30-5 Mixed 1.2 f∗ 11 070.83 96.28% 24 070.83 87.54%
L50-1 SV Inf 21 975.75 100.00% 51 975.75 100.00%
L50-2 MV f∗ 21 640.93 98.48% 47 840.93 92.04%
L50-3 Mixed f∗ 21 606.89 98.32% 47 906.89 92.17%
L50-4 MV 1.2 f∗ 22 985.32 104.59% 52 285.32 100.60%
L50-5 Mixed 1.2 f∗ 21 872.38 99.53% 48 872.38 94.03%
L90-1 SV Inf 41 421.75 100.00% 95 421.75 100.00%
L90-2 MV f∗ 42 029.33 101.47% 90 629.33 94.98%
L90-3 Mixed f∗ 41 057.86 99.12% 89 557.86 93.85%
L90-4 MV 1.2 f∗ 42169.33 101.80% 100 669.33 105.50%
L90-5 Mixed 1.2 f∗ 42 598.40 102.84% 93 598.40 98.09%
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size, if MVs have the equivalent fixed cost as SVs. When
increasing the fixed costs of MV by 20% compared to SV
costs, the objective value of pure MVs rises or decreases
less than the situation of equal fixed costs. However, the
mixed vehicle fleet can still reduce the objective value in
such a situation. At the same time, MVs do not signifi-
cantly change the total distance. Namely, the MVs im-
prove the objective mainly by fewer vehicles.

6. Conclusions and Future Works

)is study investigates MVs in the pick-up and delivery
problem with features of multiple depots, mixed fleet, and
partial recharging strategies. )emathematical formulations
of the problem and an efficient ALNS algorithm are pro-
posed. Additionally, we propose new heuristic operators and
strategies in order to accommodate the problem-specific
characteristics induced by change stations and partial
recharging.

In several numerical experiments, we show that the
proposed ALNS can find solutions for small-scale cases with
high qualities in an efficient time. We display probabilities’
variation of proposed operators over entire iterations in one
run and analyze it combining the objective curve. )rough
large-scale instances, the mixed fleet can reduce the total cost
compared to SVs in scenarios where MVs have the same or
higher fixed cost compared to SVs. MVs can lead to smaller
fleet sizes of pure MVs or mixed fleets but have little positive
or negative influence on the total travel distance. )e im-
provement of the objective brought by MVs mainly derives
from fewer vehicles.

Solution algorithms to the problem are not limited to our
proposed ALNS. Some of the most representative compu-
tational intelligence algorithms are promising, such as ant
colony optimization [27, 28], artificial bee colony algorithm
[29, 30], monarch butterfly optimization [31, 32], and Harris
Hawks optimization [33].

)e MV is a promising direction for a more efficient
urban transport system by enabling fewer fleet size while
approximately keeping the total travel distance. When
transitioning from the current fleet of SVs to a fleet of MVs,
there will be a long period that SVs and MVs coexist. At the
same time, SVs may have comparative advantages in some
aspects. For example, some SVs are efficient in transporting
items of a certain type.)erefore, the coexistence of SVs and
MVs is still possible from a long-term perspective. )e
proposed model can help decision-makers in the transition
phase and/or the coexistence of SVs and MVs. )e mixed
vehicle fleet analysis has shown that the transition toward
MV is beneficial since the coexistence of SVs and MVs
brings a reduction in the objective value and fleet size.
Hence, the transportation system could be already improved
in the transition phase. Pure MVs may also be the future
trend if they have an even lower fixed cost compared to SVs.

To increase the practical applicability and generality of
the model, a future research direction is to further inves-
tigate extra large-scale situations using real demand datasets.
Another future research direction is the addition of dynamic

demand considerations to the proposed problem so that
decision-makers can dynamically accept or delete requests.

As for the aspect of MVs, different options of MV op-
erations can be considered in future studies. Namely, there
may be MVs with heterogeneous capacities, speed, or other
vehicle-related parameters. Besides, MVs do not have to be
able to transport items of all types. For example, some MVs
may only be switched between passengers and freight, while
some vehicles may only be switched between freights and
recycling. Flexible changes between two types may be more
feasible in a shorter time period and may already lead to
benefits.
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