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Driven by the emission peak and carbon neutrality targets, traditional cruising taxis are also under pressure to reduce emissions,
and reducing taxi vacant time is an effective way to reduce emissions.+is paper aims to examine the influence mechanism of built
environment characteristics on vacant time of taxi trips from the supply-side perspective. To do so, the study uses a one week of
taxi trajectory data of 2019 provided by a taxi company in Chongqing, a megacity in China. We take the divided square grid cell as
the study units, calculate the taxi vacant time of 168 (7× 24) hourly slots for each grid, and then calculate the built environment
indicators of the grids with Point of Interest (POI) and vector road network data. A generalized additive model (GAM) based on
panel data is constructed to investigate the influence mechanism of built environment on taxi vacant time. +e results show that
the time-varying trend of taxi vacant time is opposite to the time-varying trend of taxi trips and is similar to taxi trips in spatial
distribution with significant spatial dependence. Taxi vacant time is negatively correlated with taxi trips. POI mixture, the number
of enterprises, governmental agencies, and shopping services are negatively correlated with vacant time, while the number of
sports and leisure services, hotel services, healthcare services, financial and insurance services, and living services are positively
correlated with vacant time. An interesting finding is that metro stations significantly increase the vacant taxi time in the region.
Average traffic flow speed, road density, the number of bus stops, catering services, residence communities, and motor vehicle
services show strong nonlinear relationships with taxi vacant time, and their influence effects are alternately positive and negative.
+e study provides useful insights for understanding mechanisms of the role of built environment on taxi vacant time and has
important implications for driver searching strategy improvement, taxi management measures development, spatial and temporal
scheduling of taxi capacity resources, and urban transportation facilities layout planning.

1. Introduction

Taxis are an essential component of the urban integrated
transportation system, which play a valuable role in com-
plementing urban transportation because of time and space
flexibility during operation. Because taxi passengers are
random, taxis will be unoccupied a certain percentage of the
time during their service. Vacant taxis contribute to pol-
lution, energy waste, and road traffic congestion and reduce
the effectiveness of taxi service [1, 2]. +e high percentage of
taxi vacant time or vacant miles indicates that the demand

for taxis is not well matched with the supply, which leads to
increased passenger waiting time and reduces the level of
taxi service and passenger satisfaction [3, 4].

Taxi vacant time is one of the important indicators of taxi
operation level, which is influenced by multiple factors [5].
When the demand and supply are relatively stable, taxi
operation level largely depends on the operation capacity of
drivers, which relies heavily on the empirical knowledge and
real-time perception of the external environment [6].
Generally, when a taxi is in service, its external environment
is divided into two types: static environment and dynamic
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environment; the former mainly includes the built envi-
ronment of the city, while the latter includes weather,
emergencies, and changes in supply and demand. +us, taxi
vacant time is also closely related to external factors, and
external factors have a more significant impact than internal
factors [7].

However, the current studies related to taxi operations
have mainly focused on passenger searching and delivery
strategies, and the external influencing factors and
mechanisms of taxi vacant time have not been fully studied.
Taxi vacant time or mileage is a potential cost of taxis [5],
and finding external influences on this potential cost and
trying to reduce it is not only attractive to drivers but also
crucial to the objective assessment of the overall perfor-
mance of taxi operation [8], capacity spatial and temporal
optimization and scheduling [9], passenger ride guidance,
and taxi stand layout planning. +us, to explore the cor-
relation between the external environment and taxi vacant
time, this paper conducts a study on the influence
mechanism of urban built environment on taxi vacant time
and takes Chongqing, a megacity in China, as a case study.
In this paper, we divide the study area into square grids
with a side length of 1 km and calculate the vacant time of
168 hours in one week for each grid with taxi Global
Position System (GPS) trajectory data and then conduct
exploratory spatial data analysis of taxi vacant time. After
that, we use the Point of Interest (POI) and OSM
(OpenStreetMap) road network data to calculate the built
environment indicators of each grid and then construct a
generalized additive model (GAM) to find the key built
environment factors affecting taxi vacant time and the
mechanism of built environment on vacant time.

+e remainder of the paper is organized as follows.
Section 2 provides a brief literature review. Section 3 in-
troduces a description of the data and study variables.
Section 4 presents the research methodologies and the
model. Section 5 analyzes the results with brief explanations.
Section 6 discusses the whole study. Section 7 draws the
conclusions, research limits, and future directions.

2. Literature Review

+e built environment is composed of various buildings and
places that have been artificially constructed and modified
and is a combination of land use patterns, transportation
systems, and a series of elements related to urban design that
can influence the behavior of residents’ activities [10]. +e
built environment differs from the natural environment in
that it is a product of human civilization, providing a spatial,
temporal, and social context for human activity, and is a
combination of elements related to land use, urban design,
and transportation systems. A Point of Interest (POI) is a
specific physical location which someone may find inter-
esting. Restaurants, retail stores, and grocery stores are all
examples of Points of Interest. POI types and densities can
characterize the urban vitality of a region, and the functional
areas of a city can be identified by POI [11]. Many studies
have used POI to calculate built environment indicators
[12, 13].

Taxi vacant time is closely related to built environment.
Zhang et al. conducted a study based on New York taxis
showing that built environment has significant but spatio-
temporal variability influences on taxi vacant time. +eir
study showed that the density of road and subway stations
have negative impacts on empty taxi trip duration, and the
density of city bus stations has positive impacts across times
outside of Manhattan. +e density of bike lanes has positive
and negative impacts on empty taxi trip duration within and
outside Manhattan, respectively, and the ratio of green space
is only significant on weekends that are negative impacts
within Manhattan and positive impacts outside of Man-
hattan. +e impacts of the density of public facilities (i.e.,
schools and hospitals) vary greatly across times [5]. A vacant
taxi staying somewhere is an important way to search for
passengers, such as staying at the roadside or taxi stand to
wait for passengers, and the staying time is part of the vacant
time. Ke et al. studied the staying behavior of taxis, and the
results showed that drivers’ staying behavior differed sig-
nificantly between traffic analysis zones, and the coefficients
show that the number of car repair and maintenance shops,
the number of gas stations, the existence of an airport, the
existence of a railway station, and POI diversity have positive
associations with stay frequency. In addition, the airport has
a much higher impact on stay frequency than other built
environment factors [9]. Lee and Sohn selected variables
related to taxi demand to analyze the factors influencing the
taxi vacancy duration, and the results showed that, except for
the land use types and public transport accessibility at the
trip origins and destinations, the other relevant factors such
as operational characteristics, weather conditions, demo-
graphics, and socioeconomic characteristics also have sig-
nificant associations with vacancy duration that follows a
log-normal distribution [14].

+e taxi vacant time is influenced by the driver operation
strategy, and the built environment is an important basis for
the driver operation decision. +e taxi operation process is
mainly divided into two stages, that is, how to search for
passengers quickly when the vehicle is vacant and how to
deliver passengers to their destinations quickly when they
are picked up [15]. +ere are two main strategies for drivers
to search passengers, that is, actively search for passengers
and wait for passengers at a certain location, and studies
have shown that drivers who actively search for passengers
can get passengers faster and earn higher income [16]. Route
choice is very important for drivers in both passenger
searching and passenger delivering. +e route choice of
drivers when vacant is usually oriented towards minimizing
the time to search a passenger [17], and drivers also consider
the spatial and temporal characteristics of the search route
[18]. Guo et al. used path unreliability as one of the indi-
cators to describe the route choice behavior of vacant taxi
drivers searching for passengers and found that path un-
reliability had a significant effect on the route choice be-
havior of vacant taxi drivers [19]. With the accumulation of
experience and the combination of traffic conditions and
passenger information, the driver will continuously optimize
the route to minimize the passenger search time [20]. +e
driver’s location and route choice may be more uncertain
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when searching for passengers, but the destination is certain
when delivering passengers, and the driver usually chooses
the route with the goal of minimizing the travel time [21, 22].
+e search distance and delivery speed dominate the income
level of taxi drivers [23].

Drivers have regional preferences and the built envi-
ronment potentially influences their choice of regional
preferences, which in turn leads to differences in taxi vacant
time. Drivers tend to have regional or location preferences
when searching for passengers, and these regions or loca-
tions have significant land use or built environment char-
acteristics. For example, most drivers prefer to go to hotspots
such as commercial areas, CBDs (Central Business Dis-
tricts), and transportation hubs to search for passengers,
where they can get passengers faster, thus reducing search
time and increasing income [24]. Meanwhile, it was found
that passenger demand at the pick-up area, hotspot loca-
tions, service location preference, and major transport hubs
positively influence a taxi driver’s next choice of passenger
pick-up location [25]. Different regional or location pref-
erences lead to differences in the probability or duration of
taxi presence in the different built environment and thus
affect the taxi vacant time under different built environ-
ments. Zong et al. used a zero-inflated negative binomial
model to study the effects of internal and external factors on
drivers’ passenger-seeking behavior, and the results showed
that external factors such as land use type, traffic conditions,
and road hierarchy have a more significant effect on drivers’
passenger-searching behavior, while internal factors such as
prior passenger-searching experiences have relatively little
effect, and drivers follow different passenger-searching
strategies at different times of the day [7].

Urban built environment is closely related to travel
behavior. For example, the built environment around metro
stations has a significant effect on metro station passenger
flow [26], while metro systems in return can significantly
reduce the frequency of private car use [27, 28]. +e distance
to the city center is positively associated with auto ownership
and it has a more important effect than the distance to other
centers [29], and neighborhoods with well-developed bicycle
riding facilities may attract more cyclists [30]. +e degree of
land use mixture, residential density, metro station density,
and road density influence travel distance and are negatively
related to road traffic emissions [31, 32]. High four-way
intersection proportion, road density, and population
density in residential areas can reduce the probability of
driving and encourage walking, biking, and transit modes of
travel in the area [33].

+e built environment has a significant effect on both the
production and attraction of taxi trips [34]. Taxi demand is
largely affected by the internal functions of the city, and there
is an obvious spatiotemporal pattern in the impact of the
mixed degree of urban functions on taxi demand [35]. Taxi
trips are relatively more frequent in areas with high residential
concentration and higher housing prices, and road density,
parking density, bus stop density, and the percentage of re-
gional commercial and public services are positively associ-
ated with taxi demand, while the percentage of regional
residential areas and land use mixture are negatively

associated with taxi demand [36]. +e effect of built envi-
ronment on taxi trips is significantly spatially heterogeneous,
with different degrees of influence and positive and negative
impact effects in different areas of the city and at different
times of the day [37]. Ridesourcing demand is also associated
with built environment [38]. A study by Sabouri et al. based
on urban census block group showed that land use mix and
bus stop density are positively associated with ridesourcing
demand, and intersection density and destination accessibility
are negatively associated with ridesourcing [39].+e effects of
built environment on the ridesourcing demand demonstrated
significant spatial variations trends from urban to suburban
neighborhoods [40].

In summary, although the study of taxi vacant time is
necessary and important, the literature review suggests a
number of limitations in existing studies of taxi vacant time.

First, travel research has presented evidence that built
environment plays an important role in travel behavior and
taxi demand. For instance, the built environment has sig-
nificant effects on travel mode choice, car ownership and
use, and taxi demand. However, most of these studies have
been conducted from the traveler’s perspective (demand-
side), and there is a lack of research on the impact of built
environment on taxi drivers’ operating behavior from the
supply-side perspective. +e study of taxi supply and taxi
demand is equally important because taxi supply is a matter
of driver income, industry efficiency, and urban environ-
ment [41].

Second, the taxi vacant time has not been measured
accurately, which is a research limitation mentioned several
times in the related literature. Some studies treat the time
interval between the previous passenger drop-off time and
the next passenger pick-up time as the searching time, which
is logically fine. But, in fact, the time calculated by the above
method includes the time when the driver takes a short
break, eats, refills fuel, and so forth, which differs from the
actual searching time [14].

+ird, the influence mechanism of single factors has not
been further analyzed. +e results of related studies showed
positive, negative, or insignificant correlations of the
influencing factors. But, in fact, the effects of single factors
may differ significantly at different time periods and dif-
ferent magnitudes, and the mechanisms between the
influencing factors and the explained phenomena have not
been studied deeply and adequately.

Fourth, the influence of time-varying factors is not fully
considered. +e built environment is a static feature, and its
parameters or indicators do not change over time, which is a
time-invariant factor. Related studies have often considered
time-invariant factors and have not fully considered the
dynamic features that change over time. Transportation
system is a system with significant dynamic characteristics,
and its fluctuations in time and space are more obvious, so
the corresponding dynamic characteristics should be fully
considered.

To fill the above-mentioned gaps, this paper conducts a
study on the influence mechanism of the built environment
on taxi vacant time. +e contributions of the paper are as
follows.
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From the taxi supply-side perspective, the key built
environment factors affecting taxi vacant time and their
influencing mechanisms are explored, forming a closed loop
of research on the correlation between taxi supply and
demand and built environment with the related research on
the influence of built environment on taxi demand.

+rough the accurate measurement and splitting in time
and space of taxi vacant time, the research basis is made
more reliable, and then more practical value and guiding
research conclusions are drawn.

An in-depth study of the mechanism of the built en-
vironment’s influence on taxi vacant time based on a gen-
eralized additive model is conducted, the nonlinear
relationship between taxi vacant time and the built envi-
ronment is analyzed, and we step out of the limitations of the
linear relationship assumption.

Panel data with both spatial research units and temporal
dimensions are constructed under the premise of dividing
the study area, and the aim is to capture the effect of time-
varying factors and time-invariant factors.

3. Data and Variables

3.1. Study Area. +e study area of this paper is the central
city of Chongqing. As one of the megacities in China,
Chongqing is located in the southwest China mainland, with
a central urban area of about 5,467 square kilometers and the
number of permanent residents about 10.34 million in 2020.
+e central city of Chongqing straddles the Yangtze and
Jialing rivers and four major mountain ranges, making it a
typical cluster-type mountain city.

3.2. Data Processing. +e study data includes taxi trajectory
data, POI data, and OSM (OpenStreetMap) vector road
network data. +e fields of the trajectory data are vehicle
number, time, longitude, latitude, instantaneous velocity,
direction angle, and trip status codes (0: vacant, 1: occupied),
and the time interval of the trajectory data positioning point
is 15 seconds. A full week of taxi trajectory data is selected for
the study, so it can avoid possible errors in single-day studies
and analyze the variability of each day of the week. +e
selected time period is from May 20 to May 26 (Mon-
day–Sunday), 2019, and the weather conditions varied very
little during the week, with light rain and cloudy skies
predominating. It was checked that the data fluctuated
relatively little during the week, thus ensuring the reliability
of the data quality. +e hourly GPS points of the selected
dataset for the week are shown in Figure 1.+eGPS points of
168 hours on 7 days fluctuate between about 570,000 and
590,000, with small fluctuations, and the data can be con-
sidered generally smooth and without abnormalities.

+e POI data is collected from Amap (also known as
Gaode Map), and POI data contains information such as
administrative area, name, longitude, latitude, address,
telephone, and classification. +e data are cleaned up to
remove duplicate and incomplete data records and abnor-
mal values. After the final POI cleaning, 238,090 POI records
are got with complete and accurate information in 15 types.

In this paper, the taxi vacant time (TVT) is defined as the
elapsed time between the drop-off time of one occupied trip
and the pick-up time of the next occupied trip for one same
taxi, in other words, the passenger searching time [5]. +e taxi
vacant time is calculated by the taxi trajectories. First, the
missing values, duplicate values, and outlier of GPS positioning
points are eliminated, and the positioning points with an in-
stantaneous velocity greater than 120 km/h are eliminated [42].
Second, the taxi trajectories are constructed from the posi-
tioning points and the vacant taxi trajectories are extracted.
+ird, the abnormal vacant taxi trajectories are removed; that
is, the vacant taxi lasts for more than 90 minutes, and the
location points are removed with vehicle speed being 0 and
displacement being 0 for more than 5 minutes from the vacant
taxi trajectories. Fourth, the vacant taxi trajectories arematched
to the map, and the vacant taxi time of each grid is calculated.
Since the taxi vacant time is calculated by the actual vacant taxi
trajectory and the taxi vacant time is filtered in the calculation,
the taxi vacant time calculated in this paper is very close to the
actual passenger searching time.

As regards the process of panel data construction, first,
the study area is divided into 1 km× 1 km square grids, and
the vacant taxi travel time is calculated for each grid. Due to
the significant time-varying characteristics of taxi demand,
this paper slices the vacant travel time of each grid by hourly
slots, and the vacant travel time of each grid is 168 (7× 24)
dimensions. It should be noted that some grids have zero
vacant time in some hourly slots, and all grids with zero
vacant time in all hourly slots will be excluded from the
study. Next, the POIs are matched to the map, and the built
environment indicators are calculated for each grid using the
POI and OSM road network data. After the above process,
the panel data is formed with the grid as the study unit.

3.3. Explained Variable. +e explained variable is the total
taxi vacant time (TVT) per hour in each grid, with each grid
having a dimension in time of 168 hours (24 hours per day
for 7 days), and the taxi vacant time is defined as described
above. +e total number of grids divided in the study area
was 7,545. +e total taxi vacant time (in minutes) in each
grid is calculated as
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Figure 1: Fluctuation trend of the number of GPS positioning
points per hour for 7 days. Note: the vertical line in the figure is the
error line with 2 times the standard deviation.
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TVTi,j,k � 
n

m�1
TVTi,j,k,m, (1)

where TVTi,j,k is the total taxi vacant time of grid i in the kth
(0∼23) hour of day j (1∼7), TVTi,j,k,m is the vacant time of
mth taxi in grid i in the kth hour of day j, and n is the number
of taxis passing through grid i in the kth hour of day j.

3.3.1. Time-Varying Characteristics. +e time series of total
vacant time and total pick-ups for 168 hours in the study
period is shown in Figure 2. Both vacant time and pick-ups
fluctuate on a day-to-day basis. +e taxi vacant time starts to
increase rapidly from early in the morning and reaches a
peak around 5:00 a.m., then decreases rapidly and reaches a
low around 8:00 a.m., then fluctuates several times and
reaches a low again around 7:00 p.m., and starts to rise
slowly after 10:00 p.m. +e fluctuation of taxi pick-ups, on
the other hand, is basically opposite to the trend of the taxi
vacant time. Poisson’s correlation coefficient between vacant
time and pick-ups was calculated to be −0.90, which also
indicates that vacant time is highly negatively correlated with
pick-ups. +is is relatively easy to understand, because
drivers find it relatively easier to search for passengers when
taxi demand is high, and the time they spend in searching for
passengers is bound to be shorter. However, we calculated
the correlation coefficient between the taxi vacant time and
the number of pick-ups in the hourly slots at the grid level,
and the value was only −0.27. +e correlation between the
taxi vacant time and the number of pick-ups in the hourly
slots at the grid level is much weaker, indicating a serious
spatial mismatch between taxi demand and supply.

3.3.2. Spatial Characteristics. +e spatial distribution of total
taxi vacant time for grids is shown in Figure 3.+e grids with
high vacant time are mainly concentrated in commercial
centers, transportation hub areas, and residential concen-
trated areas.

3.4.ExplanatoryVariables. +e explanatory variables are the
built environment characteristic indicators of the grid. +e
14 types of POIs are kept unchanged as 14 built environment
indicators; the transportation facility service POIs are
converted into 3 types of indicators, that is, presence of
metro stations (logical type, 0 means nometro stations in the
grid, 1 means metro stations in the grid), number of bus
stops, and road density (km/km2). +e other explanatory
variables are longitude and latitude of the grid center, av-
erage traffic flow speed of the grid (km/h), and grid POI
mixture. +e relevant explanatory variables are defined and
calculated, respectively, as follows.

Longitude and latitude of the grid center: the longitude
and latitude of the grid center (World Geodetic Sys-
tem—1984 Coordinate System).

Road density (km/km2): the density of roads per unit
area in the grid, which is calculated based on OSM vector
road network data and is calculated as follows:

DSRi �


n
r�1 LGRr

AEGi

, (2)

where DSRi is the road density of grid i, LGRr is the length of
the road numbered r in grid i (km), AEGi is the area of grid i
(km2), and n is the number of roads in grid i.

Average traffic flow speed within the grid (km/h): the
average speed of all passing taxis within a specific time slot of
a given grid, which is calculated as follows:

TFSi,j,k �
1
n



n

m�1

di,j,k,m

ti,j,k,m

, (3)

where TFSi,j,k is the average flow speed of grid i in the kth
(0∼23) hour of day j (1∼7), di,j,k,m is the travel distance of the
mth taxi passing through grid i in the kth hour of day j, ti,j,k,m
is the travel time of themth taxi passing through grid i in the
kth hour of day j, and n is the number of taxis passing
through grid i in the kth hour of day j.

Grid POImixture: the mixture degree of POI types in the
grid, where POI mixture characterizes the degree of diversity
of POI, and it also characterizes the degree of land use mix to
a certain extent [43], which is calculated as follows:

PMTi �

−1
ln Ni

  

N

m�1
pi,m ln pi,m, N> 1,

0, N � 0/1.

,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

In the above equation, PMTi is the POI mixture of the ith
grid, Ni is the number of types of POIs in the ith grid, and
pi,m is the percentage of the mth type of POIs in the ith grid
to the number of all POIs in the grid. POI mixture is a
dimensionless value, and its value ranges from 0 (homo-
geneous) to 1 (most mixed), and a larger value indicates a
higher mixing degree [44]. In particular, when there is no
POI in the grid or only one type of POI, the mix degree is 0
[45]. In addition, if neither POI distribution in the grid nor
road density is 0, the grid is excluded.

All variable values were calculated, discriminated, and
filtered, and the summary of the variables is shown in Table 1.
+e difference in vacant time between grids is relatively large,
and about half of the grids have two or fewer bus stops, and the
number of grids containing metro stations is few due to the
limited number of metro stations. +e average traffic flow
speed is about 30 km/h, which is higher than the average peak
hourly speed of the city’s road network (22.90 km/h) [46]. +e
mean POI mixture of grids is 0.73, indicating a relatively di-
verse range of POIs in most grids. Shopping service POIs are
the most widely distributed in most grids, while living service
and catering service POIs are alsowidely distributed, and scenic
spot and multiple-living building POIs are the fewest.

4. Methodology

4.1. SpatialAutocorrelation. In this study, we investigated the
spatial autocorrelation using the global Moran’s I test [47].
+e globalMoran’s I is an overall judgment of the correlations
of all spatial units with the following expressions:
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I �
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n
i�1 

n
j�1 ωij xi − x(  xj − x 


n
i�1 

n
j�1 ωij  

n
i�1 xi − x( 

2 ,

x �
1
n



n

i�1
xi,

(5)

where n is the number of samples, ωij is the (i, j) element of
the spatial weight matrixW, xi and xj are the observed values
of spatial units i and j, respectively, and x is the mean of the
observed values. Moran’s I generally takes a value between
[−1, 1]; a value greater than 0 indicates positive spatial
autocorrelation (or indicates spatial agglomeration phe-
nomenon), and a value less than 0 indicates negative spatial
autocorrelation (or spatial dispersion). 1 indicates complete
spatial clustering, −1 indicates complete spatial dispersion,
and 0 indicates random distribution in space or no spatial
correlation. In this paper, we construct the Queen adjacent
(boundary or vertex adjacent) spatial weight matrix based on
the grid for calculating Moran’s I.

4.2. Generalized Additive Model. A generalized additive
model (GAM) was introduced to investigate the mechanism
of built environment on taxi vacant time. Initially proposed
by Hastie and Tibshirani [48, 49], GAM is an extension of
the linear regression model, combining parametric and
nonparametric approaches to regression models, and is
suitable for dealing with complex nonlinear relationships
between explanatory and explained variables [50]. GAM
assumes that the function is additive, which not only fits as a
parametric function but also allows each explanatory vari-
able to be transformed into an unconstrained smoothing
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Figure 2: Total taxi vacant time and total pick-ups per hour for 7 days.
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function, after which the corresponding explanatory variable
is modeled in the form of a smoothing function. +e form of
GAM is as follows:

g(μ) � α + 

p

i�1
fi Xi( . (6)

+e hypothesis of the relationship between the ex-
planatory and explained variables in the GAM is

g(μ) � s0 + s1 x1(  + s2 x2(  + · · · + sm xm( , (7)

where μ is the expected value of Y; that is, μ� E(Y/X1, . . .,
Xp), g(·) is the connection function, and α is the intercept.
fi(·) is an arbitrary univariate function for each explanatory
variable Xi. GAM is highly flexible because it does not re-
quire the specification of the form of the explanatory var-
iables. GAM is applicable tomany distribution types, and the
form of the connection function g(·) varies for different
distribution types.

5. Results and Analyses

5.1. Moran’s I of Taxi Vacant Time. Moran’s I of the grid
vacant time was calculated as 0.328, and the significance test
showed that the p value <2.2e− 16 was significant at 0.001
significance level, indicating the existence of spatial auto-
correlation of the grid vacant time. +e scatter plot of grid
Moran’s I is shown in Figure 4, from which it can be seen
that most of the grids are located in the third quadrant
representing “low-low” correlation, followed by those lo-
cated in the first quadrant representing “high-high” corre-
lation. +ere are relatively few grids in the second quadrant
representing “low-high” correlation and the fourth quadrant
representing “high-low” correlation. +e high impact values
(square symbols in the figure) are mainly distributed in the

first quadrant, indicating a more pronounced aggregation of
high vacant time grids.

5.2. Transformation of the Form of Explained Variable.
From the results of the statistical description, the explained
variable is identified as a nonnegative and nonzero variable.
+us, to examine the form of their distribution, the Kernel
Density Estimation plot and the Empirical Cumulative
Distribution Function plot are provided as shown in
Figure 5.

It can be figured out that the distribution of taxi vacant
time of grids is close to a power-law distribution and there
are some outliers with large bias. If the variables containing
outliers are applied directly in the model and the model is
sensitive to the outliers, it will bias the model estimation.
+us, to solve this problem, the variables should be trans-
formed. Combining the range of values and distribution of

Table 1: Descriptive statistics of the variables.

Variables Description Min Median Mean Max Std. Dev.
TVT Taxi vacant time of grids (min) 0.25 7.75 53.53 3397.50 120.98
DSR Road density of grids (km/km2) 0 6.52 7.09 22.01 4.04
BSN Number of bus stops in grids 0 2 2.35 16 2.44
MET Presence of metro stations within grids 0 0 0.12 1 0.33
TFS Average traffic flow speed (km/h) 0 25.42 31.36 120.00 22.58
LON Longitude of the center of grids 106.30 106.50 106.50 107.00 0.11
LAT Latitude of the center of grids 29.13 29.58 29.58 30.10 0.12
PMT POI mixture 0 0.85 0.73 1.00 0.32
CAT Number of catering service POIs 0 2 17.78 498 43.38
SNS Number of scenic spot POIs 0 0 1.20 57 3.58
ENT Number of enterprise POIs 0 3 7.71 223 16.65
SHP Number of shopping service POIs 0 5 37.16 1368 102.19
FAI Number of finance and insurance service POIs 0 0 3.14 111 7.94
SAE Number of scientific, culture, and education POIs 0 2 7.97 149 16.18
MVS Number of motor vehicle service POIs 0 1 3.78 319 12.21
LFS Number of living service POIs 0 3 18.88 527 42.10
SLE Number of sports and leisure service POIs 0 1 6.92 191 15.64
HCS Number of healthcare service POIs 0 1 8.41 158 15.89
GOV Number of governmental agency POIs 0 2 7.32 181 14.71
HTS Number of hotel service POIs 0 0 3.89 230 12.68
MLB Number of multiple-living building POIs 0 0 1.03 43 3.41
RES Number of residence community POIs 0 2 6.33 88 9.31
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Figure 4: Moran’s I scatter plot of grids. Note: the square symbols
represent high impact values.
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taxi vacant time of grids, a natural logarithmic transfor-
mation of grid vacant time is more suitable. First, the log-
arithmic transformation will make the range of values of
vacant time much narrower, which makes the estimated
value less sensitive to the presence of outliers; second, the
conditional distribution of variables with vacant time for
values greater than 0, which are usually strictly positive, with
heteroskedasticity and skewness, but taking the logarithm
will effectively improve both of them; furthermore, when the
explained variable is greater than 0, models using loga-
rithmic values of the original values are generally closer to
the CML (Classical Linear Model) assumptions than models
using the original values directly. +erefore, in this paper,
the explained variable is converted into the form of natural
logarithms; that is, the explained variable is in the form ln
(TVT).

5.3. GAM Results. Table 2 presents the estimation results of
GAM model. Since both traffic demand and supply have
significant time-varying characteristics, two variables
reflecting time-varying characteristics, namely, day of the
week (DOW, 1∼7) and hour of the day (TSLOT, 0∼23), are
included in the model. All explanatory variables except for
multiple-living building (MLB), scientific, culture, and ed-
ucation (SAE), and scenic spot (SNS) are significant at the
0.001 significance level. In a GAM model, the degree of
nonlinearity could be measured by the effective degree of
freedom (EDF). +e fitted explanatory variables of the
smooth spline function and smooth tensor product have
significant coefficients and their corresponding estimated
EDFs are high. All EDFs are greater than 8, suggesting that
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Figure 5: Distribution of taxi vacant time of grids.(a) Kernel Density Estimation. (b) Empirical Cumulative Distribution Function. Note:
some outliers (top 1%) were removed to increase the readability of the plot; the vertical dashed line in Figure 5(a) is the average of the grid
taxi vacant time, and the horizontal dashed line in Figure 5(b) is the dividing line of the cumulative frequency at 90%.

Table 2: Estimation results of GAM model.

Explanatory
variables

Coefficients

Estimate Std.
Error t value Pr (>|t|)

Intercept 2.0860 0.0083 251.450 <2e− 16∗∗∗
ENT −0.0027 0.0002 −10.943 <2e− 16∗∗∗
FAI 0.0027 0.0007 3.751 0.0002∗∗∗
GOV −0.0013 0.0003 −4.339 1.43e− 05∗∗∗
HTS 0.0043 0.0004 10.734 <2e− 16∗∗∗
LFS 0.0018 0.0003 6.787 1.14e− 11∗∗∗
HCS 0.0034 0.0004 8.486 <2e− 16∗∗∗
MLB −0.0012 0.0012 −0.955 0.3395
SAE 0.0001 0.0003 0.400 0.6893
SHP −0.0002 0.0001 −3.761 0.0002∗∗∗
SLE 0.0099 0.0005 20.643 <2e− 16∗∗∗
SNS −0.0007 0.0007 −1.019 0.3081
PMT −0.0365 0.0081 −4.487 7.23e− 06∗∗∗
MET 0.3239 0.0075 42.915 <2e− 16∗∗∗

Explanatory
variables

Approximate significance of smoothing
terms

EDF Ref. Df F p value
s (TFS) 8.929 8.999 5393.5 <2e− 16∗∗∗
s (DSR) 8.927 8.998 1711.3 <2e− 16∗∗∗
s (BSN) 8.774 8.978 391.6 <2e− 16∗∗∗
s (CAT) 8.943 8.999 421.6 <2e− 16∗∗∗
s (MVS) 8.949 8.999 687.1 <2e− 16∗∗∗
s (RES) 8.591 8.931 405.5 <2e− 16∗∗∗
s (longitude,
latitude) 28.945 29.000 1835.5 <2e− 16∗∗∗

t2 (DOW, TSLOT) 21.966 23.236 117.9 <2e− 16∗∗∗

Model fit R-
sq.(adj) 0.759

Significance codes: “∗∗∗” 0.001. s ( ): smooth spline function. t2 ( ): smooth
tensor product.
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significant and strong nonlinearities exist among the se-
lected variables. +e effect of metro stations (MET) on the
taxi vacant time in the grid is significant and substantial,
with the presence of ametro station in the grid increasing the
vacant time by about 32.39%.

6. Discussion

Considering variability in the effect of built environment on
the effect of taxi vacant time, the high correlation association
and positive effect of metro stations (MET) and taxi vacant
time may be due to the fact that most of the metro stations
are located in high development intensity areas and densely
populated areas of the city, where taxi demand is high [51]
and thus taxi activity intensity is high. Also, the demand for
transfer between the metro and taxis cannot be ignored, and
these two modes of transportation have complementary
roles [5]. Completing trips with taxis and metro can take
advantage of the respective strengths of both modes of
transportation [52]. POImixture can reduce taxi vacant time
in a region, which has two possibilities, either high taxi
demand with the highmixture and thus short searching time
or low taxi demand with the high mixture, which is not
attractive to drivers in a searching status. +ere are results of
land use mix in related literature studies that promote taxi
trips [53] and results that reduce taxi trips [36].

Figure 6 shows the estimated degrees of freedom with
smooth spline functions on taxi vacant time, in which the fits
of each explanatory variable are obvious curve shapes with
significant nonlinear relationship characteristics. +e effect
of catering service (CAT, Figure 6(a)) on vacant time is little
and unstable when the number of POIs is small, and the
effect on vacant time has alternating positive and negative
effects, and its effect on vacant time increases significantly
after the number of catering service POIs in the grid reaches
about 300. Places with a high concentration of catering
services are generally important sources of taxi passengers
and have a high demand for taxi rides, especially during peak
dining hours and weekends [43], and thus the taxi searching
time can be significantly reduced.

+e effect of motor vehicle service (MVS, Figure 6(b)) on
vacant time also fluctuates repeatedly, but it only has a
significant effect on the vacant time of the grid when the
number of POIs reaches about 100; that is, the vacant time
increases significantly at this time. Motor vehicle services
include car sale, maintenance, and beauty, vehicle inspec-
tion, and car renting. Except for car sales, other vehicle
services are generally scattered, and residents go mainly by
self-drive, which has less correlation with taxi demand.
Meanwhile, taxi drivers perform vehicle maintenance during
their nonoperating hours and do not generate vacant time
records.

+e effect of residence community (RES, Figure 6(c)) is
negative when the number is small, then remains positive,
and finally becomes negative again, indicating that residence
communities usually increase vacant time, but highly con-
centrated residential areas decrease it again. Residential
communities are the departure points for residents to go to
work and the destinations for them to leave work, and they

have a large demand for taxis, which tend to go to the areas
where residential communities are concentrated to search
for passengers. On the other hand, however, the time-
varying demand for taxis in residential communities varies
greatly, with departures dominating in the morning peak
and arrivals in the evening peak. Taxis often have difficulty
searching for the next passenger in the vicinity after the
evening peak passengers drop off in residential communities
[43]. All of the above causes residential communities to
positively affect taxi vacant time.

+e effect of the number of bus stops (BSN, Figure 6(d))
is characterized by two stages, and the effect is nearly linear
when the number of bus stops in the grid is less than 8, and
the longer the vacant time is withmore bus stops, after which
the fitted curve fluctuates and rises, the vacant time increases
significantly after the number of bus stops reaches about 13.
+is phenomenon is easy to understand; with a specific
competitive relationship between public transport and taxis,
good public transport access can significantly reduce the
demand for taxis [54], as well as the increased difficulty in
searching for passengers, thus leading to an increase in taxi
vacant time.

+e impact effect of road density (DSR, Figure 6(e)) is
characterized by three stages, with two segments showing a
near-linear state with a large slope and one segment showing
a near-horizontal line, which is close to linear at about
10 km/km2 or less, and near-horizontal linear at about
10∼17, after which the impact effect increases significantly
with increasing road density. Related studies also show the
uncertainty of the impact of road density on taxi trips, with
some studies showing that road density promotes taxi trips
[36] and other studies showing that it reduces taxi trips [54].
Since the urban road network is largely well developed, roads
may no longer be a constraint on taxi demand, but high-
density road network areas are usually densely populated
and their taxi demand is high [36], which in turn signifi-
cantly boosts regional taxi vacant time.

+e average traffic flow speed (TFS, Figure 6(f)) in-
creases taxi vacant time at low speeds and decreases it at high
speeds, with a turning point around 30 km/h.+e time spent
by taxis, whether vacant or occupied, in areas where they can
move quickly is usually reduced. Related studies also show
that severe traffic congestion increases taxi vacant time [5].

+e plots of the fitted taxi vacant time with temporal (day
of the week, hourly slots) and spatial (longitude, latitude)
interactions are shown in Figure 7. From the daily fluctu-
ation of vacant time (Figure 7(a)), the hourly vacant time of a
day has a significant change, with more vacant time in the
early morning, more vacant time in the midday period
compared to other hours of the day, and a continuous
decrease in vacant time from the evening peak hour until late
at night. As mentioned above, the total taxi vacant time is
negatively correlated with the demand for taxis, with an
undersupply of taxis during peak travel periods, a much
shorter passenger search time, and low levels of vacant time.
+e opposite is true during travel valleys. +e weekly
fluctuations in vacant time show relatively small fluctuations
from Monday to Sunday, with two relatively significant dips
in the early morning hours onMonday and late afternoon on
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Friday, indicating a brief decrease in vacant time during
these two periods. Monday morning and Friday evenfall are
the beginning and end of the workweek, respectively, and
most employees are likely to commute on these two days,
while the other workdays are not so concentrated.

+e longitude-latitude interaction plot (Figure 7(b)) is
now clearly highlighted in the middle area, which is the
downtown of the city, and it is the main operating area for
taxis; thus its vacant time is significantly higher than other
areas. +e vacant time in high taxi demand areas is not
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Figure 7: Visualization of fitted taxi vacant time with temporal and spatial interactions. (a) Day of the week and hourly slots (DOW,
TSLOT). (b) Longitude and latitude (longitude, latitude).
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Figure 6: Estimated degrees of freedom with smooth spline functions on taxi vacant time for explanatory variables. (a) Number of catering
services. (b) Number of motor vehicle services. (c) Number of residence communities. (d) Number of bus stops. (e)Road density (km/km2).
(f ) Average traffic flow speed (km/h). Note: the horizontal coordinate indicates the actual value of each explanatory variable, the vertical axis
indicates the value of the smooth function, the shading indicates the upper and lower limits of the confidence interval, and the solid line
indicates the smooth fitted curve of each explanatory variable.

10 Journal of Advanced Transportation



significantly reduced, which is mainly due to the imbalance
in the spatial and temporal distribution of taxi demand. Also
the traffic congestion in downtown increases the taxi travel
time [5].

Studies have shown that the number of taxis can be
significantly reduced through operational efficiency im-
provement, even without changing the current operating
mode and ridesharing [55]. +e findings of this paper can
guide urban transportation facility layout planning, taxi
management policy development, and taxi operation opti-
mization to improve taxi operation efficiency. In terms of
transportation facility layout planning, a differentiated taxi
stand layout should be implemented to allow for quick
docking between drivers and passengers and to reduce in-
effective cruising of vacant taxis [56]. In downtown areas,
high-density all-weather or time-sharing taxi stands are
located in the vicinity of commercial complexes, high-rise
office buildings, catering service areas, and large hospitals,
where taxi demand is high, while taxis are prohibited from
picking up or dropping off passengers on the side of the road
during peak hours on busy roads. In suburban areas, taxi
stands are set up only at locations with high taxi demand.
Because of the high correlation between the taxi vacant time
and metro stations, the layout of taxi stands should be
considered to connect with metro stations to facilitate
transfers.

In terms of taxi management policy formulation and taxi
operation optimization, taxi operation guiding measures
and technical means should be developed to optimize op-
eration. As mentioned above, there is a sharp increase in the
vacant time of taxis during the low demand period, while
there is a spatial mismatch in the supply and demand of taxis
during the peak hours. +erefore, the spatial and temporal
regulation of taxi capacity resources should be carried out
through policy measures such as subsidies or rent reduc-
tions, and enterprises or drivers should be guided to set
reasonable shift change times [57]. Benefiting from the
development of information technology, increasing the ratio
of ridesharing and applying intelligent and accurate driver-
rider matching technology can significantly reduce the taxi
vacant time as long as the policy allows [58]. From the
perspective of the comprehensive transportation system,
improving the level of public transportation services and
enhancing the attractiveness of public transportation can not
only reduce the use of taxis but also have positive signifi-
cance in reducing congestion, energy saving, and emission
reduction. Meanwhile, the case study city in this paper is
similar to other large cities with diverse urban transportation
modes and large populations, and thus the findings of this
paper may provide guidance for some cities.

7. Conclusions

Unlike previous studies related to taxi demand, this paper
examines the taxi travel issue from taxi supply-side per-
spective. +e study is based on the time that taxis are
available to provide service that can be reliably measured.
Based on the analysis of the spatial and temporal distribution
characteristics of taxi vacant time, this paper constructs a

GAM model to study the influence mechanism of built
environment on taxi vacant time. +e distribution of taxi
vacant time shows a strong spatial and temporal imbalance.
Taxi vacant time is highly negatively correlated with demand
(pick-ups), and sufficient passenger sources enable drivers to
shorten the average passenger searching time. Taxi demand
and vacant time are much higher in the downtown areas
than in the suburban areas, where high land development
intensity generates high taxi demand and thus attracts a large
number of taxis.

+e effect of built environment on taxi vacant time
varies, and the effect of built environment on taxi vacant
time also shows significant nonlinear characteristics. +e
positive effect of metro stations on vacant taxi time is the
most prominent, and, in addition to considering that metro
stations are located in areas that usually have high traffic
demand and supply, the transfer between metro trips and
taxi trips is also an important factor [52]. +e degree of
diversity of POI functions in the region can reduce the taxi
vacant time to a certain extent. +e effects of sports and
leisure services, hotel services, healthcare services, finance
and insurance services, and living services on vacant taxi
time are relatively high and positive. +e effects of enter-
prises and governmental agencies on vacant taxi time are
relatively low and negative. +e effect of catering services on
vacant time is only significant when the number is high, and
the positive low effect of residence communities is domi-
nant. Road density has a negative effect on vacant time at low
densities, but its positive effect increases rapidly at high road
density intervals. In general, an increase in the number of
bus stops in the area results in a corresponding increase in
taxi vacant time. Consistent with expectations, congestion
increases taxi vacant time and smooth flow significantly
decreases vacant time [5].

+e preference of taxi drivers for the built environment
is subjective and regular, which will lead to spatial imbalance
of taxi supply and demand in the case of insufficient in-
formation. +e spatial and temporal distribution of taxi
capacity resources can be optimized through technology and
management tools, thus improving the overall taxi operating
efficiency [59]. Short-term taxi demand forecasting based on
vacant time can be used to guide the rational scheduling of
taxi capacity [9]. At the micro level, improving driver-
passenger matching through technical means can improve
driver operating efficiency and thus reduce vacant time [60].
+e nonlinear effect of built environment factors on taxi
vacant time is significant and the mechanism of influence
varies in different built environments, which have positive
implications for urban functional layout planning. +e close
correlation between taxi vacant time and transportation
facilities such as metro stations, bus stops, and road density
can provide guidance for comprehensive urban trans-
portation planning and optimization.

Although some research has been done in this paper on
the mechanism of built environment influence on taxi va-
cant time, there are still shortcomings in this paper due to
the limitation of data and methods. First, there may be
differences in the mechanism of the influence of built en-
vironment on vacant time between downtown and suburban
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areas. Spatial heterogeneity was not considered in this study,
and spatial econometric methods could be introduced in the
future to study the spatial heterogeneity of factors influ-
encing vacant time. Second, although this study constructs a
rich set of built environment indicators, it lacks socioeco-
nomically relevant indicators, and taxi demand is associated
with resident income, education, car ownership, and so forth
[61].+ird, the grid division of the study area may lead to the
division of areas that are closely connected spatially into
different grids, which may lead to potential measurement
errors. A more reasonable method of dividing study units
will be explored to maintain the continuity of spatial study
units to reflect the spatial characteristics of regions and
reduce the influence of measurement errors on study results.
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