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Trip end identification based on mobile phone data has been widely investigated in recent years. However, the existing studies
generally use fixed clustering radii (CR) in trip end clustering algorithms, but ignore the influence of base station (BS) densities on
the positioning accuracy of mobile phone data. +is paper proposes a new two-step method for identifying trip ends: (1) Genetic
Algorithm (GA) is utilized to optimize the CRs of DBSCAN under different BS densities. (2) We propose an improved Fast-
DBSCAN (F-DBSCAN) for two objectives. One is for improving identification accuracies; the parameter CRs for judging core
points can be dynamically adjusted based on the BS density around each mobile phone trace. +e other is for reducing time
complexity; a fast clustering improvement for the algorithm is proposed.Mobile phone data was collected by real-name volunteers
with support from the communication operator. We compare the identification accuracy and time complexity of the proposed
method with the existing ones. Results show that the accuracy is raised to 85%, which is approximately 6% higher than the existing
methods. Meanwhile, the median running time can be reduced by about 76% by the fast clustering improvement. Especially for
noncommuting trip ends, the identification accuracy can be increased by 8%. +e average identification errors of travel time and
trip end coordinates are reduced by about 12min and 321m, respectively.

1. Introduction

With progress in new-generation wireless communication
techniques, the spatial and temporal resolution ofmobile phone
data is gradually improved. Certain research accomplishments
have been obtained in aspects of residents’ trip pattern mon-
itoring [1, 2], job-housing relationship analysis [3], and trip
origin-destination identification [4–6] usingmobile phone data.
Due to an outbreak of COVID-19, mobile phone data attract
extensive attention in epidemiological investigation and re-
search [7, 8]. +e technology for mobile phone data has been
gradually diffused from academic research to practical appli-
cation. However, the primary basis of relevant research and
application is still the identification of individual trip ends. +e
accuracy and efficiency of trip end identification have a direct
influence on large-scale residents’ traffic information extraction.

Trip end identification refers to the extraction of the
user’s dwell location and time of each activity from the user’s
all-day mobile phone data. Since the beginning of the 20th
century, some researchers have paid attention to mobile
phone data for travel surveys because of its advantages of
passive collection and wide sample coverage. As regards
early mobile phone data from the 2G communication
network, such as call detail records (CDR) data, the posi-
tioning frequency and accuracy are very low. A study found
that the average service range of BS in 2G communication
network was about 3 km2 [9]. Another found the average
interval time of the data is 260min [10]. Some scholars
extracted trip ends based on time features. For example, Pan
et al. [11] directly took the location of mobile phone traces at
night as the place of residence and the trace from 8:00 a.m. to
11:00 a.m. as the place of work. In some studies, the locations
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of BSs visited by users with the highest frequency were taken
as their trip ends combined with historical data [2, 12, 13].
However, such an approach is inapplicable for extracting
noncommuter and nonfrequent trip ends. Later, some
studies proposed rule-based methods [6, 14, 15]. To be
specific, if a sequence of mobile phone traces satisfies the
following two judgment criteria, they can be identified as
being at a trip end: (1) the maximum spatial distance of
continuous traces is below the preset distance threshold, and
(2) the time difference of the first and the last in the con-
tinuous traces is above the preset temporal threshold [16].
+e rules mostly rely on common sense or prior knowledge.
A variety of time and distance thresholds has been proposed.
For example, time thresholds include 15min [17, 18], 30min
[19, 20], and 60min [21], and distance thresholds include
200m [18, 19] and 1000m [10, 15]. Despite simple imple-
mentation, the method tends to ignore short distance/time
travel and lacks robustness, signifying that the results ob-
tained are extremely vulnerable to outliers [22].

+e generation upgrade of mobile communication
networks and the Internet economy brings higher temporal-
spatial resolution of mobile phone data. +e sampling fre-
quency of mobile phone data has rapidly increased to the
level of minute intervals [23]. Some clustering analysis al-
gorithms were applied for trip end identification [24]. Wang
et al. [25] and Poonawala et al. [26] proposed temporal-
spatial clustering to extract trip ends. +e influence of noise
and outliers presented in the dataset can be effectively re-
duced by carefully setting the thresholds [27]. Chen et al.
[28] applied a model-based clustering method requiring a
predetermined number of clusters. However, the method is
sensitive to the spatial density of the mobile phone traces.
Several faraway outliers may be clustered together, causing
the resulting cluster to stray away [22]. Some studies applied
the incremental clustering algorithm for extracting trip ends
more steadily [22, 29, 30]. However, the clustering results are
subject to clustering sequence, which easily lead to unrea-
sonable clusters [22]. DBSCAN based on the density
characteristic of mobile phone traces has been proved to be
effective and obtain stable results [31–33].

However, the existing methods still have some defi-
ciencies in identifying trip ends. Firstly, mobile phone data is
expected for daily observation of large-scale residents’ mo-
bility patterns, signifying high demand for technical effi-
ciency. +e running time for DBSCAN is heavily dominated
by finding neighbors or obtaining density for each data point
with the time complexity O(n2) [34]. +e clustering efficiency
remains to be improved. Secondly, the influence of BS layout
on the identification effect is ignored in existing studies. +e
positioning error of mobile phone traces depends on BS
densities and varies from as little as a few hundred meters in
metropolitan areas to a few kilometers in rural regions [35]. It
means that the traces generated at different trip ends also
differ in the spatial distribution, as shown in Figure 1 [23].+e
parameter CR as the unit tomeasure the density of traces has a
direct impact on identification results [24, 36]. Fixed CRs used
in the traditional algorithm cannot be well applied to all trip
ends at the same time [22, 37]. CRs applicable to high BS
density areas are usually too small under low BS densities,

which easily results in one trip end being misidentified as
multiones, as shown in Figure 1(a). +is result will give us the
illusion that the user travels back and forth between several
trip ends within a short time, which is named oscillation in
some studies [38–40]. In contrast, CRs suitable for low BS
density areas are rather large under high BS densities. In this
case, more traces generated on a trip will be clustered into trip
end clusters, which increases the identification errors of travel
time and trip end coordinates, as shown in Figure 1(b).
Especially if two trip ends are near enough in space, too large
CRs will result in them being misidentified as one. Due to a
whole trip chain of a traveler through different BS densities,
fixed CRs cannot avoid the above problem regardless of
careful setting. +erefore, if we can improve the algorithm by
adjusting CRs dynamically based on BS densities in the
clustering process, the identification result can be further
enhanced.

+is paper obtains real-name volunteers’ mobile phone
data with support from the communication operator. +e
actual travel information behind mobile phone data can be
synchronously gathered as a data foundation for algorithm
improvement and result validation. Given the above
problem, this paper proposes a new method for trip end
identification. Our contributions can be summarized as
follows:

(1) Anonymous mobile phone data used in previous
studies can only be validated by comparing with
other aggregate data sources, such as household
travel survey data which is not necessarily reliable
[6, 29, 41]. +is study constitutes one of the very first
attempts that systematically validates the results at
the individual level using the ground truth data.

(2) CR as the key parameter in DBSCAN was set largely
dependent on subjective experience in the existing
research without being optimized by considering the
communication environment [23]. A CR optimiza-
tion framework GA-DBSCAN is proposed for op-
timal CRs under different BS densities in this paper.

(3) +is paper identifies trip ends by improving the
traditional DBSCAN for two objectives. One is for
enhancing identification effects. CRs optimized by
GA-DBSCAN can be adjusted dynamically based on
the BS density around each trace in the clustering
process. +e other is for increasing clustering effi-
ciency. We reduce the time complexity of the al-
gorithm from three aspects, namely, clustering
sequence, unified processing of repeated traces, and
that of traces around them. +e improved
F-DBSCAN is validated by comparison with existing
methods.

+e remaining parts of this paper are organized as
follows: Section 2 describes the proposed trip end identi-
fication method. Section 3 presents the data collection ex-
periment and characteristics of mobile phone data. Section 4
analyzes the identification results of the proposed methods.
Section 5 concludes the study and reveals future research
directions.
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2. Methodology

+e BS density places significant influences on posi-
tioning errors of mobile phone data. In general, the
positioning errors are comparatively small in areas where
the BS density is high. As a consequence, spatial dis-
tribution ranges of traces produced at diverse trip ends
vary, as shown in Figure 2. +e traditional DBSCAN with
a fixed CR is difficult to achieve good results under
different BS densities. In this consideration, an equal-
time-interval interpolation algorithm is firstly used to
perform data preprocessing and balance time weights of
mobile phone traces. +en, a GA-DBSCAN framework is
built to optimize CRs under different BS densities. +e
functional relationship between optimal CRs and BS
densities is acquired, that is, R � Fun(density). On this
basis, an improved F-DBSCAN is proposed and has the
capacity of adjusting CRs dynamically with lower time
complexity.

2.1.DataPreprocessing. Different fromGPS data gathered in
equal time intervals, mobile phone data are featured with
time interval nonuniformity. +is signifies that the time
weights of different mobile phone traces vary. As shown in
Figure 3(a), traces A and B are both at a trip end, without
other traces in a period of T1. Trace A represents not only its
own position, but also the position during the period of T1.
By contrast, traces C and D on a trip can only represent the
position at a certain moment.+erefore, trace A has a higher
time weight. If mobile phone data occurs once per second,
more traces will appear on the position of trace A, as shown
in Figure 3(b). +e equal-time-interval interpolation algo-
rithm is used to estimate users’ positions per second. It
makes sure that high-density traces can be generated at trip
ends, preventing trip ends ignored due to users’ few com-
munication behaviors, so that the identification result can be
more stable.

+e space-time three-dimensional coordinate of a trace
is defined as (j, w, t) that represents longitude, latitude, and
time. t is the second of the trace in a day. If the coordinates of

two adjacent mobile phone traces are (j1, w1, t1) and
(j2, w2, t2), the following two linear equations can be utilized
to express the coordinates of traces at time t within the
interval [t1, t2]:

j �
t − t1( 􏼁 j2 − j1( 􏼁

t2 − t1
+ j1,

w �
t − t1( 􏼁 w2 − w1( 􏼁

t2 − t1
+ w1.

(1)

After interpolation, mobile phone data turns into a
per-second consecutive dataset. +e higher the interpo-
lation frequency is, the greater the computing amount and
time cost of subsequent trip end identification will be. For
this reason, the interpolation cycle F (unit: second) of
traces should be adjusted according to computational
power and timeliness need. In detail, on the basis of in-
terpolation per second, a trace is repeatedly selected once
every F seconds, while those not selected are deleted. Once
F increases, it is more likely for identification errors of
relevant information (e.g., travel time) to increase. In this
paper, F is set at 10 seconds, signifying the time interval of
traces after the data preprocessing is 10 s. +rough the
equal-time-interval interpolation algorithm, the number
of traces can be used to represent dwell time, enabling the
density of traces at trip ends to enormously rise.

2.2. CROptimization. CR is the most important parameter
in DBSCAN [42]. However, the existing setting for this
parameter largely depends on subjective experience [23].
In this paper, a GA-DBSCAN framework is built for CR
optimization. GA is a random search optimization al-
gorithm based on the concepts of natural selection and
genetics [43]. +is CR optimization problem is solved
mainly in the following two steps. Firstly, we need to
determine the optimization goal of the target parameter
CR, namely, the fitness function. Secondly, the clustering
process of DBSCAN is integrated with the optimization
flows of GA.

Low BS density

Actual trip end

Adequate CR
BS connected on a trip

Misidentified trip end

Inappropriate CR
BS connected at trip ends

(a)

High BS density

Actual trip end

Adequate CR
BS connected on a trip

Misidentified trip end

Inappropriate CR
BS connected at trip ends

(b)

Figure 1: Inappropriate CRs under different BS densities. (a) Too small CR for low BS densities. (b) Too large CR for high BS densities.
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2.2.1. Fitness Function Construction. +e fitness function of
GA is the objective function of an optimization problem. In
this problem, it reflects the proportion of correct identifi-
cation.We rule outmisidentification for getting the correctly
identified proportion. +ere exist the following four cate-
gories of misidentification, as shown in Figure 4:

(1) Merged identification, where multiple trip ends are
misidentified as one, as shown in Figure 4(a): spe-
cifically, suppose only one trip end is identified from
a group of NM actual ones. +en the number of
misidentification samples isNMer �NM − 1. It usually
results from too large CR setting or a too short
distance between different trip ends.

(2) Segmented identification, where NS trip ends are
falsely identified from one actual trip end, as shown
in Figure 4(b): then, the number of misidentification
samples under such circumstance is NSeg �NS − 1. It
usually results from too small CR setting or drift data
with large positioning errors caused by communi-
cation signal disturbance.

(3) Not identified, where an actual trip end is not
identified from mobile phone data, as shown in

Figure 4(c): it usually results from too short dwell
time at the trip end.

(4) Additional identification, where an identified trip
end consists of traces produced on a trip, as shown in
Figure 4(d): it usually results from too long stay time
on a trip caused by traffic jams, waiting at bus sta-
tions, and so on.

On this basis, two indexes of exact-identification accu-
racy (EIA) and extraidentification rate (EIR) are established
to evaluate the above misidentification conditions.

EIA � 1 −
􏽐mN

(m)
Mer + NNot

NAll
,

EIR �
􏽐eN

(e)
Seg + NAdd

NAll
,

(2)

where NAll is the total number of the actual trip ends under
the target BS density, m is the number of groups of merged
identification, e is the number of groups of segmented
identification, NNot is the number of the trip ends not
identified, and NAdd is the number of the trip ends of ad-
ditional identification.

C
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ADestination

Origin

Longitude

Latitude

Time

T1

(a)

Time

Destination

Origin

D

B

A

C

Longitude

Latitude

Original mobile phone trace
Interpolation trace

1 s

(b)

Figure 3: Schematic diagram of time weights of mobile phone traces. (a) Original mobile phone traces. (b) Traces after interpolation.

Suburb New district City center

BS
BS sequence

Mobile phone 
Travel direction

Range of trip ends 

Figure 2: Spatial distribution of traces at trip ends under different BS densities.
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Two trip ends
misidentified as one

Misclassified trace

Longitude

Latitude

Time

• Too large CR
• Too short travel distance

Trace identified as on a trip

Identified trip end
Service BS on a trip

Trace identified as at trip end

Actual trip end
Service BS at trip end

(a)

Longitude

Latitude

Time

One trip end
misidentified as two

Misclassified trace
• Too small CR
• Too large positioning error

Trace identified as on a trip

Identified trip end
Service BS on a trip

Trace identified as at trip end

Actual trip end
Service BS at trip end

(b)

Longitude

Latitude

Time

None trip end
identified 

• Too short dwell time at
trip ends

Misclassified trace

Trace identified as on a trip

Identified trip end
Service BS on a trip

Trace identified as at trip end

Actual trip end
Service BS at trip end

(c)

Longitude

Latitude

Time

Misidentified as a
trip end 

• Too long stay time on a trip
(e.g. traffic jam, waiting at
bus stations)

Misclassified trace

Trace identified as on a trip

Identified trip end
Service BS on a trip

Trace identified as at trip end

Actual trip end
Service BS at trip end

(d)

Figure 4: Diagrams of misidentification for trip ends. (a)Merged identification. (b) Segmented identification. (c) Not identified. (d) Additional
identification.
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+efitness function of a CR under the target BS density is
constructed as follows. Firstly, DBSCAN with the fixed CR is
used to identify trip ends from all mobile phone data.
Secondly, the trip ends under the target BS density are
screened out. +irdly, the EIA and EIR of those trip ends are
calculated. Finally, the difference between EIA and EIR,
namely, FIT�EIA−EIR, is taken as the fitness function of
GA.

2.2.2. Framework of GA-DBSCAN. +e optimization pro-
cess of the GA-DBSCAN framework is shown in Figure 5.
+e specific steps are presented below.

Step 1: we generate 30 binary CRs randomly. Each
binary number is deemed as a chromosome of an
individual
Step 2: the CRs are substituted into the DBSCAN al-
gorithm. +en the FIT of each CR is calculated by the
fitness function above
Step 3: we set the GA parameters, such as iterations,
crossover probability, and mutation rate. +en the CRs
are screened and generated by a classical genetic se-
lection process, namely, Selection-Crossover-Muta-
tion. +e next generation CRs from the GA process are
plugged into DBSCAN again unless the end condition
is met.
Step 4: as Steps 2 and 3 are constantly iterated until
meeting the end condition, the new generation CRs
with higher FIT can be gradually screened out. Finally,
the CR producing the maximum FIT is the optimal
parameter under the target BS density.
Step 5: on the basis of the above process for optimizing
the CR under the target BS density, the optimal CRs
under different BS densities are searched out in a
similar manner. Finally, a functional relation between
optimal CRs and BS densities is obtained through
function fitting, that is, R � Fun(density).

2.3. Trip End Identification. DBSCAN is a clustering algo-
rithm relying on the density characteristic of traces [44]. +e
preset parameters of DBSCAN are the density parameterMin
and the clustering radius R. +e purpose of the algorithm is
to detect all core points which are the traces with more than
Min other traces within the R-radius range [33]. In this
paper, core points are deemed as traces generated at trip
ends. +rough the equal-time-interval interpolation algo-
rithm, each trace stands for the dwell time of F seconds.
+erefore, the number of traces within the range of a CR can
represent the dwell time Tstay � F·Min.

Aiming at the deficiency of the traditional DBSCAN, this
paper proposes an improved F-DBSCAN for two objectives,
with the pseudocode shown in Figure 6.

One of the objectives is for increasing the identification
accuracy of trip ends. +e traditional fixed CR for judging
core points is improved to a dynamic CR obtained from the
function R � Fun(density) and the BS density around each
trace. As shown in Figure 7, before judging whether a trace is

a core point, the BS density surrounding this trace is firstly
counted. In this paper, the number of BSs per square ki-
lometer serves as the evaluation index of BS densities. +en,
the corresponding optimal CR is selected by
R � Fun(density). Finally, we count if the number of traces
within the range of this CR is more than Min. In areas with a
high BS density, a small CR is adopted, while the CR selected
is rather large in areas where BSs are sparsely distributed.
+e key steps of this improvement in the pseudocode refer to
steps from 8) to 10) and from 21) to 23).

+e other objective is for reducing the time complexity of
the algorithm. +e fast clustering improvement mainly
depends on the characteristic that there are a large number
of repeated traces with the same coordinates at trip ends in
mobile phone data, which is from three aspects as follows.

(1) Unified processing of repeated traces: the repeated
traces with the same coordinate are uniformly
judged as whether they are core points instead of one
by one in the traditional algorithm. In this way,
although a large number of repeated traces are
generated and interpolated at trip ends, these traces
will not increase the running time of the algorithm.
+e key steps of this improvement in the pseudocode
refer to steps 3), 7), 13), 20), and 26).

(2) Unified processing of traces around high repeated
traces: if more than Min repeated traces are at a
certain position, these traces are clearly all core
points. Without considering CR difference, the high
repeated traces in this position make other traces
within its CR range also become core points. Due to
little change in BS densities around the traces in a
short distance, if more than Min repeated traces are

Traditional DBSCAN

30 binary CR randomly

Meet end condition

Next generation of CR

Y

N

FIT of each CR under
the target BS density

Optimal CR of the target
BS density

Optimal CRs of different
BS densities

R=Fun(density)

GA process:
Selection
Crossover
Mutation

Figure 5: Flowchart of GA-DBSCAN framework.
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Figure 6: Pseudocode of the improved F-DBSCAN.

① Count BS density
(number of BS/km2) 

② R= Fun(density)

High BS density Low BS density
1 km 1 km

Figure 7: A diagram of adjusting CRs dynamically.
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at a certain position, these traces and the traces
within its CR range are directly judged as core points.
In this way, most mobile phone traces around trip
ends can be processed uniformly without judging
one by one. +e key steps of this improvement in the
pseudocode refer to steps from 14) to 17) and from
27) to 29).

(3) Clustering sequence: the time complexity can be
further reduced, if the high repeated traces and the
traces around them are prioritized. +erefore, we
first count the number of repeated traces at every
position in mobile phone data. +e number of re-
peated traces from high to low is taken as the
clustering sequence, instead of selecting them ran-
domly in the traditional algorithm. +e key steps of
this improvement in the pseudocode refer to steps 4)
and 5).

At last, the traces xv in the trip end cluster C as an
algorithmic output are segmented by a time gap more than
F. Define Cv⟶g � xv, xv+1, . . . , xv+g􏽮 􏽯 as a time-continuous
sequence of traces in C. Due to round trips, the traces with
the same coordinate may be not in the same sequence.
+erefore, the time difference Tg between the trace xv+g and
xv needs to be further checked. If Tg <Tstay, Cv⟶g is re-
moved from C. Else if Tg ≥Tstay, the sequence Cv⟶g is
deemed as a trip end cluster. Moreover, the coordinate of the
trip end can be expressed in L(Cv⟶g) � 1/g + 1􏽐

v+g

k�v ck,
where ck is the coordinate of a trace xk.

3. Data Collection

3.1. Experimental Design. +e existing literature using
anonymous mobile phone data fails in obtaining actual
travel information of users. As a consequence, it is rather
difficult to evaluate the effects of the methods. In this paper,
mobile phone data are derived from China Unicom with a
large market share (around 30%).+e operator provided not
only anonymous mobile phone data from more than one
million users in one month, but also mobile phone data
provided by volunteers who have fulfilled real-name au-
thentication and participated in the field travel experiment.

+e data collection experiment was performed in
Guiyang City which is densely populated. Within its ad-
ministrative region, there are over 19,000 BSs of China
Unicom. +e average coverage radius of each BS is below
150m. During the experiment, not only was mobile phone
data collected as the research object, but also GPS data and
travel log data were synchronously gathered for algorithm
assessment. +e mobile phone data was automatically col-
lected from the smartphone where SIM cards of China
Unicom have been installed. Besides, an APP independently
developed for GPS data collection was also installed in the
smartphone and remained activated throughout the whole
course. +e travel log was manually recorded by volunteers
themselves, including the time of traffic jam and arrival and
departure time at each trip end.

+ree categories of trip ends were designed, that is,
Work, Home, and Others (including entertainment and

shopping). Between the trip ends, multiple trip modes were
adopted, such as walking, buses, cars, and subways. +e
experimental design also gave full consideration to mobile
phone data collection under different BS densities. BS
densities in the city center, new district, and suburb of
Guiyang City are shown in Figure 8. +e points with dif-
ferent colors are the positions of BSs. +e different colors
represent the BS density around each BS, measured by the
number of BSs per square kilometer. In such three regions,
the average coverage radii of BSs turn out to be approxi-
mately 64m, 128m, and 276m, respectively. From Sep-
tember to December 2019, 11.5 million GPS trajectory
records were gathered from over 500 trips by dozens of
volunteers. According to their SIM card information, the
operator provided more than 180,000 mobile phone data
records.

3.2. Data Analysis. Mobile phone data directly records the
coordinates of BSs connected with users when communi-
cation events take place. +e communication events can be
classified into two categories: (1) active events driven by
users, such as calls, messages, or the Internet; (2) passive
events driven by the communication network, such as
handoff and location update. An example of mobile phone
data is presented in Table 1. +e spatial and temporal dis-
tribution characteristics of mobile phone data are analyzed
as follows.

+e temporal characteristic of mobile phone data is
mainly reflected in the probability distribution of time in-
tervals between adjacent data, as shown in Figure 9. +e
highest probability of time intervals lies in the range of 0∼10
seconds, which is above 40%. As the time interval rises, the
probability rapidly declines. +e cumulative probability
distribution shows that more than 90% of mobile phone data

New district

City center 

Suburb

BS density around each BS

0-100 BS/km2

101-200 BS/km2

201-300 BS/km2

301-400 BS/km2

401-500 BS/km2

501-600 BS/km2

Figure 8: BS densities in different areas of Guiyang City.
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is generated within a time interval of 80 s. Less than 7% of the
time intervals exceed 100 s, and the median is only 12 s. It
signifies that mobile phone data can track the positions of
users timely.

Spatiotemporal positioning distribution of mobile phone
data is compared with that of GPS trajectory data, as pre-
sented in Figure 10. +e horizontal and vertical axes contain
longitudes and latitudes. +e vertical axis represents time.

Table 1: An example of mobile phone data.

Global identifier Phone number Device ID LAC Cell-ID
460 ∗∗∗38 130 ∗∗∗3477 869 ∗∗∗∗863 34050 167875275
460 ∗∗∗∗38 130 ∗∗∗3477 869 ∗∗∗863 34050 167967762
460 ∗∗∗∗38 130 ∗∗∗3477 869 ∗∗∗863 34050 167887754
Communication event Start time (s) End time (s) Longitude (°) Latitude (°)
103 12:21:03 12:21:03 106.7050 26.6582
103 12:21:04 12:21:04 106.8520 26.5981
103 12:21:09 12:21:09 106.7244 26.6692
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Figure 9: Probability distribution of time intervals between adjacent mobile phone data.
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Figure 10: Spatiotemporal distribution of GPS and mobile phone data of a case sample. (a) GPS trajectories. (b) Mobile phone traces.
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We can see that GPS trajectories are dense and continuous in
time and space. As analyzed above, mobile phone data does
not occur continuously in time. In space, there also exist
some traces that dramatically deviated from the real posi-
tions. +e corresponding reason is that the positioning
errors of mobile phone data are affected by some com-
munication environmental factors, such as BS densities. We
further compare the traces of different types of trip ends in
this case. +e traces of Work and Home are concentratedly
distributed in space, while those of Others are relatively
spread.

We use the coordinates of GPS trajectories with po-
sitioning errors usually less than 10m as reference data for
measuring errors of mobile phone data. +e errors under
different BS densities are compared in Figure 11. BS
densities are measured by the number of BSs per square
kilometer. Due to insufficiency or deviations of the mobile
phone data collected under some BS density environment,
the average positioning errors are missing or fluctuate.
While the average positioning errors tend to gradually
decline overall as BS densities increase. When the number
of BSs per square kilometer rises from 0–100 to 500–600,
the average positioning errors reduce from 500–800m to
0–200m.

4. Result Analysis and Discussion

4.1. Parameter Optimization and Case Study

4.1.1. Parameter Setting and Optimization. MATLAB is
utilized to build and train the GA-DBSCAN framework
for optimizing CRs under various BS densities. In this
process, the maximum number of evolutional generations
is set at 60, the crossover probability at 0.9, and the
mutation probability at 0.03. In our experiments, we set
the threshold of stay time Tstay to 20min (i.e., 1200 s),
which falls within the range of commonly accepted values
for the typical minimum duration of a significant activity
carried out by an individual at the same location
[33, 45, 46]. As the interpolation cycle F of this paper is
10 s, Min � Tstay/F � 120.

BS densities are divided into five groups in units of the
number of BSs per square kilometer, namely, 0–100/km2,
101–200/km2, 201–300/km2, 301–400/km2, and 401–500/
km2. +e CR of each group is optimized by the GA-
DBSCAN framework. Figure 12 presents variations in the
fitness values during optimization taking the group of
0–100/km2 as an example. We can see that the fitness values
gradually increase along with the evolutional generations.
Although the average fitness values keep fluctuant due to the
influence of random factors such as the mutation proba-
bility, the best fitness values converge to a stable value after
the 26th generation.

+e optimal CR of each BS density group is obtained
by GA-DBSCAN, as shown in Figure 13. As can be ob-
served, a rise in the BS densities is accompanied by a
gradual decrease in the optimal CRs. +e relationship of
the two variables conforms to the power-law distribution.
+e median of each BS density group is selected as an

independent variable of the optimal CRs. +e relational
expression is achieved in

RDBSCAN � Fun dDBSCAN( 􏼁 � 1554 × d
−0.3478
−0.3478, (3)

where RDBSCAN is the optimal CR (unit: meter) and dDBSCAN
is the number of BSs per square kilometer. However, if the
independent variable approaches 0, the power function will
be positive infinity, making the function invalid. +erefore,
when the number of BSs per square kilometer is below 50, we
select the optimal CR to be the same as that when
dDBSCAN � 50, namely, 399m.

4.1.2. Case Study. +e example data in Figure 10 is identified
by the proposed algorithm as a case study. Figure 14 shows
the spatial and temporal distribution of the result. +e red
traces are the trip end clusters identified by the algorithm.
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+e trace density at trip ends is significantly raised by the
equal-time-interval interpolation algorithm compared with
the distribution shown in Figure 10. It can be observed that
the user traveled 3 times in total in the day, producing 4 trip
ends.+e trip ends 1 and 4 are in the same place, namely, the
user’s place of residence. We compare the identified travel
time and trip end coordinates with the actual travel infor-
mation. +e time errors of the arrival/departure time lie
within 4min. +e distance errors of the coordinates are all
no greater than 140m.

4.2. Comparative Analysis of Different Algorithms

4.2.1. Comparison of Identification Accuracy. +e identifi-
cation results of the improved F-DBSCAN are evaluated
through comparison with the existing methods, as shown in
Table 2. +e methods to be compared include the traditional
DBSCAN and the method proposed by Wang et al. [22]. In
the traditional DBSCAN, three commonly used CRs are
selected to be 200m, 300m, and 400m [31, 33]. Wang et al.
[22] firstly used an incremental clustering algorithm (ICA)
to extract trip ends and preset the CR as 400m. K-means
clustering is subsequently adopted to perform post-
optimization of results, where the number of clusters as the
preset parameter is set to be the number of the trip ends
identified by ICA.

As shown in Table 2, the EIAs of the traditional
DBSCAN are all below 80%, which are approximately 6%–
9% lower than that of the improved F-DBSCAN. Although
the EIR of the traditional DBSCAN with a fixed 400 m CR is
about 0.5% lower, its EIA is 10% below that of the improved
F-DBSCAN due to merged identification caused by an ex-
cessively large CR.+e EIA of ICA+K-means is close to that
of the traditional DBSCAN with a fixed 300 m CR, which is

also 5% lower than that of the improved F-DBSCAN. Al-
though two clustering algorithms are combined, this method
also uses fixed CRs, so that it is less likely to avoid inadequate
applicability of fixed CRs caused by variations in BS den-
sities. Given the above, the improved F-DBSCAN has a
superior identification effect on the whole.+e validity of the
dynamic CR selection mechanism proposed in this paper is
proved.

4.2.2. Comparison of Time Complexity. Reduction in time
complexity can greatly facilitate the use of large-scale mobile
phone data in daily traffic surveys, especially in million
population cities. +e improvement of improved
F-DBSCAN consists of two parts, namely, dynamically
adjust CRs and fast clustering. In order to evaluate the
respective influence of the two parts on time complexity, we
compare the running time of different DBSCAN algorithms,
which are traditional DBSCAN, improved DBSCAN and
improved F-DBSCAN. In traditional DBSCAN, the fixed CR
is set as 300m. Improved DBSCAN can only adjust CRs
dynamically with higher identification accuracy, but without
the fast clustering improvement. Because the time com-
plexity of traditional DBSCAN and ICA is both O(n2)
[34, 47], the method ICA+K-means with similar accuracies
but higher time complexity is not added into the
comparison.

Figure 15 is the boxplot of the running time for pro-
cessing every user’s daily mobile phone data using the
different algorithms with the same computing hardware. We
can see that the median running time of the improved
DBSCAN is 0.55 s (about 42%) longer than that of the
traditional DBSCAN. +is is because the BS density and
optimal CR around each trace are calculated in addition to
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the core point judgment of the traditional algorithm, so the
time complexity increases. When calculating the BS density
around a trace, we adopt the following simpler calculation
method to reduce the computing amount. For every 0.01°
difference in longitude and latitude, the distances are about
1000m and 1112m, respectively, according to the statistics
in Guiyang City. +is means that a distance of 500m re-
spectively corresponds to a difference of 0.005° in longitude
and 0.0045° in latitude. When counting the number of BSs
per square kilometer, we directly search out BSs with

longitude and latitude differences within ±0.005° and
±0.0045° from the target trace coordinate, instead of com-
puting the distance between their coordinates.

+e median running time of the proposed improved
F-DBSCAN is about 1 s (about 76%) lower than the im-
proved DBSCAN. +e average running time decreases from
1.11 s to 0.31 s, by about 72%. Even compared with the
traditional DBSCAN, despite the computing amount for
adjusting CRs dynamically in the improved F-DBSCAN, the
median and average running time also decrease by about

Table 2: Comparison of identification accuracy among different methods.

Method CR (m) EIR (%) EIA (%)
ICA+K-means 400 4.1 78.2

Traditional DBSCAN
200 9.7 75.5
300 4.9 79.5
400 3.4 74.6

Improved F-DBSCAN R� Fun (density) 3.9 85.3
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Figure 15: Comparison of running time among different DBSCAN algorithms.
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59% and 55%, respectively. It is proved that the fast clus-
tering improvement proposed in this paper has a great effect
on reducing time complexity.

4.3. Result of Different Types of Trip Ends. Trip ends are
usually divided into three types, namely, Work, Home, and
Others [29, 48]. We further analyze their identification
results and compare the traditional DBSCAN with a fixed
300 m CR and the improved F-DBSCAN. Two indexes
described above, that is, EIA and EIR, are adopted to
evaluate the identification accuracies of the trip ends. Be-
sides, three average error indexes are utilized, including
arrival time error (ATE), departure time error (DTE), and
coordinate distance error (CDE), to assess the identification
effects of travel time and trip end coordinates, where ATE/
DTE is equal to an absolute value of the difference between
the start/ending time in a trip end cluster correctly identified
and the actual arrival/departure time at the trip end. CDE is
the distance from the coordinates of the actual trip ends to
those of the identified trip ends.

4.3.1. Identification Accuracy. A comparison of identifica-
tion accuracies between the traditional and improved al-
gorithms is presented in Figure 16. We can see that the
difference in their overall EIA is approximately 6%. How-
ever, certain differences lie in optimization results of dif-
ferent types. +e EIA in Work and Home produces a
difference of about 4%, while in the type of Others including
shopping and entertainment, the EIA of the improved
F-DBSCAN is raised from 72.6% to 80.4%, by about 8%.
Likewise, the reduction of the EIR in Others is greater than
that inWork andHome. A reason is that the range of activity
is rather small for users who are working or staying at home.

+eir connecting BSs are stable, so the mobile phone traces
are comparatively dense even under low BS densities. In this
condition, the traditional DBSCAN with a fixed CR can also
obtain good identification results. By contrast, users usually
move in an extensive range in supermarkets or parks where
BSs are sparsely distributed. +eir serving BSs are more
likely to constantly change, resulting in their mobile phone
traces being rather scattered. Consequently, it is difficult for
fixed CRs to meet relevant clustering conditions. If the fixed
CR is directly extended, other trip ends will be influenced,
especially for those with a short distance easily merged
identified. +e improved F-DBSCAN is capable of dy-
namically adjusting CRs, so it is more suitable for identifying
noncommuting trip ends under various BS densities.

4.3.2. Identification Error in Time and Coordinate. A
comparison of identification errors in time and coordinates
between the traditional and improved algorithms is pre-
sented in Figure 17. We can see that DTEs are generally
about 1–5min longer than ATEs. +at is because when a
user chooses to take a bus or taxi, the position where he/she
waits for a bus or taxi is rather close to his/her actual trip
end. In this case, no significant changes are incurred in the
coordinates of their mobile phone data. +is leads to mis-
identifying them still staying at the trip end before he/she
gets on and leaves.

+en we compare the identification errors. It is dem-
onstrated that the average ATE/DTE and CDE are respec-
tively reduced by about 3min and 67m by the improved
F-DBSCAN in Work and Home, but by about 5.5min and
220m in Others. Corresponding reasons are similar to those
described above.+at is, the range of activity is rather wide at
Others trip ends, making it difficult for fixed CRs to be
applied in diversified BS distribution.
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Figure 17: Identification errors of different types of trip ends. (a) ATE/DTE (unit: min). (b) CDE (unit: m).
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+e improvement effect on travel time identification of
the improved F-DBSCAN is not obvious in numerical terms
which is about 5min.+e two reasons are as follows. On one
hand, the average ATE/DTEs are below 15min and the error
reduction proportions have been about 25%–39%. +is
means that the improvement space of the proposed method
is limited. On the other hand, a traveler usually enters into
the service range of a BS neighboring the trip end several
minutes before their arrival. +e mobile phone traces
generated in this period are positioned into the trip end
clusters in advance. When departing from a trip end, the
mobile phone traces usually leave in a delayed manner.
+erefore, the time error incurred from the data source itself
cannot be easily removed by the method improvement.

+e improvement effect on identifying the trip end
coordinates is significant by the improved F-DBSCAN. +e
overall average CDE decreases from 364m to 243m, by
about 33.3%. +e average CDE in Others is further reduced
from 541m to 321m, by about 40.6%. +e scale of a traffic
zone of the four-step model commonly used in the field of
transportation planning is generally larger than
500× 500m2. Hence, the proposed method in this paper can
obtain OD tables more accurately. Moreover, the method
can assist in enhancing the precision of epidemiological
investigation.

5. Conclusions

Trip end identification is fundamental in residents’ travel in-
formation detection. It is still important to improve the
identification effects of trip ends. Meanwhile, actual travel
information for result evaluation is absent due to anonymous
mobile phone data used in the existing literature. In this paper,
mobile phone data is collected from real-name volunteers
thanks to the support from the communication operator. We
propose a new identificationmethod that is improved based on
the positioning characteristics of mobile phone data. Firstly,
due to the influence of BS layout on the parameter setting
ignored in current studies, we build a GA-DBSCAN frame-
work to optimize CRs under different BS densities. On this
basis, the traditional DBSCAN is improved to be able to adjust
CRs dynamically based on BS densities, so that the identifi-
cation accuracy can be raised. Secondly, considering that there
are plenty of traces with the same coordinates in mobile phone
data, we propose a fast clustering improvement for lower time
complexity. On the premise of keeping the identification ac-
curacy, the median running time can be reduced by over 76%.
+e improved F-DBSCAN can be more competent for large-
scale travel surveys using mobile phone data.

Travel information data as ground truth can help us
further explore supervised deep learning models for trip end
identification. In future work, we will study the applicability
of the Long Short Term Memory model for extracting travel
characteristics, such as trip ends and transportation modes.
We will also explore the data fusion method using multi-
types of positioning datasets. On this basis, the accuracy of
existing research topics based on mobile phone data, such as
residents’ trip pattern monitoring, can be further enhanced
using our methods.
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[9] M. C. González, C. A. Hidalgo, and A. L. Barabási, “Un-
derstanding individual human mobility patterns,” Nature,
vol. 453, no. 7196, pp. 779–782, 2008.

[10] F. Calabrese, G. D. Lorenzo, L. Liu, and C. Ratti, “Estimating
origin-destination flows using mobile phone location data,”
IEEE Pervasive Computing, vol. 10, no. 4, pp. 36–44, 2011.

[11] C. Pan, J. Lu, S. Di, and B. Ran, “Cellular-based data-
extracting method for trip distribution,” Transportation Re-
search Record: Journal of the Transportation Research Board,
vol. 1945, no. 1, pp. 33–39, 2006.

[12] O. Järv, R. Ahas, and F. Witlox, “Understanding monthly
variability in human activity spaces: a twelve-month study
using mobile phone call detail records,” Transportation Re-
search Part C: Emerging Technologies, vol. 38, pp. 122–135,
2014.

[13] Y. Xu, S.-L. Shaw, Z. Zhao et al., “Another Tale of two Cities:
Understanding human activity space using actively tracked
Cellphone location data,” Annals of the Association of
American Geographers, vol. 106, no. 2, pp. 246–258, 2016.

[14] F. Calabrese, M. Colonna, P. Lovisolo, D. Parata, and C. Ratti,
“Real-time urban monitoring using cell phones: a case study
in Rome,” IEEE Transactions on Intelligent Transportation
Systems, vol. 12, no. 1, pp. 141–151, 2011.

[15] F. Calabrese, M. Diao, G. Di Lorenzo, J. Ferreira, and C. Ratti,
“Understanding individual mobility patterns from urban
sensing data: a mobile phone trace example,” Transportation
Research Part C: Emerging Technologies, vol. 26, pp. 301–313,
2013.

[16] S. Phithakkitnukoon, T. Horanont, G. Di Lorenzo,
R. Shibasaki, and C. Ratti, “Activity-aware map: identifying
human daily activity pattern using mobile phone data,” in
Human Behavior Understanding, vol. 6219, pp. 14–25, LNCS,
2010.

[17] M.-H. Wang, S. D. Schrock, N. Vander Broek, and
T. Mulinazzi, “Estimating dynamic origin-destination data
and travel demand using cell phone network data,” Inter-
national Journal of Intelligent Transportation Systems Re-
search, vol. 11, no. 2, pp. 76–86, 2013.

[18] Z. Yao, Y. Zhong, Q. Liao, J. Wu, H. Liu, and F. Yang,
“Understanding human activity and urban mobility patterns
from massive Cellphone data: Platform design and applica-
tions,” IEEE Intelligent Transportation Systems Magazine,
vol. 13, no. 3, pp. 206–219, 2021.

[19] L. Ni, X. Wang, X. Chen, and X. M. Chen, “A spatial
econometric model for travel flow analysis and real-world
applications with massive mobile phone data,” Transportation
Research Part C: Emerging Technologies, vol. 86, pp. 510–526,
2018.

[20] Y. Yamada, A. Uchiyama, A. Hiromori, H. Yamaguchi, and
T. Higashino, “Travel estimation using Control Signal Rec-
ords in cellular networks and geographical information,” in
Proceedings of the 2016 9th IFIP Wireless and Mobile Net-
working Conference, pp. 138–144, WMNC, Colmar, France,
July 2016.

[21] C. Horn, H. Gursch, R. Kern, and M. Cik, “QZTool-auto-
matically generated origin-destination matrices from cell
phone trajectories,” Advances in Intelligent Systems and
Computing, vol. 484, pp. 823–833, 2017.

[22] F. Wang and C. Chen, “On data processing required to derive
mobility patterns from passively-generated mobile phone
data,” Transportation Research Part C: Emerging Technologies,
vol. 87, pp. 58–74, 2018.

[23] F. Yang, Y. Wang, P. J. Jin, D. Li, and Z. Yao, “Random forest
model for trip end identification using cellular phone and

points of interest data,” Transportation Research Record:
Journal of the Transportation Research Board, vol. 2675, no. 7,
pp. 454–466, 2021.

[24] Z. Wang, S. Y. He, and Y. Leung, “Applying mobile phone
data to travel behaviour research: a literature review,” Travel
Behaviour and Society, vol. 11, pp. 141–155, 2018.

[25] H. Wang, F. Calabrese, G. D. Lorenzo, and C. Ratti,
“Transportation mode inference from anonymized and ag-
gregated mobile phone call detail records,” in Proceedings of
the IEEE Conference on Intelligent Transportation Systems,
pp. 318–323, ITSC, Funchal, Madeira Island, Portugal, Sep-
tember 2010.

[26] H. Poonawala, V. Kolar, S. Blandin, L. Wynter, and S. Sahu,
“Singapore in motion: Insights on public transport service
level through farecard and mobile data analytics,” in Pro-
ceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 589–598, CA,
USA, August 2016.

[27] H. Huang, Y. Cheng, and R. Weibel, “Transport mode de-
tection based on mobile phone network data: a systematic
review,” Transportation Research Part C: Emerging Technol-
ogies, vol. 101, pp. 297–312, 2019.

[28] C. Chen, L. Bian, and J. Ma, “From traces to trajectories: How
well can we guess activity locations from mobile phone
traces?” Transportation Research Part C: Emerging Technol-
ogies, vol. 46, pp. 326–337, 2014.

[29] L. Alexander, S. Jiang, M. Murga, and M. C. González,
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