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Taxi network plays an important role in urban passenger transportation. However, its operation is greatly affected by weather,
especially by snowfalls in cold region. In this study, we focus on the persistent effect of snowfall on taxi operation and propose an
autoregressive distribution lag model (ARDL) to quantitatively analyse it. To support our study, the taxi GPS trajectory data
collected in Harbin, China, during 61 days from 1 November to 31 December in 2015 is analysed. First, the daily average order
volume (DAOV) is acquired through data sampling and processing. +en, combined with the data of daily snowfall during the 61
days, the ARDLmodel is constructed.+e result shows that the snowfall has a lag effect on taxi operation and it lasts about 3 days.
To better interpret the result, visualization of total 6 days before and after a heavy snowfall is conducted. +e result also indicates
that weekends have a positive effect on operation. +ese results are expected to assist us to better understand the effect of snowfall
on taxi operation and provide some policy suggestions for local municipal and transportationmanagement departments to ensure
the normal operation of taxi networks.

1. Introduction

All kinds of public transportation in cities have their own
characteristics and are influenced by many factors, such as
geographical, economic, social, or cultural factors [1]. +e
study of these factors can help us better understand the
essence of transportation modes and residents’ travelling
characteristics. Among these factors, weather is considered
to be one of the exogenous determinants [2]. Operations of
taxis, as an important mode of urban public transport
without fixed operating schedule like buses, are more far-
reaching and widely affected by extreme weather.

Different from some studies on the influence of climate
on transportation [3–6], the impact of weather on public
transport is usually short-term [1], which may affect resi-
dents’ travelling decisions and mode choices [7–10], leading
to changes in travellers’ trip plans, modes, or routes.
Weather may also greatly affect the operation of public
transports [11–15], such as decreasing the availability and
speed and increasing transit time and trip duration [16], so

as to decrease the level of service or operating revenue. In
addition, extreme weather may have some significant in-
fluence on safety [17–20].

An obvious conclusion that can be drawn is that different
weather conditions affect urban public transports in different
ways and to different degrees. Some of these meteorological
factors have been well studied, including rainfall [9, 17, 18, 21],
snowfall [11], temperature [13], wind [22, 23], or combinations
of some of these factors [1, 2, 10, 14]. However, no matter what
kind of weather factor it is, adverse weather condition has a
significant negative impact on taxi operation and service. From
the perspective of residents, it brings inconvenience and
unsafety and affects their daily trips. From the perspective of
transport service providers, it reduces the quality of transport
services they provide and decreases their operating revenue [2].
From the perspective of city administrators, adverse weather
affects the normal production and living order and increases
the financial burden. In view of this, it is of great significance to
study the influence mechanism and range of a certain weather
factor on the taxi operation.
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In the study of these influence mechanisms, an inter-
esting phenomenon is the time lag effect of weather on
traffic. +e so-called time lag effect refers to that, in a time
series, the current value of the explained variable is not only
affected by the current value of explanatory variable, but also
affected by one or more periods of lag of the explanatory
variable or the explained variable itself. +is time lag effect is
well studied in traffic volume prediction [24–26], travelling
time or speed [27], traffic safety [28–30], traffic behaviours
[31, 32], logistics [33], and so on. Among the various weather
types, snowfall is recognized as the most significant one,
because it cannot dissipate quickly after it falls to the roads,
which leads to a sustained impact on traffic for hours to days
after the snowfall. Many models have been constructed to
explain this lag effect. Some of the outstanding works are as
follows: +omas Nosal et al. [25] used regression models
with autoregressive and moving average (ARMA) errors to
investigate the direct impact and triggered effects of weather
variables on hourly and daily cycle counts in Montreal,
Ottawa, Vancouver, and Portland as well as on the Green
Route in Quebec. In the study of Yannis and Karlaftis [28],
an integer autoregressive (INAR) model is used to estimate
the effects of weather conditions on different traffic safety
categories, andmean daily precipitation height along with its
lagged value (1 day) was proved to be the most consistently
significant and influential variable. Combining quantile
regression with distributed-lag nonlinear models, Zhan et al.
[34] examined the nonlinear and lagged effects of hourly
precipitation and temperature on ambulance response time
(ART) at the 50th and 90th percentiles and found that
marginal temperature and precipitation have different de-
grees of lag effects on ART. Zhang et al. [35] proposed an
impulse response function based on the vector autore-
gression model to provide insight into the cross effects of the
traffic parameters and their responses to weather conditions.

However, although many researchers have carried out
extensive studies on other aspects of taxis [36–43], very few
studies have dealt with the time lag effect of snowfall on
normal taxi operations. As an important component of
urban transportation system, the service level of taxi needs to
be paid enough attention, especially in snowy days, where
people’s tolerance to low temperature is reduced and buses
become unreliable and unpunctual. At the same time, as a
means of aboveground transportation, the operation of taxis
is inevitably affected by snow, thus affecting the travel of
citizens and the income of taxi drivers. +erefore, it is of
great significance to study the time lag effect of snowfall on
taxis, from the perspectives of improving the service level of
taxis and even the whole urban transportation system, fa-
cilitating the daily travel of citizens, improving the income of
taxi drivers, and giving advice of strengthening the urban
road snow removal and deicing work to local municipal
department.

In this paper, a large-scale study is presented by sampling
and analyzing GPS trajectory data collected from more than
13000 taxis in Harbin, China, for two consecutive months.
First, through data sampling and processing, the average
daily order volume within 61 days from 1 November to 31
December in 2015 and the pick-up point (PUP) and drop-off

point (DOP) of each trip are obtained. +en, based on this,
an autoregressive distributed lag (ARDL) model is proposed
to study the lag effect of snowfalls on taxi operation. Some
visualization methods are applied to help better understand
the lag effect. +e remainder of the paper is organized as
follows. Section 2 describes the study area, data sources, and
methodology used in this study. +e results of the lag effect
are analysed, and visualization of taxi operation conditions is
conducted in Section 3 and Section 4. Finally, conclusions
and suggestions are presented in Section 5.

2. Materials and Methods

2.1. Study Area. +e case study is carried out in Harbin
(125°42′–130°10′E, 44°04′–46°40′N), China, which is located
on the Northeast Plain of China. It is the capital of Hei-
longjiang Province and consists of 9 districts and 9 counties,
covering 53100 square kilometres with a population of 9.952
million. In this paper, the study area is focused on the
downtown area, including Nangang District, Daoli District,
Daowai District, Xiangfang District, Songbei District, and
Pingfang District, as shown in Figure 1. +e study area
covers 4187 square kilometres with a population of 5.4872
million [35]. In 2015, the per capita GNP in Harbin was
59027 CNY [35]. +e main public transit system in Harbin
includes buses, taxis, and metro.

Harbin is one of the major cities in China with higher
latitude and lower temperature. Due to its temperate con-
tinental monsoon climate, Harbin has a long and cold
winter, lasting for five months (from November to March).
Its snowfall period is mainly from November to January,
sometimes with heavy snow. +e minimum temperature
during November and December 2015 can reach − 29°C (on
December 25). Despite the Harbin metro has been put into
use in 2013, there was only one line with 18 stations in 2015,
serving 158,600 passengers per day on average [35].
+erefore, the majority of public transportation trips mainly
relied on buses and taxis, especially with the reduction of
passengers’ tolerance of waiting buses due to the snowfall
and low temperature in winter, and taxis play an important
role in public transportation in Harbin. +erefore, Harbin is
a very typical and appropriate city to conduct research on the
time lag effect of snowfall on taxi operation.

2.2. Data Source. By 2015, all taxis in Harbin had been
equipped and put into use with GPS devices. +ese GPS
devices record taxi location every 30 seconds and play an
important role in monitoring the taxi operation and en-
suring the safety of drivers and passengers in real time. +is
study collected the GPS trajectory data of more than 13000
anonymous taxis in Harbin from November 1 to December
31, 2015. +e data contains the ID, GPSID, longitude, lat-
itude, speed, status (vacancy or occupied), and other in-
formation of each taxi. Table 1 shows a sample of taxi
trajectory data.

As Table 1 shows, “DEVID” is a number to distinguish
anonymous taxis; “STATE” represents the status of taxis and
the different state codes corresponding to different status,
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such as “Vacancy” or “Occupied.” “LATITUDE” and
“LONGTITUDE” represent locations of taxis; “SPEED”
represents the instantaneous speed of taxis, and it is mea-
sured in 100 meters per hour. “GPSTIME” represents the
real time of data.

Collection. Data of each day is stored in a single file, with
18 to 28million data items for each day. All the data sets have
been cleaned by removing invalid points resulting from
device failure or recording errors. In this study, GPS tra-
jectory data of 25% of taxis were sampled as the research
object, which accounts to 4 to 7 million items in one day.
+eoretically speaking, the 30-second sampling rate and
such a large amount of GPS data can basically cover most of
the road network in the Harbin downtown. Figure 2 shows
the trajectory of 3000 taxis, from which the basic outline of
Harbin road network structure is depicted.

From these data, the complete driving trajectory of each
taxi in the sample in a day can be extracted. +e meanings
represented by different state codes are recognized in the
study first. Figure 3 depicts a piece of driving trajectory of a
taxi. It denotes that the taxi cruises on the road in search of
potential passengers (in vacant status); then the driver picks
up passengers at pick-up point (PUP) and starts to deliver
passengers to their destinations (in occupied status); after
the passengers get off the taxi at drop-off point (DOP), the
taxi cruises on the road again to search for another potential
passengers (in vacant status again). Based on the cleaned
data, all the PUPs and DOPs of the taxi sample in the city
every day can be extracted, and each PUP corresponds to a
specific DOP, which together denote a complete trip. +us,
some other parameters, such as daily average order volume
(DAOV), can be calculated to support the follow-up study.

2.3. Methodology

2.3.1. ARDL Model. In this study, an autoregressive dis-
tributed lag model was applied to study the lag effect of
snowfalls on taxi operation. +e ARDL model, originally
proposed by Charemz and Deadman to explain economic
phenomenon, has been widely used in various fields [44–48].
Compared with the traditional cointegration test method,
the ARDL model has the following advantages:

(1) +e ARDL method does not need to check in ad-
vance whether the time series has first-order single
integrity

(2) +e ARDL process of boundary test is robust enough
to small samples, and the sample length needs to be
low

(3) When the explanatory variable is endogenous, the
ARDL method can still get unbiased and effective
estimates

(4) +e ARDL method overcomes many problems
caused by nonstationary time series data, such as
false regression

Considering the above advantages of the ARDL model,
this paper uses the ARDL model to study the impact of
snowfalls on taxi operation, which is rarely applied to this
topic before.

+e ARDL model is a branch of the distributed lag (DL)
model. If the current value Y(t) of the explained variable Y
not only is affected by the current value X(t) of the ex-
planatory variable X, but also obviously depends on the lag
value X(t − 1), X(t − 2), such a model is a distributed lag

(a) (b)

Figure 1: (a) Location of the study area and (b) the road network of the study area.

Table 1: Taxi GPS data in Harbin city.

DEVID STATE LATITUDE LONGTITUDE SPEED GPSTIME
0100324261 0 45.708145 126.59434 0 2015/12/10 0 : 01 : 25
0300020062 0 45.731396 126.69875 0 2015/12/10 0 : 01 : 24
0300061532 0 45.72064 126.67435 0 2015/12/10 0 : 01 : 26
0100323182 1 45.756107 126.61123 342 2015/12/10 0 : 01 : 37
0100304273 1 45.75774 126.58686 176 2015/12/10 0 : 01 : 30
0300017510 1 45.78798 126.640755 0 2015/12/10 0 : 01 : 28
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model. +e term “autoregressive” indicates that along with
getting explained by the current value and the lag value of
X(t), Y(t) also gets explained by its own lag value(s), such as
Y(t − 1). Considering the autoregressive modelling of traffic
parameters mentioned in some previous studies [25, 49–51],
the lag of Y(t) was also considered in this study. Equation of
ARDL (m, n) is as follows:

Y(t) � α + β1Y(t − 1) + · · · · · · + βmY(t − m) + c0X(t)

+ c1X(t − 1) + · · · · · · + cnX(t − n) + εt.
(1)

Here, m and n are the number of lags of Y and X, re-
spectively, βi is the coefficient for the explained variable Y
and its lags, and cj is the coefficient for the explanatory
variable X and its lags, which is called lag weights, and they
collectively comprise the lag distribution. +ey define the
pattern of how X affects Y over time. εt is a random dis-
turbance term.

Given the presence of lagged values of the dependent
variable as regressors, OLS estimation of an ARDL model
will yield biased coefficient estimates. If the disturbance term
εt is autocorrelated, the OLS will also be an inconsistent
estimator, and in this case Instrumental Variables Estima-
tion was generally used.

+e distributed lag (DL (q), or ARDL (0, q)) models were
widely used in the 1960 s and 1970 s. To avoid the adverse
effects of the multicollinearity associated with including
many lags of X as regressors, it was common to reduce the

number of parameters by imposing restrictions on the
distribution of values that the ci coefficients could take.

+e assumptions for ARDL model are as follows:

(1) +e primary requirement of ARDL model is the
absence of autocorrelation. It is required that the
error terms have no autocorrelation with each other.

(2) +e time series data should follow normal
distribution.

(3) Any heteroscedasticity should not occur in the data.
And the mean and variance should be constant
throughout the ARDL model.

(4) +e time series data should have stationary either on
I (0) or I (1), or on both. In addition, the model
cannot run if any of the variable in the data has
stationary at I (2).

In this study, the daily snowfalls were taken as the ex-
planatory variable. Considering that the number of taxis
operating every day is variable and taxi drivers pay more
attention to their income, which is positively correlated with
the number of orders served by drivers, the study took the
daily average orders volume as the explained variable of the
model.

2.3.2. Granger Causality Test. Granger Causality Test was
proposed by Granger, a famous econometric economist in
California in 1969, and further developed by Hendry and
Richard. In the case of time series, the causal relationship
between two economic variables X and Y can be defined as
follows: if the past information of variables X and Y is
known, the prediction effect of Y is better than that of Y only
based on the past information of Y. +at is, variable X helps
to explain the future change of variable Y, then variable X
causes the change of variable Y, and there is causal rela-
tionship between them. For two given time series X and Y in
the period of t� 1, . . ., T, to test whether X is the cause of Y,
two models can be constructed: one is as (1) shows, and the
other is as follows:

Y(t) � α + β1Y(t − 1) + · · · · · · + βmY(t − m) + εt. (2)

If cj � 0 holds for all j� 1, 2, . . ., n, then variable X will
not cause the change of variable Y, which does not constitute
a causal relationship, and the choice of lag period can be
arbitrary. So we can assume H0: cj � 0, j� 1, 2, . . ., n. +en,
we regress (1) and (2) to obtain EES1 and EES2 of the ex-
planatory square and RSS1 of the residual square and
construct the following statistics: F � [(EES1 − EES2)/
m]/[RSS1/(T − (m + n + 1))]. F obeys the distribution that
the first degree of freedom is m and the second degree of
freedom is T-(m+ n+ 1). Given the significance level a, there
is a corresponding critical value Fa. If F >Fa, then reject the
hypothesis of H0 with the confidence of (1 − a). In the sense
of Granger, X is the cause of Y. Otherwise, accept H0; that is,
the change of Y cannot be attributed to the change of X.

Figure 2: A one-day trajectory map of a sample of 3000 taxis within
the study area.

drop-off point

pick-up point

Occupied
Vacancy

Figure 3: A piece of continuous trajectory of a taxi.
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3. Results

3.1. Statistics of DAOV and Snowfall over 61 Days.
Figure 4 shows the change of daily average order volume and
snowfalls in 61 days. From the figure, we can see that the
DAOV is obviously affected by the snowfalls, and the
snowfalls still have a continuous impact on the following 2-3
days. In addition, the daily average order volume of every
weekend has an increasement in different degrees compared
with the working days.

3.2. ARDL Model Analysis. To use the autoregressive dis-
tribution lag model to study the time lag effect of snowfalls
on taxi operation, a unit root test is implemented first to
check whether there is a unit root in the series of daily
average order volume and daily snowfall. When there is unit
root in the time series, it is regarded as nonstationary, which
will lead to the existence of pseudoregression in regression
analysis. In this study, the Augmented Dickey-Fuller test
(ADF test) was used to perform the unit root test for the
stationarity of each series. +e original hypothesis of the test
is that the time series of the daily average order volume and
snowfalls are both nonstationary. Table 2 shows the results of
unit root test for the two series.

In the results, Y represents the explained variable, the
daily average order volume; X is the explanatory variable,
which is snowfalls (in mm). In the test form (C, T, K), C, T,
and K represent constant term, trend term, and the order of
difference, respectively.

As shown in Table 2, both the explained variable Y and
the explained variable X reject the original hypothesis at the
significance level of 1%; that is, the time series of the daily
average order volume and snowfalls are both stationary
series; then, the Granger Causality Test can be implemented.

According to the theory of Granger Causality Test, when
the snowfall X explains the average daily order volume Y
better than the average daily order volume Y explained solely
by the lag term of itself, the variable X can be considered as
the Granger cause of variable Y. +e original hypothesis of
the test is that snowfall X is not the Granger cause of daily
average order volume Y. Table 3 shows the results of Granger
Causality Test under different lag orders of snowfalls.

As shown in Table 3, when the lag order is 1 to 6, the
original hypothesis is rejected at the significance level of 5%
(in which, when the lag order is 1, it is rejected at the
significance level of 1%), and when the lag order is 7, the
original hypothesis that snowfall X is not the Granger cause
of daily average order volume Y cannot be rejected.
+erefore, it can be considered that X is the Granger cause of
Y. +at is, the lag of snowfall X has an impact on the current
value of daily average order volume Y.

Based on the above conclusions, Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), and
Hannan-Quinn Criterion (HQC) were used to determine
the lag order of the model. +e parameters of the model are
shown in Table 4. In ARDL (p, q), p and q represent the
maximum order of variable lag in the model.

According to the results of Granger Causality Test, the
paper sets the maximum lag order of the model as 6 and
determines the model as ARDL (1, 3) according to AIC
criterion. Under BIC, HQC, and Adj. R2 criteria, the form of
lag model is basically the same. +erefore, the model is
preliminarily defined as

Y(t) � α + βY(t − 1) + c0X(t) + c1X(t − 1)

+ c2X(t − 2) + c3X(t − 3).
(3)

In (3), Y(t − 1) denotes the lag 1 value for the DAOV,
while X(t − 1), X(t − 2), and X(t − 3) denote the lag 1, 2, and 3
values of snowfalls, respectively.

Considering the influence of weekend on DAOV, two
dummy variables D1 and D2 are added into (3) to represent
Saturday and Sunday, respectively. +en, the modified
model is
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Figure 4: Plot of the DAOV and snowfall over 61 days.

Table 2: Results of the unit root test.

Test
form

ADF
value

Critical value p

value Conclusion
1% 5% 10%

Y (C, 0, 1) − 4.331 − 3.546 − 2.912 − 2.594 0.001 Stationary
X (C, 0, 0) − 5.158 − 3.544 − 2.911 − 2.593 0.000 Stationary

Table 3: Results of Granger Causality Test.

Original hypothesis: X is not the Granger cause of Y
Lag order F-value p value
1 10.922 0.002
2 4.004 0.024
3 2.853 0.046
4 2.408 0.062
5 2.587 0.039
6 2.402 0.044
7 1.696 0.139
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Table 4: Selection of model lag order.

Model LogL AIC∗ BIC HQC Adj. R-sq Specification
39 − 87.099 3.422 3.677 3.521 0.821 ARDL (1, 3)
38 − 86.555 3.438 3.730 3.551 0.820 ARDL (1, 4)
32 − 87.018 3.455 3.747 3.568 0.817 ARDL (2, 3)
31 − 86.253 3.464 3.792 3.591 0.818 ARDL (2, 4)
37 − 86.522 3.474 3.802 3.601 0.817 ARDL (1, 5)
24 − 85.817 3.484 3.849 3.625 0.817 ARDL (3, 4)
25 − 86.999 3.491 3.819 3.618 0.813 ARDL (3, 3)
30 − 86.155 3.497 3.862 3.638 0.815 ARDL (2, 5)
23 − 85.410 3.506 3.907 3.661 0.816 ARDL (3, 5)
36 − 86.480 3.508 3.873 3.650 0.813 ARDL (1, 6)
17 − 85.710 3.517 3.918 3.672 0.814 ARDL (4, 4)
16 − 84.816 3.521 3.959 3.690 0.816 ARDL (4, 5)
15 − 83.961 3.526 4.000 3.709 0.817 ARDL (4, 6)
18 − 86.984 3.527 3.892 3.668 0.809 ARDL (4, 3)
29 − 86.083 3.530 3.932 3.686 0.811 ARDL (2, 6)
22 − 85.148 3.533 3.971 3.702 0.813 ARDL (3, 6)
40 − 91.205 3.535 3.754 3.619 0.796 ARDL (1, 2)
10 − 85.207 3.535 3.973 3.704 0.813 ARDL (5, 4)
9 − 84.646 3.551 4.025 3.734 0.812 ARDL (5, 5)
2 − 83.835 3.558 4.069 3.755 0.813 ARDL (6, 5)
3 − 84.842 3.558 4.032 3.741 0.811 ARDL (6, 4)
11 − 86.872 3.559 3.960 3.714 0.806 ARDL (5, 3)
8 − 83.949 3.562 4.073 3.759 0.813 ARDL (5, 6)
33 − 91.096 3.567 3.823 3.666 0.792 ARDL (2, 2)
1 − 83.465 3.581 4.128 3.792 0.811 ARDL (6, 6)
4 − 86.513 3.582 4.020 3.752 0.804 ARDL (6, 3)
26 − 90.783 3.592 3.884 3.705 0.790 ARDL (3, 2)
41 − 94.056 3.602 3.785 3.673 0.778 ARDL (1, 1)
34 − 93.569 3.621 3.840 3.705 0.778 ARDL (2, 1)
19 − 90.680 3.625 3.953 3.752 0.787 ARDL (4, 2)
27 − 93.562 3.657 3.912 3.756 0.773 ARDL (3, 1)
12 − 90.592 3.658 4.023 3.799 0.783 ARDL (5, 2)
42 − 97.098 3.676 3.822 3.733 0.757 ARDL (1, 0)
5 − 90.228 3.681 4.082 3.836 0.781 ARDL (6, 2)
20 − 93.506 3.691 3.983 3.804 0.769 ARDL (4, 1)
35 − 97.092 3.712 3.895 3.783 0.752 ARDL (2, 0)
13 − 93.463 3.726 4.054 3.853 0.764 ARDL (5, 1)
28 − 97.092 3.749 3.968 3.833 0.747 ARDL (3, 0)
6 − 93.242 3.754 4.119 3.895 0.761 ARDL (6, 1)
21 − 97.054 3.784 4.039 3.883 0.742 ARDL (4, 0)
14 − 97.053 3.820 4.112 3.933 0.737 ARDL (5, 0)
7 − 96.216 3.826 4.155 3.953 0.739 ARDL (6, 0)
39 − 87.099 3.422 3.677 3.521 0.821 ARDL (1, 3)
38 − 86.555 3.438 3.730 3.551 0.820 ARDL (1, 4)
32 − 87.018 3.455 3.747 3.568 0.817 ARDL (2, 3)
31 − 86.253 3.464 3.792 3.591 0.818 ARDL (2, 4)
37 − 86.522 3.474 3.802 3.601 0.817 ARDL (1, 5)
24 − 85.817 3.484 3.849 3.625 0.817 ARDL (3, 4)
25 − 86.999 3.491 3.819 3.618 0.813 ARDL (3, 3)
30 − 86.155 3.497 3.862 3.638 0.815 ARDL (2, 5)
23 − 85.410 3.506 3.907 3.661 0.816 ARDL (3, 5)
36 − 86.480 3.508 3.873 3.650 0.813 ARDL (1, 6)
17 − 85.710 3.517 3.918 3.672 0.814 ARDL (4, 4)
16 − 84.816 3.521 3.959 3.690 0.816 ARDL (4, 5)
15 − 83.961 3.526 4.000 3.709 0.817 ARDL (4, 6)
18 − 86.984 3.527 3.892 3.668 0.809 ARDL (4, 3)
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Y(t) � α + βY(t − 1) + c0X(t) + c1X(t − 1) + c2X(t − 2)

+ c3X(t − 3) + η1D1 + η2D2.

(4)

+e least square analysis was conducted on the data, and
the regression results obtained are shown in Table 5.

According to Table 5, the model can be represented as

Y(t) � 0.127Y(t − 1) − 1.105X(t) − 0.689X(t − 1) − 0.534X(t − 2) − 0.492X(t − 3) + 3.112D1 + 1.925D2 + 25.886,

R
2

� 0.849.
(5)

As shown in the regression results, the coefficient of the
first lag period of variable Y is 0.127, but this coefficient is not
significant, indicating that the DAOV of the previous day
will not have a significant impact on that of the day. +e
coefficients of snowfall X and its lags are − 1.105, − 0.689,
− 0.534, and − 0.492, respectively, which are all valid at the
significance level of 5%, indicating that snowfalls have a
significant negative impact on the DAOV, and the impact
lasts for about three days and decreases with time. +e
regression coefficients of dummy variables D1 and D2 are
3.112 and 1.925, respectively, and are both valid at the
significance level of 1%, indicating that the DAOV is sig-
nificantly higher than that on weekdays due to the weekend
effect. DAOVs on Saturday and Sunday are 3.112 and 1.925
more than on weekdays, respectively.+e intercept is 25.886,
indicating that when there is no snowfall, the DAOV is
25.886 on average. +e goodness of fit of the regression
equation is 0.849, indicating that the data was well inter-
preted by the model.

4. Discussion

To support the results more intuitively, this study selects one
of the snowy days (December 10, on which the snowfall was
3mm, classified as heavy snow) and carried out a visual
analysis on the taxi operation conditions of the day
before the snowfall (December 9), the day of the snowfall
(December 10), and the four days after the snowfall
(December 11–14).

From Figure 5, we can see that taxi demand follows a
stable daily pattern with three peaks, corresponding to
morning, noon, and evening peak, respectively. At the same
time, the demand getting served by hour on December 10
met a significant decline due to the snowfall starting at the
early morning. Note that there is a significant decline on
December 11 but not on December 12 and 13.+e reason for
this is that these two days are weekends, and as the model
result shows, there is a positive weekend effect on DAOV
during weekends, which offsets the negative effects of the
snowfall.

Due to the different nature of land use, the hot spots of
pick-up points (PUPs) and dropping-off points (DOPs) in a
city are distributed unevenly. At the same time, the heat of
both points in the same area in different days will also be
affected by weather. Figures 6 and 7, respectively, show the
thermal diagram of the PUPs and the DOPs of taxis in
Harbin within the 6 days.

As can be seen from Figures 6 and 7, the hot spots of taxi
demands are mainly distributed in residential districts of
Rongshi, Zhaolin, Nanzhi Road, Renli, Anjing, Aijian,
Xinchun, Xincheng, Anbu, Haping Road, Tongda, Hexing
Road, Xinhua, Hongqi, Haxi, Jianshe, Wenfu Road and
Heilongjiang Province University, Harbin Railway Station,
Harbin East Railway Station, Harbin West Railway Station,
and Taiping International Airport. And they are all affected
by the snowfall to varying degrees. Among the six days, the
most significant day is the day of snowfall (as shown in
Figures 6(b) and 7(b)), when snowfall happened in the
morning and might affect traffic throughout the day. As can
be seen from (c), (d), (e), and (f) in Figures 6 and 7, the taxi
operation was still continuously affected by the snowfall
within 1–3 days after the snowfall, especially within the 1-2
days after, and it gradually returned to the pre-snowfall level
by the 4th day after the snowfall.

In the hot spots of the PUPs, the most affected areas by
the snowfall are the residential districts of Zhaolin, Renli,
Anjing, Aijian, Xinchun, Xincheng, Anbu, Haping Road,
Tongda, Hexing Road, Xinhua, Hongqi, Wenfu Road, Haxi,
Jianshe, and so on. Among the hot areas at the DOPs, the
residential districts of Zhaolin, Renli, Anjing, Xinchun,
Tongda, Hexing Road, Wenfu Road, Haxi, and Jianshe are
the most vulnerable areas. +ese areas usually have tourist
attractions (such as Anjing Residential District, where
Sophia Cathedral is located) or business districts (such as
residential districts of Xinchun, Hesheng Road, and Haxi),
indicating that the snow mainly has a great impact on
residents’ entertainment or shopping behaviors. While some
residential areas, such as residential districts of Rongshi and
Nanzhi Road (which both had a population of more than
100,000), were not significantly affected by the snowfall,
indicating that snowfall had less effect on residents’ daily
commuting behaviors.

As snow reduces the accessibility of the road, the speed of
traffic flow will be significantly reduced, which results in
longer trip duration than that under normal weather con-
ditions. Figure 8 shows the connection between the PUPs
and the DOPs of all the taxi trips. Different colors represent
different trip duration levels.

As can be seen from Figure 8, compared with December
9 (Figure 8(a)), the trip duration in December 10 and the
following two days (Figures 8(b)–8(d)) has increased sig-
nificantly, especially for those airport-to-city intervals, be-
cause the airport is far away from the city (33 km), and only
one expressway connects the two areas. On December 13

Journal of Advanced Transportation 7



Table 5: Regression results.

Variable Coefficient Std. error t-statistic Prob.∗

Y(t − 1) 0.127 0.114 1.120 0.268
X − 1.105 0.160 − 6.895 0.000
X(t − 1) − 0.689 0.213 − 3.236 0.002
X(t − 2) − 0.534 0.201 − 2.651 0.011
X(t − 3) − 0.492 0.196 − 2.513 0.015
D1 3.112 0.500 6.223 0.000
D2 1.925 0.580 3.318 0.002
C 25.886 3.400 7.614 0.000
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and 14 (Figures 8(e) and 8(f)), the duration time gradually
returned to the level before the snowfall, implying that the
snowfall had a significant effect on travel efficiency.

Interval distribution of trip duration reflects taxi trip
duration distribution. From Figure 9, we can see that trips
within 10 minutes have higher proportions during snowy
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Figure 8: OD distributions with different trip duration levels during the 6 days. (a) December 9, (b) December 10, (c) December 11,
(d) December 12, (e) December 13, and (f) December 14.
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days. It can be inferred that during snowy days people would
be more likely to take taxis for short distance trips while
choosing other transportation modes for middle- or long-
distance trips or they even just give up such trips. +e reason

for this may be that in snowy days the traffic flow speed
decreases due to the poor road conditions, which accounts
for higher fare, and it is uneconomical to take a taxi to travel
far-away.
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Different regions in the city are affected by population,
geography, economy, land use, and other factors. +e taxi
travel intensity within and between regions is different and
may be affected by snowfall. In order to reflect the OD flow
of taxis within and between the districts, a chord diagram
was proposed in this study using a circular visualization
package, which was well adopted in the study [52].

It can be seen from Figure 10 that Nangang District and
XiangfangDistrict have the highest taxi order intensity among
the 6 districts, and the closest travel contact happens between
Nangang District and Xiangfang District and between Daoli
District and Nangang District. As the residence of Hei-
longjiang provincial government and more than 20 univer-
sities, Nangang District has active economic activities, dense
population, and large traffic demand. During the snowy days,
the proportion of taxi demands in Nangang met an increase,
and the same thing happened to the inner Nangang District.
At the same time, as the location of the only airport in Harbin,
Daoli District has strong relationships with the other districts.
However, the relationships weakened in the snowy days. +is
can be interpreted that the snowfall accounted for the flight
delay or even cancellation, and many passengers cancelled
their taxi trips to the airport. +is situation returned to
normal within the third day after the snowfall.

5. Conclusions

+is paper aims to study the lag effect of snowfall on taxi
operation through taxi GPS data. First, the paper sampled
and cleaned the taxi trajectory data of Harbin for 61 con-
secutive days, so as to extract all the pick-up points and
drop-off points as well as the duration time of each trip from
the daily trajectory sample data. +en, combined with the 61
days snowfall data, an ARDL model was built to explain the
lag effect. Taxi daily average order volume (DAOV), which is
assumed to be directly proportional to taxi drivers’ benefits,
is constructed as explained variable in the model. In order to
better understand and demonstrate the results of the model,
some visualizationmethods are applied to the six days before
and after a snowfall. From the results of the model and
visualization, the following conclusions can be drawn:

(1) Snow has a significant impact on the benefits of taxi
networks and has a significant lag effect with a lag
period of 3 days. From the fourth day after the
snowfall, the impact of snowfall on taxi benefits was
basically eliminated.

(2) +e snowfall has a negative impact on taxi benefits in
various hot areas of the city, but the impact is dif-
ferent. +e impact of snowfall is greater in the areas
with business concentration and less in the areas
with residential communities. +is shows that
snowfall has a greater impact on the travel demand
for shopping and entertainment.

(3) +e DAOV on weekends is significantly higher than
that on weekdays; that is, the demand for taxis on
weekends is more vigorous, and taxi drivers are
expected to have higher benefits on weekends.

(4) Since snowfall will reduce the speed of traffic flow,
travel time will increase significantly. Especially for
those long-distance trips, the travel efficiency is
further reduced.

(5) Snowfalls not only affect the trip demand in different
districts to different extents, but they also affect the
interaction between different districts.

(6) Although some studies have considered the autor-
egression phenomenon in traffic parameters, in the
study of this paper, the autoregression phenomenon
of DAOV is not significant; that is, the DAOV of that
day is relatively independent from that of the pre-
vious days.

+e above conclusions are of great significance, and we
give some policy suggestions from three perspectives:

For taxi drivers, they can adjust their operation schedules
according to the hot spot distribution and weekend effect, so
as to increase the efficiency of finding passengers and in-
crease their benefits. For example, it is advised to relocate
their taxis to residential areas after the snowfall since the
shopping- and entertainment-related trips decrease. And
they are advised to find potential passengers in districts like
Nangang, Daoli, and Xiangfang.

For municipal departments, knowing the impact
mechanism of snow on taxis, they can adjust their work plan
of snow clearing and deicing to minimize the impact of snow
on urban traffic. Although the snow clearing work of Harbin
municipal department is very timely and efficient, some
minor road segments are usually given low priority in the
snow clearing schedule. Since these road segments also bear
a lot of traffic volume, the snow and ice clearing work of
these segments should not be neglected in the 3 days after
snowfalls.

For transportation management departments, the results
of the study can provide suggestions for developing flexible
traffic scheduling schemes to facilitate the daily travel of
citizens after snowfalls. Temporary bus routes should be
planned to serve the long-distance trips. It is also worth
paying attention to ensuring the timely operation of routine
buses.

All kinds of urban public transport interrelate and in-
teract with each other, and the traffic demand will transfer
among them. To understand the impact of snowfalls on taxi
operation and the overall transportation system from a
broader perspective, data on other modes of public trans-
port, such as buses and metros, may be obtained for further
study in the future.
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