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As the number of automated vehicles in our transportation system increases, it becomes increasingly important to understand
how automation afects their driving behavior. Tis study defnes and tests a methodology based on optimization methods to
incorporate the longitudinal driving behavior of automated vehicles in the Wiedemann 99 car-following model. A pilot study was
recently conducted in Portugal using aMercedes-Benz of 2017 assisted with level 2 driving automation to gather empirical data. In
total, 61 car-following events were used to support the calibration and validation tasks. Te calibration error sustains the
methodology’s descriptive capability to simulate the driving behavior of AVs, and the validation error sustains that the calibrated
model parameters can reproduce the dynamic driving behavior of AVs with reasonable consistency and robustness. A total of
seven model parameters were estimated and are in line with the trends often described in the literature on automated vehicles but
also highlight diferences that can be explained by diferent development and deployment strategies. Nevertheless, since empirical
data from automated vehicles are hard to get, the presented work fndings are also valuable for improving and validating future
modeling eforts.

1. Introduction

Technological advancements are changing the act of driving
and revolutionizing our transportation system [1]. In par-
ticular, Automated Vehicles (AVs), which aremotor vehicles
equipped with driving automation technologies such as
“hardware and software that are collectively capable of
performing part or all of the dynamic driving tasks (DDT)
on a sustained basis” [2], will make driving easier and
eventually ofer greater mobility to a wider range of people
than ever before. Tey are also expected to enhance road
safety, reduce emissions, and ease congestion. As a result,
research regarding AVs has attracted considerable attention
in recent years.

Te extent to which technology can replace a human
driver varies [2]. Terefore, driving automation is classifed
by the Society of Automotive Engineers (SAE) into six levels,

ranging from no automation (level 0) to full automation
(level 5), hereon as Lv0 to Lv5. In general, AVs use a
combination of technologies (i.e., sensors, cameras, radar,
and software) in order to perceive the world around the
vehicle and then either provide information to the driver or
take action when necessary. In this sense, advanced driver
assistance systems (ADASs) are passive and active safety
technologies designed to remove the human error compo-
nent when operating any vehicle and form the basis of
current and future driving automation technology.

Today, the most advanced vehicles available on the
market operate at Lv2—partial driving automation.
According to SAE taxonomy, these can provide sustained
lateral and longitudinal control of the vehicle motion though
limited to specifc operational design domains (ODDs) (it
refers to “operating conditions under which a given driving
automation system or feature thereof is specifcally designed

Hindawi
Journal of Advanced Transportation
Volume 2022, Article ID 3073393, 17 pages
https://doi.org/10.1155/2022/3073393

mailto:89ritarodrigues@gmail.com
https://orcid.org/0000-0002-4999-3483
https://orcid.org/0000-0002-8696-5705
https://orcid.org/0000-0002-9209-5750
https://orcid.org/0000-0002-8685-4415
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3073393


to function, including, but not limited to, environmental,
geographical, and time-of-day restrictions, and/or the req-
uisite presence or absence of certain trafc or roadway
characteristics” [2]). In other words, these can at times brake
automatically, accelerate, and, unlike Lv1 systems, take over
steering under certain circumstances. Even so, it is worth
mentioning that features from Lv2 AVs can vary in terms of
sophistication. Common features that fall under this cate-
gory include following another vehicle while maintaining a
predetermined distance, keeping the car centered within its
lane by observing road markers, and stopping and restarting
during trafc jams without driver intervention. More so-
phisticated Lv2 features can also change lanes after con-
frmation from the driver, who is responsible for properly
using the turn signal. Despite the fact that Lv2 driving
automation can handle these basic driving tasks, the driver
must remain alert and ready to take control of the driving
task, with or without warning. Mercedes-Benz Drive Pilot
and similar systems from Tesla, Volvo, and Nissan are ex-
amples of partial automation.

While acknowledging the achievements in driving au-
tomation development for the past decades, there are still
profound challenges and concerns in designing higher levels
of automation, mainly centered around technology accep-
tance [3], human factors [4], technical [5], and legal con-
cerns [6]. Hence, as the number of AVs with Lv2 systems is
already increasing in our transportation networks, under-
standing how their driving behavior is afected by auto-
mation is fundamental to properly address challenges that
may arise in the decades to come.

Tis study aims to defne and test a methodology to
incorporate the driving behavior of automated vehicles in the
Wiedemann 99 car-following model, whose results can be
applied to future modeling eforts. For this purpose, a pilot
study was conducted in Portugal to gather empirical data
representative of the longitudinal driving behavior of Lv2 AVs
in real-world trafc. A total of 61 car-following events were
collected and analyzed to support the calibration and vali-
dation procedures of theWiedemann 99 car-followingmodel.
In the remainder of this paper, Section 2 presents the Wie-
demann 99 model and reviews the existing literature. In
Section 3, we discuss the methodology for data collection and
car-following event extraction. Section 4 presents the cali-
bration and validation procedures used, followed by Section 5
which reports the parameters estimates from the Wiedemann
99 model. At last, in Section 6, we conclude the paper with a
critical discussion of our results.

2. Literature Review

Literature on car-following theory is vast. Over the past
decades, diferent car-following models have emerged to
replicate how a vehicle follows another in a given roadway.
Researchers have explained these diferent approaches based
on various driving strategies, commonly classifed into
stimulus-based, safety distance, desired measures, optimal
velocity, and psychophysical models. Reviewing car-fol-
lowing models literature and introducing the diferent
theories is beyond the scope of this study. Interested readers

should see Aghabayk et al. [7] and Ahmed et al. [8] for a
detailed review.

Te car-following model is an important component of
microscopic trafc simulation tools to describe the longi-
tudinal driving behavior of vehicles. Among a number of
commercially available microscopic simulation packages,
Vissim and Aimsun are arguably two of the most known and
widely used tools by scholars and practitioners [8, 9]. Ba-
sically, Vissim reproduces the longitudinal driving behavior
of vehicles using theWiedemann car-following model, while
Aimsun uses the Gipps car-following model. Both are classic
models developed from diferent angles to mimic the dy-
namic driving behavior of human-driven cars and thus have
problems such as limited applicability when mimicking
automated vehicles. For instance, the absence of a minimum
safe car-following distance [10], vehicles reaching the
equilibrium speed monotonically [11], and frequent oscil-
lations of acceleration/deceleration [12] are some of the
problems that make the traditional Gipps car-following
model have the inability to describe diferent forms of
driving automation (e.g., ACC) [13] and overall a quite poor
performance when applied to AVs framework. On the other
hand, the Wiedemann car-following model decides how the
following vehicle behaves based on the reaction and per-
ception abilities of the human driver, which makes this
model also not the most suitable option to replicate the
dynamics of automated driving systems [14]. Despite the
shortcomings of both car-following models, the use of
Vissim for modeling and analyzing a wide range of trans-
portation network problems, particularly in the presence of
AVs, has substantially grown in the last few years compared
to other commercially available microscopic tools in the
market [9, 15–17]. Hence, its car-following model is the
subject of this research. Vissim has two diferent imple-
mentations of the car-following model: Wiedemann 74 and
Wiedemann 99 [17]. In this regard, the Wiedemann 99 car-
following model is more suitable than the 74 version for
modeling the longitudinal driving behavior of AVs [17],
which is the aim of this study.

Terefore, this Section begins with a comprehensive
description of a version of the Wiedemann 99 car-following
model that includes modifcations introduced by the authors
to simulate automated driving. Subsequently, we present a
systematic literature review that compares model parameters
often used to simulate the following behavior of AVs, such as
those with Lv1 and Lv2 driving automation. We focus our
attention on these levels since they represent the most
popular types of vehicle automation that are presently in use
in our public roadways. Lastly, we also review the methods
used to estimate the model parameters discussed.

2.1. Wiedemann 99 Car-Following Model. In this study, the
Wiedemann 99 car-following model introduced in Zhu et al.
[18] is used. Te equations that form the model were
modifed to remove the stochastic behavior of human drivers
since automated driving is likely predictable and with de-
terministic behavior [8]. Wiedemann 99 (hereon also re-
ferred to as W99) belongs to a family of models known as
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psychophysical car-following behaviors. Te main idea be-
hind it is that based on the distance (Δx) and speed (Δv)

diference to the lead vehicle, the following vehicle is on one
of four driving regimes: Free driving, Closing in, Following,
and Emergency Braking, as shown in Figure 1.

A brief description of the driving regimes in the Wie-
demann 99 car-following model is presented below:

Free Driving. Te following vehicle will move at the
desired speed uninfuenced by nearby vehicles.
Closing In. Te following vehicle perceives at long
distances a slower leader vehicle. During the closing
process, the follower will start to reduce speed.
Following. In this regime, the follower vehicle will
accelerate or decelerate to maintain a safe distance,
relatively constant, based on the followers’ perception
of the leader vehicle speed at short distances.
Emergency Braking. Te following vehicle will brake
abruptly to avoid a collision and accelerate to come to
the stationary stage.

Essentially, the driving behavior of a particular vehicle is
considered in a car-following situation when it is under the
infuence of a leader. Tis situation will continue until the
follower vehicle overtakes or until the leader starts to
continuously increase speed [19].

Te bounds of each driving regime are defned using
various thresholds to determine changes in the behavior of
the following vehicle, as shown in Figure 1. Te physical
meanings of these thresholds are as follows [17]:

SDXc: minimum safe following distance (m).
SDX0: maximum following distance (m).
SDXv: distance threshold of speed diference at long
distances (m).
SDV: perception threshold of speed diference at long
distances (m/s).

CLDV: perception threshold of speed diference at
short, decreasing distances (m/s).
OPDV: perception threshold of speed diference at
short but increasing distances (m/s).

Te output of the Wiedemann 99 model is the follower’s
acceleration or deceleration at time step t + 1 based on the
driving regime and stimulus coming from the leader vehicle
at step t. Figure 2 presents an overview of the process of
calculation.

More specifcally, the acceleration of the following ve-
hicle (denoted as an) at time step t + 1 is computed based on
governing equations used to predict the thresholds, relative
speed (Δv), and relative position (Δx: front edge to rear-end
distance) at time step t. We present below these equations
(1)–(9), together with a brief explanation of all parameters
according to the W99 car-following model in Figure 2.

Δv(t) � vn−1(t) − vn(t), (1)

Δx(t) � xn−1(t) − xn(t) − Ln−1, (2)

SDXc � CC0 + CC1 × Vslower, (3)

Vslower �
vn(t), if Δv(t)> 0 or LVacc(t)< −1,

vn−1(t), otherwise,
􏼨 (4)

SDX0 � SDXc + CC2, (5)

SDXv � SDX0 + CC3 ×(Δv(t) − CC4), (6)

SDV � CC6 × Δx(t) − Ln−1( 􏼁
2
, (7)

CLDV �
CC4 − SDV, if vn−1(t)> 0,

0, otherwise,
􏼨 (8)

OPDV �
CC5 + SDV, if vn(t)>CC5,

SDV, otherwise,
􏼨 (9)

where the speed (m/s), position (m), and length (m) of the
following vehicle are represented as vn, xn, and Ln, re-
spectively. Similarly, the speed, position, and length of the
leader vehicle are denoted as vn−1, xn−1, and Ln−1, re-
spectively. LVacc is the acceleration of the leader given in
m/s2, while VDES and aMAX are used to describe the
desired speed (m/s) and maximum acceleration (m/s2) of
the following vehicle, respectively. ΔT is the interval of
time required for the subject vehicle to react to a changing
situation, t is the time instant in seconds, and CC0 to CC9
are model parameters, that is, parameters that are ad-
justable in the model calibration process. Briefy, CC0 is
the standstill gap (m), CC1 represents the headway time
(s), CC2 describes the following variation (m), CC3 de-
fnes the threshold for entering the “following regime” (s),
and CC4 and CC5 are the negative and positive “fol-
lowing” thresholds (m/s), respectively, while CC6 denotes
the speed dependency of oscillation (10− 4rad/s), CC7 is
the oscillation acceleration (m/s2), CC8 designates the

ΔX (front to rear distatnce)

(speed difference)ΔV

SDXV

SDXOSDXO

SDXC
SDXC

CLDVOPDV

Driving regimes

0

Free driving
Closing in

Following
Braking

Figure 1: Wiedemann 99 car-following model driving regimes and
thresholds adapted from PTV Vissim [17].

Journal of Advanced Transportation 3



standstill acceleration (m/s2), and at last CC9 specifes the
following vehicle acceleration at 80 km/h (m/s2).

2.2. Model Parameters for AVs. Model parameters, such as
those in the Wiedemann 99 car-following model, can be
adjusted to refect the longitudinal movement of the fol-
lowing vehicle as a function of its leader. Tese parameters
have been widely investigated in a variety of studies con-
cerning manually driven vehicles [18, 20–22]. However,
there is also a growing body of evidence focusing on
adjusting these model parameters in order to replicate the
driving behavior of diferent AVs [8, 16, 23, 24]. In this
context, the bulk of literature currently revolves around
vehicles equipped with Lv1 systems, more specifcally, with
adaptive cruise control (ACC).Tis is understandable, given
that this technology has existed for decades and serves as the
foundation for future automobile intelligence [14]. It is
worth mentioning that this literature also attempts to re-
produce the driving behavior of AVs with cooperative
adaptive cruise control (CACC) systems [25, 26]. Te CACC
is an extension of the ACC concept that enables vehicle-to-
vehicle communication and is also classifed as Lv1 driving
automation. Although cooperative systems are still in the
early stages of development, they have been included in our
literature review to enrich the existing discussion.

Below, we present per parameter the relevant literature
that attempts to simulate the car-following behavior of Lv1
and Lv2 AVs using the Wiedemann 99 model. In Table 1,
fndings regarding the standstill gap (CC0) and headway
time (CC1) for AVs with Lv1 and Lv2 automation are
summarized.

Trough the comparison of the standstill gap (CC0),
literature confrms that this parameter varies widely between
studies, ranging from 6 to 0.5m. Te standstill distance is a
parameter concerning an automated vehicle ability to travel
with high precision. As a result, automation of driving

should theoretically lead to shorter standstill distances [23].
Given that, most earlier studies consider CC0 as being the
same or less than for manual driving (1.5m) [16, 23, 26]. Yet,
Zeidler et al.’s [25] work which analyzed empirical data from
three Lv2 AVs prototypes shows that CC0 is usually
underestimated. More recently, Goodall and Lan’s [14]
fndings, which attempt to reproduce the driving behavior of
a 2017 Audi Q7 with ACC, also corroborate bigger standstill
gaps when compared to earlier literature. Overall, these
fndings suggest that the operational logic of the vehicles
tested in Zeidler et al. [25] and Goodall and Lan [14] is not

START
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Figure 2: Process of calculation regarding the follower’s acceleration in the W99 model modifed from Zhu et al. [18].

Table 1: Standstill gap (CC0) and time headway (CC1) values for
the Wiedemann 99 model.

Vehicle capability CC0
(m) CC1 (s) Source

ACC 3.5 1.8 Goodall and Lan
[14]

CACC 4.0 0.3/0.6/
1.0 Zeidler et al. [25]

dCACC 6.0 1.0
AV cautious 1.5 1.5

Sukennik et al. [16]AV normal 1.5 0.9
All knowing 1.0 0.6
ACC 1.5 1.2 Rossen [26]CACC 1.25 0.75
Lv1 1.5 0.9

Atkins [24]

Lv2/3 cautious 2.5 1.8
Lv2/3 normal
cautious 2.0 1.2

Lv2/3 normal
assertive 1.0 0.8

Lv2/3 assertive 0.5 0.6
ACC aggressive 1.5 0.5

Bierstedt et al. [23]ACC intermediate 1.5 0.8
ACC conservative 1.0 1.2
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advanced as would be expected and thus does not allow to
keep shorter gaps under stop-and-go trafc. Aside from that,
the standstill distance in the Wiedemann 99 model is always
a fxed value while the standstill distances of the empirical
data vary [27].

Regarding the drivers’ preferred time headway (CC1) in
AVs, the existing literature is also not conclusive. In general,
examples of the CC1 parameter indicate time headways similar
to manual driving (0.9 s) or larger. Some authors speculate that
this might be because people are not familiar with systems like
ACC and hence prefer a more conservative confguration [28].
In addition, others further state that for transferring the driving
task responsibility between the automated systems and the
driver, AVs will most likely require longer time headways than
in manual driving [29]. Still, this literature also sustains that
CC1 can be signifcantly smaller. For instance, Zeidler et al. [25]
stated that the systems used in their work allowed three dif-
ferent settings of the time headway: 0.3, 0.6, and 1.0 s. On the
other hand, Goodall and Lan’s [14] test vehicle had fve time
headway settings of 1, 1.3, 1.8, 2.4, and 3.6 s. Terefore, the
diferences in CC1 values found in this literature could be
related to distinct development and deployment strategies used
by manufacturers [30, 31].

Te parameters that describe the following variation
(CC2) and threshold for entering the “following” regime
(CC3) of Lv1 and Lv2 AVs are presented in Table 2.

As for the following variation (CC2), the values found
across the studies reviewed generally agree. For manual
driving, a value of 4m is frequently recommended [17].
However, unlike human drivers’ stochastic behavior, au-
tomated driving is predictable and deterministic [8]. In other
words, it implies fewer or even insignifcant variations
during automated driving, as corroborated by the CC2
values found in this literature.

Considering the threshold for entering the “following”
regime (CC3), literature is once more ambiguous, with
values ranging from −6 to −40 s. Essentially, CC3 is a
measurement of the time elapsed while decelerating to reach
the desired safety distance [21]. Hence, the wide range of
fndings might be due to diferences in AVs’ perceptual
ability, precision, and reaction times [14]. Yet, it can be
argued that a few examples of the CC3 parameter are greater
than expected [23, 26]. For example, the CC3 parameter in
Zeidler et al.’s [25] study is higher than the bounds often
indicated by literature [−20, 0] [17]. However, the authors
justifed that it enables the tested vehicle to close smoothly
during simulation.

Te diferent values for the negative and positive “fol-
lowing” thresholds, CC4 and CC5, respectively, are sum-
marized in Table 3 for Lv1 and Lv2 AVs.

Te comparison of negative (CC4) and positive (CC5)
“following” thresholds shows diferences in the existing liter-
ature. Some studies support a setting equal to the default value
used for simulating the human drivers’ behavior (−0.35 and
+0.35m/s for CC4 and CC5, respectively) [23, 26]. Others,
however, agree that when modeling AV’s driving behavior,
CC4 and CC5 can be greatly reduced [14, 16, 25]. Plausibly, it
implies that oscillations during vehicle following can be small
with little variation in comparison to human drivers [27].

Table 4 shows the literature on the speed dependency of
oscillation (CC6) and acceleration oscillation (CC7) for AVs
with Lv1 and Lv2 driving automation.

Te speed dependence of oscillation (CC6) is consistent
across studies in the literature for AVs, with a value of zero.
According to Bierstedt et al. [23], this is due to the fact that with
driving technologies, the car can maintain a constant speed.

By contrast, there are several diferent values found for
the acceleration during speed oscillation (CC7). Once again,
part of this literature sustains a driving behavior similar to
manual driving [14, 23]. However, research also demon-
strates that when following other cars, AVs can use sub-
stantially lower accelerations/decelerations [16, 25, 26].

At last, in Table 5, we present the literature regarding the
standstill acceleration (CC8) and acceleration at 80 km/h
(CC9) for simulating Lv1 and Lv2 AVs.

Regarding the acceleration at standstill (CC8), the lit-
erature shows a range of values between 2 and 4m/s2 to
reproduce AVs driving behavior. Tis shows quite some
variation, which could be attributable to the diferent op-
erational logics that manufacturers can implement. None-
theless, some of these values might be unrealistic to
represent the accelerations of real ACC systems. According
to ISO 15622 : 2018, the average automatic acceleration for
those systems shall not exceed 2m/s2 [30].

Table 2: Following variation (CC2) and threshold for entering
“following” (CC3) regime from the Wiedemann 99 model.

Vehicle capability CC2 (m) CC3 (s) Source
ACC 2.0 −8 Goodall and Lan [14]
CACC 0.0 −40 Zeidler et al. [25]dCACC 0.0 −40
AV cautious 0.0 −10

Sukennik et al. [16]AV normal 0.0 −8
All knowing 0.0 −6
ACC 3.0 −12 Rossen [26]CACC 2.0 −12
ACC aggressive 2.0 −8

Bierstedt et al. [23]ACC intermediate 3.0 −12
ACC conservative 4.0 −16

Table 3: Negative (CC4) and positive (CC5) “following” thresholds
for the Wiedemann 99 model.

Vehicle capability CC4 (m/s) CC5 (m/s) Source
ACC −0.1 0.1 Goodall and Lan [14]
CACC 0.0 0.0 Zeidler et al. [25]dCACC 0.0 0.0
AV cautious −0.1 0.1

Sukennik et al. [16]AV normal −0.1 0.1
All knowing −0.1 0.1
ACC −0.35 0.35 Rossen [26]CACC −0.35 0.35
ACC aggressive −0.1 0.1

Bierstedt et al. [23]ACC intermediate −0.35 0.35
ACC conservative −0.6 0.6
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In terms of AVs acceleration at 80 km/h (CC9), liter-
ature varies again. Te recommended value for simulating
the manual driving behavior is 1.5m/s2. Values above are
frequently related to an aggressive driving rationale, and
values below are associated with a conservative/cautious
logic.

Overall, this literature highlights that most parameters of
the Wiedemann 99 model vary considerably between
studies. Several aspects inherent to these cars’ development
and deployment strategies make the following behavior a
complex phenomenon that is hard to predict. Accordingly,
in future research, the emerging driving behavior of AVs
should be addressed for diferent manufacturers, levels of

driving automation, and trafc conditions since it will allow
the development of more appropriate car-following models.

2.3. Parameter EstimationMethod. It is well known that the
methodology behind these model parameters estimation is
of extreme importance to the confdence level of the whole
study. Table 6 presents the methods used to estimate the
W99 model parameters previously discussed for AVs with
Lv1 and Lv2 autonomy.

Based on this literature review, we conclude that re-
searchers have used diferent methods to reproduce the
longitudinal driving behavior of AVs. Since PTV Vissim was
one of the frst tools giving some steps towards preparing
their software for simulating AVs [17], early studies have
adjusted the Wiedemann model parameters based on the-
oretical assumptions about the efects of automation on
vehicle driving behavior [23, 24, 26]. Tis is plausible since
new technologies tend to be costly when deployed in the
market and thus are not immediately available to be ex-
tensively tested.

More recent studies have made an efort to collect
empirical data in order to adjust the Wiedemann model
parameters. In this sense, Zeidler et al. [25] adjusted and
validated some of the Wiedemann model parameters within
PTVVissim tomatch the derived characteristics of the tested
vehicles, while Sukennik [16] used empirical data to develop
several driving logics for diferent forms of AVs. However, in
both cases, data were obtained in a test track rather than
under real trafc situations. Only the study from Goodall
and Lan [14] collected empirical data under real trafc
situations from which authors measured four model pa-
rameters directly from the feld observations of the test
vehicle.

Overall, more eforts should be devoted to the col-
lection of empirical evidence as the driving logics of these
vehicles vary widely, both in capability as well between
manufactures. More importantly, this literature does not
provide a methodology that can be used by other

Table 4: Speed dependency of oscillation (CC6) and oscillation of acceleration (CC7) values for the Wiedemann 99 model.

Vehicle capability CC6 (10− 4rad/s) CC7 (m/s2) Source
ACC 0.0 0.36 Goodall and Lan [14]
CACC 0.0 0.25 Zeidler et al. [25]dCACC 0.0 0.25
AV cautious 0.0 0.1

Sukennik et al. [16]AV normal 0.0 0.1
All knowing 0.0 0.1
ACC 0.0 0.25 Rossen [26]CACC 0.0 0.1
Lv1 0.0 0.25

Atkins [24]
Lv2/3 cautious 0.0 0.1
Lv2/3 normal cautious 0.0 0.2
Lv2/3 normal assertive 0.0 0.3
Lv2/3 assertive 0.0 0.4
ACC aggressive 0.0 0.4

Bierstedt et al. [23]ACC intermediate 0.0 0.25
ACC conservative 0.0 0.1

Table 5: Standstill acceleration (CC8) and acceleration at 80 km/h
(CC9) values for the Wiedemann 99 model.

Vehicle capability CC8 (m/
s2)

CC9 (m/
s2) Source

ACC 2.0 1.17 Goodall and Lan
[14]

CACC 3.5 1.0 Zeidler et al. [25]dCACC 3.5 1.5
AV cautious 3.0 1.2

Sukennik et al. [16]AV normal 3.5 1.5
All knowing 4.0 2.0
ACC 3.5 1.5 Rossen [26]CACC 3.5 1.5
Lv1 3.5 1.5

Atkins [24]

Lv2/3 cautious 3.2 1.2
Lv2/3 normal
cautious 3.4 1.4

Lv2/3 normal
assertive 3.6 1.6

Lv2/3 assertive 3.8 1.8
ACC aggressive 4.0 2.0

Bierstedt et al. [23]ACC intermediate 3.5 1.5
ACC conservative 3.0 1.0
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researchers in order to adjust the parameters from the
Wiedemann 99 car-following model based on empirical
data from AVs. Tis forms an important gap in the
existing literature, which is the main contribution of this
study. We do hope to inspire the transport planning
community to perform analysis similar to the work
presented in our paper for diferent brands and forms of
automated driving technologies.

3. Data Collection and Preparation

Car-following models are studied on the basis of high-
quality trajectory data. Over the years, diferent approaches
or methods have been developed to collect such trajectory
data in transportation studies [32]. A review of existent
literature reveals that the research community has centered
its attention on the collection of naturalistic driving data
(NDD) [18, 25, 33]. Tese are experimental methods for
collecting unobtrusive data and typically aim to understand
the driving behaviors adopted in their daily activities over
long periods of time. Distinctly, the experiment in this study
is a controlled on-road experiment on a fxed route and of
short duration according to the defnition of Carsten et al.
[34]. Tis Section describes the pilot study conducted and
presents the extraction methodology of the car-following
events collected.

3.1. Pilot Study. Tis study used vehicle trajectory data
collected in Coimbra, Portugal, for ten consecutive days
during June 2017. A total of two roadway sections were
selected, one freeway and one expressway. Te freeway is a
5 km section of IC2 with two lanes per direction between the
Fornos and Ponte Açude interchanges. Troughout this
section, the maximum legal speed varies between 80 km/h
and 100 km/h. Te expressway is a 5 km long section in Via
Rápida de Taveiro also with two lanes in each direction
between Ponte Açude and Taveiro interchanges. Te

maximum legal speed ranges from 80 km/h to 90 km/h. Te
existence of on-ramps and of-ramps at the end of each
section has facilitated the reversal maneuvers and materi-
alized a continuous circuit as shown in Figure 3. Depending
on the trafc density and desired speed, a lap to the ex-
periment circuit could take around 15 to 25 minutes.
Furthermore, all sessions were conducted under good
weather conditions and during day time.

AMercedes-Benz E-Class 350d station wagon of the year
2017 was instrumented (see Figure 4). Tis vehicle driving
technology includes a Driving Assistance Package to assist
the human driver in adapting the vehicle speed, controlling
distance, lane keeping, steering, and lane changing in
specifc scenarios. However, the latter was unavailable in
conformity with the Portuguese legislation. During the
pilot study, the level of driving automation was level 2,
according to SAE International [2]. A data logger device
(DL1 Club) from Race Technology was equipped in the
probe vehicle to store and synchronize all data collected.
Te built-in high accuracy GPS antenna and accelerom-
eters enabled recording speeds, accelerations, and geo-
graphical positions. In addition, two cameras were
installed to validate the sensor-based fndings, observe the
driving behavior, and determine the relative distance to
the leading vehicle. All instrumentation was mounted to
be as unobtrusive as possible (see Figure 4).

Vehicle trajectory data were extracted from the data
logger using the Race Technology Analysis software. Te
database obtained contains information on recorded speeds,
accelerations, following distances, and geographical
positions.

Since drivers could regulate the desired speed and
target headway settings during the automated operation of
the vehicle, it was fundamental to perform the experiment
with a number of diferent individual participants to
capture their individual preferences. Based on a survey
designed and distributed by the University of Coimbra

Table 6: Methods for estimating the Wiedemann 99 model parameters for AVs with Lv1 and Lv2 autonomy.

Source Data Parameter estimation

Goodall and
Lan [14]

Field experiments were conducted under real trafc
situations using a 2017 Audi Q7 assisted by the ACC

functionality.

Parameters of the Wiedemann 99 model were measured
directly from the feld observations of the test vehicle.

Zeidler et al.
[25] Based on the data collected in the CoExist project [27].

Te Wiedemann 99 parameters in PTV Vissim were
adjusted to match the derived characteristics of both

automated cars tested.

Sukennik et al.
[16]

Field experiments were conducted on a test track using 2
Toyota Prius cars. One had equipped the CACC

functionality, while the other had the dCACC functionality.

Te Wiedemann 99 parameters in PTV Vissim were
adjusted to reproduce three driving logics for AVs based on

the derived characteristics of the cars tested.

Rossen [26] No trajectory data were collected in this study.
Te driving behavior of AVs was simulated in PTV Vissim
based on the assumptions and parameter values found in

earlier literature.

Atkins [24] No trajectory data were collected in this study.

Te authors modifed the existing Wiedemann 99 model
parameters within PTVVissim to reproduce several forms of
AVs based on their knowledge of early ACC and CACC

systems.

Bierstedt et al.
[23] No trajectory data were collected in this study.

Te authors modifed the existing Wiedemann 99 model
parameters within PTV Vissim to develop conservative,

intermediate, and aggressive ACC characteristics.
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population, these were selected according to the following
criteria: reside in Coimbra for at least one year—this
guaranteed that drivers had the necessary knowledge of the
area, where tests occurred; hold a driving license for three or
more years; and to allegedly drive on a daily basis—assuring
an experienced sample of drivers. Before the experiment, all
selected participants completed an informed consent form.
Teir ages ranged from 25 to 66 years old, with a mean value
of 44.50 and their driving experience varied between 1 and
47 years (mean� 23.04). Following that was provided to each
participant a description and demonstration session of the
instrumented car technology in accordance with the man-
ufacturer instructions. Participants were also informed that
the instrumented car systems had limitations and that they
should intervene whenever necessary. In accordance with
previous research, a familiarization session (at least 10 km)
was conducted to allow participants to drive as naturally as
possible before the experiment [35]. It took place on a road
near the experiment’s circuit. Ten, with one researcher
sitting in the passenger seat to provide unavoidable guidance
regarding the route and operation of the automated systems,
participants were requested to complete one lap while
driving manually and four with the Lv2 systems engaged.

Finally, all data gathered were collected by a random
sample of 26 licensed Portuguese drivers who, all together,
traveled 2600 km during the study period.

3.2. Car-Following Period Extraction. All data hereon ana-
lyzed were obtained during four laps with the Lv2 systems
engaged. Situations of disturbance have been initially
identifed and excluded from our dataset based on visual
observations of the cameras’ data to, desirably, consider only
potential car-following events deemed representative of the
pilot study general driving conditions [36]. In this study
case, the most recurrent perturbations include, among
others, accidents in the circuit road, drivers regaining
control over the vehicle to take phone calls, and data from
the participants circulating outside the circuit. After that
initial extraction step, only car-following events that fulflled
the following criteria remained eligible for further analysis
[18, 25]:

(i) Duration of the car-following event is longer than
15 s.

(ii) Following and lead vehicles were driving in the
same lane with a range less than 120m.

(a) (b)

(c)

Figure 3: Experiment route in the city of Coimbra, Portugal: (a) circuit map; (b) IC2 freeway; and (c) via Rápida de Taveiro; (screenshots
from Google Maps).

Figure 4: Installed equipment: (1) video camera recording the trafc in front; (2) video camera recording the vehicle interior and dashboard;
(3) datalogger; (4) GPS antenna.
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(iii) Automated driving mode was switched on and
working.

(iv) Te system was not overridden by the human
driver.

(v) Te following procedure was not interfered by
another vehicle cutting in.

In total, 61 car-following events were extracted and
represented about 22 minutes of automated driving. At last,
all events analyzed in this study correspond to a car following
another car. Figure 5 depicts a typical car-following event.

4. Calibration and Validation Methodology

Model calibration is a procedure that systematically esti-
mates optimal parameters in order to adapt a given car-
following model to an observed behavior as accurately as
possible. Optimization methods have been vastly applied in
numerous studies to solve such calibration problems [37]. In
this Section, we describe the calibration of the Wiedemann
99 car-following model based on optimization methods and
which comprised defning an objective function, establishing
parameter constraints, applying a collision penalty, adopting
an integration scheme, and selecting an optimization al-
gorithm. At last, we also describe the validation procedure.

4.1. Objective Function. Normally, the objective function
defnes if the diference between the simulated and observed
measures of performance (MoPs) is to be minimized or
maximized subject to a set of parameters. To this end, the
mathematical form of the objective function consists of two
fundamental components: the measures of performance
(MoPs) and goodness of ft (GoF) function.

MoPs are considered a metric that illustrates a particular
car-following behavior. Te temporal headways [38, 39], fol-
lowing distance [40, 41], and following vehicle speeds [42, 43]
are frequently used metrics in previous studies. However,
several authors [43, 44] provide substantial evidence that
supports using the following distance over other metrics.
Basically, minimizing the following distance error does not
jeopardize other metrics’ accuracy, while the contrary is not
always true [11].

On the other hand, the GoF function evaluates the per-
formance of the calibration solution. For example, the Mean
Absolute Error (MAE) [45] or Teil’s inequality coefcient (U)
[46] are some of the statistics employed by researchers to es-
timate the ftness between simulated and observed MoPs.
However, the root mean square error (RMSE) is the most
commonly selected GoF function in car-following calibration
[40] because it is very sensitive to extra large and small values
[47].

Hence, in this study, we use a single-objective function
set as an RMSE of the following distance (S front edge to
rear-end) given according to
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where Ssim
i and Sobs

i are the simulated and observed following
distances at time step i and N is the number of observations.
In short, the outlined objective function will fnd the values
of the adjustable parameters from the W99 model that
minimize the RMSE while staying within constraints.

4.2. Parameter Constraints and Collision Penalty. Another
crucial part of the calibration procedure involves defning
constraints to a set of calibration parameters. More spe-
cifcally, it requires defning minimum and maximum values
to those parameters from the W99 car-following model that
are not measured easily based on empirical data. Terefore,
the constraint term refers to logical boundaries that a so-
lution to an optimization problem must satisfy [48]. Table 7
presents the physical meanings and boundaries of all pa-
rameters that are adjustable in the model calibration.

It should be noted that the car-following model of
Wiedemann uses follower-leader pairs for the calculation of
several driving behavior parameters (CCX), threshold
values, regime values, and functions. Since the parameter
VDES pertains to the vehicle behavior under free driving
circumstances, it is thus impossible to estimate it from such
data. However, with the advent of Lv2 driving automation,
the user must select a target speed setting for the vehicle
automated operation, which in our study’s case is known
based on the video recordings from the car dashboard. But,
because most vehicles display an overestimated speed of
travel in the dashboard, VDES was estimated during the
calibration process (see Figure 2) with a ±5 km/h deviation
from the observed value.

Additionally, we have to take into account that some
combinations of parameters may result in possible collisions.
In practice, it further implies adding a large penalty term to
the objective function, which will make these solutions
unattractive to the optimization algorithm [49].

4.3. Integration Scheme. In such calibration problems, the
follower-leader behavior is investigated at each time instant
[50]. Te leader vehicle acceleration, speed, and position are
updated using empirical observations. In turn, the following
vehicle acceleration is governed by the W99 car-following
model while speed and position are updated using standard
integration schemes such as the Forward Euler method [51].
Te latter scheme is used in this study to calculate the
continuous motion of the following vehicle (denoted as n)
and is as written in equations (3) and (4):

Vn(t + ΔT) � Vn(t) + an(t) × ΔT, (11)

Xn(t + ΔT) � Xn(t) + Vn(t) × ΔT, (12)

where Vn and Xn are the speed and position, respectively, an

is the acceleration calculated by the Wiedemann 99 car-
following model, t is the corresponding time instant in
seconds, and ΔT is the update time step.

4.4. Optimization with Genetic Algorithm. Several optimi-
zation algorithms like the downhill simplex [52], OptQuest
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Multistart [46], Deep Reinforcement Learning [53, 54], and
Genetic Algorithm [55] have been implemented and
compared in the feld of car-following calibration. Among
alternatives, the Genetic Algorithm (GA) is the most
suitable optimization method because it is particularly
useful to solve nonlinear problems with a complex search
space (as in this study case) while increases the probability
of fnding a global rather than local optimum [18].
Terefore, the GA was used in this study to fnd optimal
calibration parameters that minimize the objective func-
tion in equation (2). Te optimization routine consists of
creating successive generations of individuals based on the
principles of evolution and natural selection. Although the
problem seems simple enough, it is a demanding opti-
mization procedure that includes six iterative steps: (1)
initialization; (2) ftness assessment; (3) selection; (4)
crossover; (5) mutation; and (6) convergence. For a
comprehensive introduction on the subject, we refer
readers to Holland [56] and Spall [57]. In Table 8, the
relevant settings of our GA are described for future
reference.

Because the GA is a stochastic global optimization
procedure, it fnds slightly diferent solutions in each op-
timization run. Consequently, to fnd a solution close to the

global optimal, the proposed optimization routine has been
repeated a total of 10 times for each car-following event.
Finally, the set of parameters that resulted in the minimum
error (i.e., RMSE) was selected.

4.5. Validation. Unlike calibration, validation is a simple
task that aims to reproduce specifc car-following events by
using parameters independently calibrated. Tis study ap-
plies a k-fold cross-validation framework to test the
reproducing accuracy of our calibrated parameters. Tis
method reduces the likelihood of bias while allowing all
available data to be used [58]. Specifcally, the following logic
was applied:

Step 1. Te entire car-following database was divided
randomly into k near equal sets, also known as folds.

Step 2. We use k − 1 folds as the calibration set, and the
resulting calibrated parameters are used on the basis of
the remaining kth fold to conduct the validation. Re-
cord the validation error (i.e., RMSPE).

Step 3. We repeat this process until each k-fold has been
used as the validation set.

Step 4. To fnalize, we take the average of all recorded
error scores.

Hence, our database was divided into 5-folds. A variant
of the root mean square percent error (RMSPE) was adopted
to estimate the diference between the simulated and ob-
served following distance (S) during validation. Tis statistic
provides information about the magnitude of relative errors
and was selected to allow comparing the obtained validation
errors with similar studies [18]. Te RMSPE is given by

RMSPE of the following distance �
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Figure 5: Speed and position curves from a typical car-following event.

Table 7: Calibration parameters of the Wiedemann 99 car-fol-
lowing model.

Parameters (unit) Short description Bounds
CC0 (m) Standstill gap [0, 20]
CC1 (s) Headway time [0, 5]
CC2 (m) Following variation [0, 10]
CC3 (s) Treshold for entering “following” [−20, 0]

CC4 (m/s) Negative “following” threshold [−5, 0]

CC5 (m/s) Positive “following” threshold [0.1, 5]
CC6 (10− 4rad/s) Speed dependency of oscillation [0.1, 20]
CC7 (m/s2) Oscillation acceleration [−1, 1]

CC8 (m/s2) Standstill acceleration [0, 8]
CC9 (m/s2) Acceleration at 80 km/h [0, 8]
VDES (km/h) Desired speed of following vehicle [1, 150]
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where Ssim
i and Sobs

i are the simulated and observed following
distances at time step i and N is the number of observations
in each car-following event.

5. Results and Analysis

Tis Section presents the estimated parameters from the
Wiedemann 99 car-following model in respect to the driving
behavior of a Mercedes-Benz with level 2 driving automa-
tion. In particular, subsection 5.1 describes the assumptions
and simplifcations made. Subsection 5.2 analyzes the esti-
mates of all calibration parameters, and to conclude, sub-
section 5.3 reports the validation error. All tasks were coded
and performed using the R2020b release of MATLAB.

5.1. Assumptions and Simplifcations. In order to reproduce
the driving behaviors observed in our data through the
Wiedemann 99 car-following model and to reduce com-
plexity, it was necessary to make a number of assumptions
and simplifcations.

As there were no stopped trafc situations observed
during our pilot study, the values for CC0 and CC8 pa-
rameters were not possible to be derived from the available
data. CC0 is the standstill gap that the following vehicle
keeps behind a leading vehicle when both are at stationary
positions and CC8 is the desired acceleration of the follower
vehicle when starting from standstill [17]. A default value for
both parameters, CC0 (1.5 m) and CC8 (3m/s2), was used
according to the most recent literature on the subject for
vehicles with Lv2 systems [16].

Furthermore, such literature has shown that given the
deterministic behavior of AVs and to refect much smaller
oscillation during the following procedure, the CC2 and
CC6 driving parameters should take the value of zero [16].
CC2 is the following variation in meters, and a value of zero
results in a relatively stable following process [17]. CC6,
namely, the speed dependency of oscillation when assumes
value zero, indicates that the following distance does not
infuence the speed oscillation during the “following” regime
[17]. In Table 9, we review the default values adopted for the
model parameters described above.

Additionally, the CC9 parameter denotes the accelera-
tion of a vehicle when at 80 km/h [17]. However, since most

of the car-following events analyzed have occurred at speeds
beyond 80 km/h, CC9 was estimated based on an inde-
pendent analysis of our data. Strictly speaking, it entailed
estimating CC9 as the mean of the maximum acceleration
rates of a vehicle moving at 80 km/h, which is a recurrent
approach in literature [14, 22]. Table 10 presents the esti-
mates of this parameter.

5.2. Estimates of W99 Parameters. Considering all as-
sumptions and simplifcations made, the calibration pa-
rameters in this study are CC1, CC3, CC4, CC5, CC7, and
VDES. Te Wiedemann 99 car-following model was inde-
pendently calibrated and validated fve times. Results are
presented in Table 10, quantifying the mean, standard de-
viation, and range (5th and 95th percentiles) of the estimated
parameters aggregated across the fve iterations of cross-
validation.

Te calibration error (RMSE) achieved between the
simulated and observed following distance was found to be
on average 0.17m. Tis shows that for each car-following
event investigated, the genetic algorithm has approximated
the observed following distance with reasonable accuracy.
Te cumulative distribution curves for each parameter are
presented in Figure 6 to, hopefully, enrich the existing
knowledge about the following behavior of automated ve-
hicles, particularly from those with level 2 driving systems.
Finally, we analyze the estimates obtained for each pa-
rameter more closely.

CC1 is the time headway between two vehicles, in other
words, the distance in seconds which a driver wants to
maintain at a certain speed from a leader vehicle. At an
individual level, this parameter captures the preferred dis-
tance headway setting of each user. According to the lit-
erature, values above default (0.9 s, used for vehicles with no
automation) imply a cautious driving behavior, which is the
case of our estimates for automated driving (1.48 s) [17].
Plausibly, this result suggests that drivers have selected a
larger headway setting for the Driving Assistance Package
than is typically maintained during manual driving. Tis
behavior is reasonable, partially because the minimum
headway setting of the Driving Assistance Package is more
conservative than when driving manually [59] and partially
because these systems require somewhat longer headways in

Table 8: Description of the genetic algorithm settings according to MATLAB.

Algorithm settings Value/method Short description
Population size 500 Specifes how many individuals there are in each generation.
Maximum
generations 800 Defnes the maximum number of iterations for the GA to perform.

Stall generations 150 Calculates the weighted relative change in the objective function value over stall generations.
Fitness scaling Rank Function that scales and sorts individuals based on the values of the objective function.
Parent selection Stochastic Function that selects parents for the next generation based on their scaled values.
Children
reproduction

Elite and
crossover

Selects elite (0.05) and crossover (0.8) children for the next generation. Rest of the children are
produced by mutation operations.

Crossover Scatter Indicates how two individuals form a crossover child for the next generation.

Mutation Gaussian (mean
0) Indicates how two individuals form a mutation child for the next generation.

Tolerance function 1 × 10−6 Exit criteria.
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order to transfer the vehicle control for the driver with safety
[26]. Te time headway (CC1) is one of the most important
parameters in the Wiedemann 99 car-following model in
terms of link capacity. Consequently, as the headway be-
tween vehicles increases, the resulting route capacity of any
transit system is expected to decrease.

Te CC3 parameter represents the time elapsed in sec-
onds from the start of the deceleration process to the be-
ginning of the “following” regime.Te default value is −8.00 s
(for Lv0 vehicles) [17]. In this study, the estimated value was −

6.73 s, which indicates that AVs such as the one investigated
take less time to perceive and react to a slower leader vehicle.
Tis result is a plausible driving behavior for any AVs because
these rely on systems developed to perceive and react much
faster than human drivers [60]. Empirically, CC3 can in-
fuence a specifc lane fow distribution though its efects
become insignifcant with increasing trafc volumes [61].

CC4and CC5 control the maximum negative and positive
speed variations during the “following” regime, respectively.
PTVVissim [17] manual suggests that these parameters should
have the same magnitude and opposite signs, which indicates
symmetry between the vehicle acceleration and deceleration
behavior. Te default values for CC4 and CC5 are −0.35m/s
and +0.35m/s, respectively (for manual vehicles). Interestingly,
our estimates are −0.16m/s and +0.17m/s, for CC4 and CC5,
respectively. In general, values closer to zero suggest a faster
response from the following vehicle to changes in the speed of
the leading vehicle, which is a characteristic foreseen in the
driving behavior of AVs [16]. Te slightly difering (module)
values of CC4 and CC5 further indicate that the automated
vehicle under investigation is more sensitive to the leader
vehicle deceleration than to its accelerations during the “fol-
lowing” regime. Tis behavior is logical since these vehicles’
development and deployment strategies should focus on en-
hancing trafc safety.

CC7 represents the actual acceleration rate in the “fol-
lowing” regime that causes the oscillation in relative speed.

Tis parameter has a default value of 0.25m/s2 (estimated for
vehicles with no automation) [17]. However, our estimates
for automated driving reveal a lower value of CC7 (0.13m/
s2). Due to that, we can argue that the probe vehicle has a low
acceleration/deceleration profle during the “following” re-
gime, perhaps to maintain a specifc headway setting at
almost zero relative speed.

VDES is the desired speed that drivers wish to travel
under unconstrained trafc situations [16]. At an individual
level, this parameter captures the desired speed setting se-
lected by each user. To properly analyze our sample desired
speed settings of the Driving Assistance Package, we exhibit
in Table 11 the calibration results by roadway type.

Te maximum legal speeds allowed in the expressway
range between 80km/h and 90km/h. However, our estimates
show that, on average, drivers have selected a higher speed
setting during automated driving. Similar behavior was found
throughout the freeway, where the speed distribution varies
between 80km/h and 100km/h. Overall, these fndings indi-
cate that drivers have chosen to travel at speeds that exceed the
current speed limits in force. Tis trend is persistent in the
driving behavior of Portuguese drivers, as previous studies
concerning manual driving sustain [62]. Another reason could
be due to automation complacency. For example, drivers did
not change the setting of the automated driving system in a
speed limit violation scenario, thereby allowing the vehicle to
drive above the posted speed limit [4]. In addition, the standard
deviation estimates support considerable behavioral diferences
between individual drivers. Nonetheless, the distribution
function of desired speeds is of particular importance since it
afects link capacity and achievable travel times [16].

5.3. Validation of W99 Parameters. In the validation phase
was employed a fve-fold cross-validation framework to
compare the observed following distance for each car-fol-
lowing event in the kth set, with that simulated by using the

Table 9: Default parameters to simulate Lv2 AV behavior using the Wiedemann 99 model.

Parameters (unit) Value Explanation∗

CC0 (m) 1.5 Default value in PTV Vissim for AV cautious.
CC2 (m) 0.0 Default value in PTV Vissim for AV cautious.
CC6 (10−4rad/s) 0.0 Default value in PTV Vissim for AV cautious.
CC8 (m/s2) 3.0 Default value in PTV Vissim for AV cautious.
∗Adopted based on CoExist report [16].

Table 10: Estimated parameters from Wiedemann 99 car-following model for Lv2 AVs.

Parameters (unit) Mean Median Std. Dev. 5% 95%
Parameters estimated by calibration
CC1 (s) 1.48 1.46 0.40 0.97 2.07
CC3 (s) −6.73 −6.26 2.78 −11.59 −3.73
CC4 (m/s) −0.16 −0.08 0.21 −0.56 −0.01
CC5 (m/s) 0.17 0.15 0.07 0.11 0.29
CC7 (m/s2) 0.13 0.12 0.10 0.03 0.29
VDES (km/h) 98.85 99.29 7.60 88.89 112.11
Parameters individually estimated based on physical meaning
CC9 (m/s2) 1.03 0.97 0.38 0.63 1.84
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average value of the parameters calibrated in k − 1 sets. Te
validation error (RMSPE) obtained across all fve folds was
on average 20%, indicating a feasible reproducing capacity of

the calibration parameters reported in this study. It is worth
noticing that the W99 model produced one collision during
the validation phase.
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Figure 6: Cumulative distribution of parameter estimates for the Wiedemann 99 car-following model.
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6. Discussion and Conclusions

Te purpose of this study was to defne and test a meth-
odology to incorporate the driving behavior of automated
vehicles in the Wiedemann 99 car-following model, whose
results may be applied to future modeling eforts.

We introduced modifcations in the equations of the
Wiedemann 99 model, which is a well-known psycho-
physical car-following model, to reproduce the expected
behavior of AVs. Tis modifed version was implemented
into a calibration framework and formulated as an opti-
mization problem that used a genetic algorithm to fnd
optimal values of the model parameters. Te optimization
function was simply the error minimization between the
following distance values simulated in the Wiedemann
model and the following distance values directly observed
from empirical data.

A pilot study was recently conducted in Coimbra, Portugal,
to collect trajectory data from the longitudinal driving behavior
of an automated vehicle assisted with level 2 driving auto-
mation. In total, 61 car-following events were used to support
the calibration and validation tasks. We found that the fol-
lowing distance calibration errors are on average 0.17m
(RMSE). Tis result is consistent with the errors reported in
previous studies [38, 44, 46] and sustains the W99 model
descriptive capability to simulate Lv2 AV’s following behavior
with no signifcant deviations from the observed trajectories. In
the validation phase, the following distance error was found to
be 20% (RMSPE) and is also in line with the estimates from
earlier studies [18, 63]. Tis result further indicates that our
calibrated parameters can reproduce the dynamic behavior of
Lv2 AVs with reasonable consistency and robustness.

Given all assumptions and simplifcations regarding the
Wiedemann 99 model, this study’s calibration parameters
are CC1, CC3, CC4, CC5, CC7, and VDES. Additionally,
the CC9 parameter was individually estimated based on its
physical meaning. Table 12 compares our study fndings to

the recommended values for human-driven vehicles in
Vissim.

Essentially, our parameter estimates demonstrate a
distinct driving behavior from human drivers and are to a
great extent consistent with some of the trends found in AVs
literature. However, there are a few exceptions that support
diferences related to automated vehicles, operational logic,
perception ability, and reaction times.

For instance, the time headway (CC1) estimates indicate a
cautious driving behavior, which is partially corroborated in
Atkins [24] and Sukennik [16]. However, several authors state
that some AVs can also adopt aggressive driving behaviors or
driving behaviors similar to human drivers [23–25].

Our fndings related to the CC3 parameter, threshold for
entering the “following” regime, are consistent with values
documented for vehicles equipped with Automated Driving
Systems (SAE Lv3 or higher) [16]. Tis result is plausible
because due to the fast technological progress, some vehicles
today can already ofer advanced Lv2 systems, which is the
case of the Driving Assistance Package included in this study
vehicle.

CC4 and CC5 are the maximum negative and positive
speed variations during the “following” regime, respectively.
In general, both parameters show a quite sensitive behavior
to changes in the speed of the leading vehicle when com-
pared to the values in Bierstedt et al. [23] and Rossen [26].
However, our estimates suggest a slightly less sensitive be-
havior than those described in Sukennik [16] and Goodall
and Lan [14]. At last, we have found that diferences exist
between these parameter values. Explicitly, CC4 is more
sensitive to the leader vehicle than CC5, which is a new
fnding.

CC7 represents the vehicle acceleration during speed
oscillations. Te bulk of AVs literature, in particular, re-
garding Lv2 or similar systems (i.e., adaptive cruise control)
evidences values higher than our estimates [14, 24–26] and
in some cases even for Lv5 AVs [64]. Perhaps, certain as-
sumptions are made that impact the driving behaviors of
AVs to be similar to human driving. Only Sukennik’s [16]
work, which is based on a small-scale study conducted in a
test track with an Lv2 Toyota Prius prototype, supports our
results.

Te CC9 parameter is the acceleration of a vehicle when
at 80 km/h. Our results are in line with the fndings in
Sukennik [16] and Goodall and Lan [14] and sustain that
AVs similar to the one tested (Lv2Mercedes-Benz E-Class of
2017) have a less aggressive acceleration profle when
compared with manual driving.

VDES is the desired speed distribution from our sample
of drivers, where the 5th percentile VDES05= 89 km/h, the
50th percentile VDES50= 99 km/h, and the 95th percentile
VDES95= 112 km/h. Overall, this result shows that there-
exists signifcant diferences in the desired speed settings of
the Driving Assistance Package among drivers. Tis result is
plausible and is a typical behavior often reported in studies
regarding manually driven vehicles [20].

Overall, besides providing a methodology to incorporate
automated driving in the Wiedemann 99 car-following
model, this paper also enriches existing literature in relation

Table 11: Desired speeds per roadway type.

VDES (km/h) Mean Median Std. Dev. 5% 95%
Expressway 95.68 94.90 7.01 81.76 105.24
Freeway 100.91 100.52 7.25 89.50 113.47

Table 12: Summary of our estimates for Lv2 AVs and Vissim
default values.

Parameters (unit) Lv2 AVs Vissim default values
CC0 (m) 1.50∗ 1.50
CC1 (s) 1.48 0.90
CC2 (m) 0.00∗ 4.00
CC3 (s) −6.73 −8.00
CC4 (m/s) −0.16 −0.35
CC5 (m/s) 0.17 0.35
CC6 (10−4rad/s) 0.00∗ 11.44
CC7 (m/s2) 0.13 0.25
CC8 (m/s2) 3.00∗ 3.50
CC9 (m/s2) 1.00∗∗ 1.50
∗Default values adopted based on CoExist report [16]. ∗∗Parameters in-
dividually estimated based on physical meaning.
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to the driving behavior of Lv2 AVs based on empirical data.
Aside from that, this methodology’s results are relevant to
transportation planning in the sense that it ofers useful
insights on how including specifc driving behaviors in
microscopic trafc simulation tools such as in PTV Vissim
can shape the dynamics of our transportation networks in
the decades to come.

For instance, our fndings sustain that Lv2 AVs keep a
larger time headway (CC1) when compared to manual
driven vehicles and hence are more likely to decrease our
transport infrastructure capacity. From an trafc engineer’s
view point, this is not desirable since it might result in a poor
trafc performance in terms of fow, speed, and delay time.

On the other hand, since Lv2 AVs keep higher gaps from
the vehicle in front and unlike human-driven vehicles they
continuously attempt to keep a constant speed corroborated
by CC4, CC5, and CC7 estimates, it is expectable that their
efects on the trafc safety are likely positive.

6.1. Limitations and Directions for Future Research.
Developing and testing a methodology to incorporate the
driving behavior of automated vehicles in the Wiedemann
99 car-following model is a challenging multifaceted task. As
such, in order to carry out this research, various assumptions
and simplifcations have been made.

One of the major limitations of this study is related to
data collection; in particular, our experiment procedure did
not include stopped trafc situations which are required to
estimate some parameters from the Wiedemann 99 model.
Terefore, we suggest the inclusion of such situations in
future research.

Another limitation is that our fndings are derived based
on a small-scale pilot study, which implies that this method’s
results cannot be generalized to wider society. However,
given that new vehicular technologies are arriving in the
market at a fast pace, we recommend using this method
because it provides valid insights about the driving behaviors
observed under real trafc conditions and guidance for
future research. Large-scale naturalistic studies should be
employed, including a representative sample of drivers,
diferent vehicle brands, distinct forms of driving automa-
tion, large spatial coverage, andmixed trafc conditions, and
over long periods.

A limitation of this study’s methodology is that it was not
developed to capture the control transition between the
human driver and the automated driving systems. Instead,
we provide a methodology to capture the longitudinal au-
tomated operation of production vehicles. Despite its
complexity, future research should also consider this
mechanism to allow a more realistic characterization from
the driving behavior of diferent generations of automated
vehicles.

At last, confounding factors related to AV performance
should be also taken into consideration in future research.
Failing to account for these may contribute to accidents,
systematic bias, and measurement errors. At the same time,
it can even explain diferences between similar studies. Tat
being said, one should note that diferent forms of driving

automation impose distinct confounding factors. In our
pilot study case, confounding factors were controlled to
minimize their impact on the probe vehicle performance.
Tese were (a) the weather conditions — Lv2 driving tech
has several technical limitations that limit its operation
under snow, fog, and rain conditions; (b) road marks — the
probe vehicle automated operation relies upon visual input;
and (c) trafc characteristics appropriated for the capability
of the automated systems — available Lv2 tech can only
operate in highways or similar roads.
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