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To solve the increasingly serious traffic congestion and reduce traffic pressure, the bidirectional long and short-term memory
(BiLSTM) algorithm is adopted to the traffic flow prediction. Firstly, a BiLSTM-based urban road short-term traffic state algorithm
network is established based on the collected road traffic flow data, and then the internal memory unit structure of the network is
optimized. After training and optimization, it becomes a high-quality prediction model. /en, the experimental simulation
verification and prediction performance evaluation are performed. Finally, the data predicted by the BiLSTM algorithmmodel are
compared with the actual data and the data predicted by the long short-term memory (LSTM) algorithm model. Simulation
comparison shows that the prediction results of LSTM and BiLSTM are consistent with the actual traffic flow trend, but the data of
LSTM deviate greatly from the real situation, and the error is more serious during peak periods. BiLSTM is in good agreement
with the real situation during the stationary period and the low peak period, and it is slightly different from the real situation
during the peak period, but it can still be used as a reference. In general, the prediction accuracy of the BiLSTM algorithm for
traffic flow is relatively high./e comparison of evaluation indicators shows that the coefficient of determination value of BiLSTM
is 0.795746 greater than that of LSTM (0.778742), indicating that BiLSTM shows a higher degree of fitting than the LSTM
algorithm, that is, the prediction of BiLSTM is more accurate. /e mean absolute percentage error (MAPE) value of BiLSTM is
9.718624%, which is less than 9.722147% of LSTM, indicating that the trend predicted by the BiLSTM is more consistent with the
actual trend than that of LSTM. /e mean absolute error (MAE) value of BiLSTM (105.087415) is smaller than that of LSTM
(106.156847), indicating that its actual prediction error is smaller than LSTM. Generally speaking, BiLSTM shows advantages in
traffic flow prediction over LSTM. Results of this study play a reliable reference role in the dynamic control, monitoring, and
guidance of urban traffic, and congestion management.

1. Introduction

With the continuous development of society, the process of
urbanization is also accelerating and the traffic congestion is
getting more and more serious. According to the data re-
leased by the Traffic Management Bureau of the Ministry of
Public Security, the number of motor vehicles has reached
390 million as of the end of September 2021, of which 297
million are cars; and there are 476 million motor vehicle
drivers nationwide, of which 439 million are car drivers. In
the first quarter alone, the number of newly registered motor
vehicles nationwide reached 27.53 million, a year-on-year
increase of 4.363 million, and a growth rate of 18.83% [1].
Nowadays, it is urgent to tackle the urban traffic congestion.

With the advent of the era of big data and the rise of the
“Internet +” boom, smart transportation engineering has
gradually been developed [2]. Smart transportation engi-
neering integrates vehicle networking technology, artificial
intelligence (AI) technology, automatic control technology,
computer technology, information and communication
technology, and electronic sensor technology to build a
unified cross-regional transportation information resource
sharing platform and comprehensively manage information
resources in the transportation field, realizing intelligent
management of road operations. It is a real-time, accurate,
and efficient comprehensive transportation management
system that is applied to the entire ground transportation
management system and established for a large-scale, all-
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round function. By constructing a short-term traffic state
prediction mechanism for urban roads, it can grasp the
traffic conditions of traffic roads in a period of time in the
future, use the prediction results for traffic guidance,
improve the utilization rate of urban road resources, and
alleviate the traffic pressure on the urban-congested
sections [3].

In the traditional traffic flow prediction method, some
scholars consider multiple factors that affect the flow, so they
use multiple linear regression to predict the traffic flow, but
the real-time performance is low. Kumar and Vanajakshi
(2015) considered the periodicity of traffic flow, fitted a
model for real-time data statistical processing, and applied
the seasonal autoregressive integrated moving average
(ARIMA) model to short-term traffic flow prediction.
However, the nonlinear and uncertain fitting of traffic flow is
poor, and it is not suitable for short-term traffic flow pre-
diction [4]. Huang et al. (2014) proposed a deep belief
network to extract traffic flow features and a top-level
multitask regression two-layer deep learning model [5].
Zhang et al. (2020) adopted the fast graph convolution
recurrent neural network (FastGCRNN) to model the
spatiotemporal dependence of traffic flow [6]. Xia et al.
(2021) developed a distributed modeling framework for
traffic flow prediction on MapReduce under the Hadoop
distributed computing platform, which solved the storage
and computing problems existing in the single-machine
learning model processing large-scale traffic flow data [7].
/ese deep learning models only consider one-way traffic
flow data for prediction, ignoring the change law of traffic
flow data after the prediction time point. With increasing
emphasis on the application of traffic big data and the
creation of smart transportation cities, the bidirectional long
short-term memory (BiLSTM) algorithm is applied to the
traffic flow prediction. /e innovation of the research is to
model the traffic flow data through the BiLSTM model and
to analyze the influence of the time series change rules of the
front and rear traffic flow on the short-term prediction.
Firstly, a BiLSTM-based urban road short-term traffic state
algorithm network is established based on the collected road
traffic flow data, and then the internal memory unit structure
of the network is optimized. After training and optimization,
it becomes a high-quality prediction model. /en, the ex-
perimental simulation verification and prediction perfor-
mance evaluation are performed. Results of this study play a
reliable reference role in the dynamic control, monitoring,
and guidance of urban traffic, and congestion management.

2. Materials and Methods

2.1. Standard LSTMAlgorithm. Among various deep neural
networks, recurrent neural network (RNN) is widely used in
the prediction of time series, but long-term series data have
caused gradient explosion and gradient disappearance [8].
/erefore, Hochreitre and Schmidhuber proposed long
short-term memory (LSTM) in 1997. LSTM is an improved
RNN that has the function of long-term memory infor-
mation and solves the problem of RNN gradient disap-
pearance. Its structure includes a module chain structure,

but it only changes the hidden layer module structure [9]. A
memory block is added to the hidden layer of LSTM to
realize its memory function./ememory block is composed
of a set of iteratively connected subnets. Each subnet has one
or more storage units, which are connected to each other.
/e memory block contains three multiplication units
consisting of gates: input gates, output gates, and forget
gates. All three gates have a nonlinear summation function,
which contains two activation functions to control the
amount of data transfer [10]. /e internal structure diagram
of the storage unit is shown in Figure 1.

In Figure 1, the three modules were used as three storage
units in the memory block, which were connected to each
other, and each of them contains three multiplication units
composed of gates: an input gate, output gate, and forget gate.
X is the input, h is the weight of the neuron, tanh is the
activation function, and σ is the sigmoid activation function.
On the basis of this kind of chain, LSTM improves the interior
of the module, using 3 sigmoid neural network layers and a
gate composed of point-by-point multiplication to strengthen
the control ability of information [11]. /e tanh activation
function mainly processes data for state and output functions
[12]. it indicates the input gate, ft represents the forget gate, Ct
indicates internal memory, ot represents the output gate, and
ht represents the output of the LSTM unit at time t. /e input
gate controls the input of the output information of the upper
unit to the unit information of this layer and retains the
previous information of the sequence. /e calculation
equation for each threshold layer is given as follows:

ft � σ Wf · ht−1, xt􏼂 􏼃 + bf􏼐 􏼑, (1)

it � σ Wi · ht−1, xt􏼂 􏼃 + bi( 􏼁, (2)

ot � σ Wo · ht−1, xt􏼂 􏼃 + bo( 􏼁, (3)

where W is the weight of the threshold layer and b is the
offset of the threshold layer. After each threshold layer is
updated, the internal memory Ct is updated with the fol-
lowing equation:

Ct � ft ∗Ct−1 + it ∗ tanh WC · ht−1, xt􏼂 􏼃 + bC( 􏼁, (4)

where “Wc” and “bc” are the weights and offsets, respectively.
/e neural network output weight ht of the internal memory
is controlled by the output gate, and the activated unit state is
output to the next layer of neural network and chain unit,
which is specialized as shown in the following equation:

ht � ot ∗ tanh Ct( 􏼁, (5)

where σ is the sigmoid activation function. /e sigmoid
activation function takes the memory state of the network as
the output value. When traffic flow data are input to the
sigmoid activation function, the sigmoid activation function
will compress it to [0, 1]: 0 means no amount is allowed to
pass and 1 means any amount can pass. If the output value is
within the specified range, the output value is matrix
multiplied with the calculation result of the current layer,
and then the result is input into the lower layer to map the
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real number domain to the range of [0,1]./e function value
represents the probability of belonging to the positive class
[13–15]. Its expression is shown in the following equation:

f(z) �
1

1 + e
−z. (6)

/e tanh activation function is different from the sig-
moid activation function. It can map the real number do-
main to the range of [−1,1].When the input is 0, the output is
also 0. /e expression is shown as follows:

f(x)tanh �
e

x
− e

−x

e
x

+ e
−x. (7)

In the neural network training stage, LSTM learns the
weights and offsets of each threshold layer from the past
information. In the real-time prediction stage, the trained
model is used to calculate the input data to obtain the
predicted value of the time series, thereby improving the
efficiency of mining past information and shortening the
training time [16].

BiLSTM is an improved version of LSTM, composed of
forward standard LSTM and reverse standard LSTM. By
adding a layer of reverse LSTM to the LSTM structure, the
effect of extracting global data features is achieved [17].
BiLSTM uses the memory unit of the standard LSTM to
calculate the input data in order and in reverse order to
obtain two different hidden layer features. Although it is
carried out simultaneously, the structures in the two di-
rections do not share the hidden state. /e hidden state data
of the forward LSTM are transmitted to the forward LSTM,
the hidden state data of the reverse LSTM are transmitted to

the reverse LSTM, and there is no connection between the
two directions. Finally, the two hidden layer features are
linearly fused, and the final hidden layer feature result is
obtained. In BiLSTM, the output value at each moment is
jointly determined by the LSTM in the two directions.
/erefore, the obtained model takes into account the pa-
rameter factors of the past and future directions, and the
accuracy of the algorithm’s prediction has been greatly
improved [18–20]. Its specific structure is shown in Figure 2.

/e BiLSTM structure is divided into two parts: one part
is the forward standard LSTM, which is calculated in the
forward direction over time and outputs h. /e other part is
the reverse standard LSTM, which performs reverse oper-
ation over time. /e essence of the reverse operation is to
reverse the input traffic flow data, then output to the reverse
LSTM, and finally output H. After the forward and reverse
output results are fused, the final output result [21] is ob-
tained. In this process, the state of the hidden layer at time t
in the forward LSTM calculation is related to the state at time
t− 1 and the state of the hidden layer at time t in the reverse
LSTM calculation is related to the state at time t+ 1. /e
training is realized using a loss function [22]. /e specific
BiLSTM derivation principle is shown in Figure 3.

In BiLSTM, the calculation equations for the thresholds
of the forward standard LSTM are consistent with those for
the thresholds of the standard LSTM, and the calculation
equations for the thresholds of the reverse standard LSTM
are shown as follows:

it � σ Wi · Ht+1, Xt􏼂 􏼃 + bi( 􏼁,

ft � σ Wf · Ht+1, Xt􏼂 􏼃 + bf􏼐 􏼑,

ot � σ Wo · Ht−1, xt􏼂 􏼃 + bo( 􏼁,

Ct � ft ∗Ct+1 + it ∗ tanh WC · Ht+1, xt􏼂 􏼃 + bC( 􏼁.

(8)

/e output results of the bidirectional LSTM are linearly
fused, and the fusion equation is shown as follows:

Yt � g Uht + b( 􏼁

� g U ht; Ht􏼂 􏼃 + b( 􏼁.
(9)

/e forward direction extracts past information features
from time 1 to t, and the reverse direction extracts future
information features from time t to 1./e combined training
of forward and reverse will reconsider the factors considered
or discarded. /erefore, BiLSTM is more comprehensive
than LSTM training and the prediction will be more accurate
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Figure 1: /e internal structure of LSTM.
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Figure 2: Structure of BiLSTM.
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[23, 24]. /e final calculation results are obtained through
training in BiLSTM, and the calculation steps are as follows.

Step 1. Defining the initial value. When t� 1 is set, the
weight derivative value is calculated as shown in the fol-
lowing equations:

εt
C �

zl

zI
t
j

, (10)

εt
C �

zl

zS
t
C

, (11)

where l represents the loss function used for training, St
C

means that neuron C is at time t, and It
j represents the data

value input to neuron j at time t.

Step 2. Calculating the weight of the output gate. Since the
output gate does not involve the time dimension, the weight
of the output gate is shown in equation (12). In the equation,
“Ot

o” represents the data value output from the output gate at
time t and h represents the output activation function of the
internal memory c:

Wo � Wo − ηf′ O
t
o􏼐 􏼑 􏽘

C

c�1
h S

t
C􏼐 􏼑εt

C. (12)

Step 3. Calculating the weight of the forget gate. /e weight
of the forget gate is shown in the following equation:

Wf � Wf − ηf′ F
t
f􏼐 􏼑 􏽘

C

c�1
S

t
Cε

t
S, (13)

where “Ft
f” represents the output data value of the forget

gate at time t and “εt
S” represents the state of the output gate

at time t.

Step 4. Calculating the weight of the input gate. /e weight
of the input gate is shown in the following equation:

Wi � Wi − ηf′ F
t
i􏼐 􏼑 􏽘

C

c�1
g I

t
C􏼐 􏼑εt

S, (14)
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Figure 3: Specific derivation principle of BiLSTM.
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where “Ft
i” represents the output data value of the input gate

at time t and “It
C” represents the state of the unit at time t.

It has to calculate the weight of LSTM twice in the cal-
culation process, and finally, 8 parameter values are obtained.

2.2. Count Affects. /e data set is divided into a training set
and a prediction set, which is allocated according to the ratio
of 8:2 between the training set and the prediction set. By
learning the training set, the algorithm finds the most
suitable weights and confirms the values of related factors.
/e specific LSTM algorithm and BiLSTM algorithm exe-
cution flow are shown in Figures 4 and 5, respectively.

As shown in Figure 5, the standard LSTM algorithm can
only perform single-item training of data, which means that
it can perform feature extraction on existing data, but cannot
perform data prediction. /e use of BiLSTM for two-way
training can process both past data and future data, so that
the overall accuracy of the model will be higher [25]. In
BiLSTM, the most important step is to train the data. /e
main purpose of training is to find suitable weights and
related factor values through the training set [26].

Features with larger data levels have a greater impact
on predictions, and it will cause the algorithm to converge
slowly, so the data need to be preprocessed. If the degree
of fitting in the linear form is too low (i.e., underfitting), it
will not be fully suitable for the training set; if the degree
of fitting is overfitted in the high power form, it will affect
the prediction results although it is very suitable as a
training set. /erefore, when the fitting is not suitable,
some unimportant features can be directly discarded or
normalization can be performed to reduce the number of
parameters [27]. Firstly, the data are cleaned and filtered
to find and correct the wrong and invalid values in the
data. In this data processing, vehicles in multiple direc-
tions are firstly screened, in which vehicles in one di-
rection are screened out and the vehicles in the other
directions are discarded. /en, the traffic flows of multiple
lanes are summed as data for one direction. Next, the

traffic flow data is serialized and mapped to [0, 1]. /e
original data X � x1, x2, . . . , xn􏼈 􏼉 are conversed, and the
conversion function is shown in the following equation:

yi �
xi − min xj􏽮 􏽯

max xj􏽮 􏽯 − min xj􏽮 􏽯
, (1≤ j≤ n). (15)

In the above equation, max is the maximum value of
the data and min is the minimum value of the data.
/e new traffic sequence obtained by conversion is
Y � y1, y2, . . . , yn􏼈 􏼉. Finally, 80% of the data is selected as
the training set and 20% as the prediction set.

/is experiment is mainly divided into three steps as
follows: Step 1: the traffic flow data are preprocessed, filtered,
cleaned, and standardized to obtain the time series of traffic
flow data. Step 2: the training set is trained based on the
BiLSTM algorithm to get a suitable model. Step 3: about 20%
of the traffic flow data is adopted to make predictions. /e
specific steps are listed in Table 1.

In traffic flow data prediction, root mean square error
(RMSE), mean absolute error (MAE), mean absolute per-
centage error (MAPE), mean square error (MSE), and co-
efficient of determination R2 (R-square) are adopted to
evaluate the algorithm in order to reflect the degree of fitting
of the algorithm and the accuracy of prediction. /e MAPE
value reflects the degree of deviation between the predicted
result and the actual result. It is suitable for different al-
gorithms of the same set of data. /e smaller the MAPE
value, the smaller the degree of deviation, indicating the
better the prediction effect. MSE reflects a measure of the
degree of difference between the predicted result and the
actual result. Its value can reflect the degree of change and
the distribution of errors. /e smaller the MSE, the more
concentrated the error distribution and the better the pre-
diction effect. RMSE is used to evaluate the applicability of
prediction algorithms to actual data. MAE reflects the av-
erage value of the absolute value of the deviation between the
prediction result and the arithmetic average and can ac-
curately reflect the magnitude of the prediction error. R2

Table 1: Experimental procedure and experimental steps.

Experimental procedure Experimental steps
Input Traffic flow raw data, including time, direction, lanes, and numbers

Firstly, the traffic flow data are preprocessed

Step 1: the original traffic flow data is cleaned and filtered
Step 2: a direction is determined as the research data

Step 3: the traffic flows of all lanes in the selected direction are collected and
summarized

Step 4: the generated data set is outputted

Secondly, the training set is trained based on the
BiLSTM algorithm

Step 1: the BiLSTM algorithm is initialized
Step 2: the training data is inputted

Step 3: the data enter the forward LSTM and are processed
Step 4: the data enter the reverse LSTM and are processed

Step 5: linear fusion is performed for the forward processing result and the
reverse processing result

/irdly, 20% of traffic flow data is selected to make
predictions

Step 1: the forward and reverse BiLSTM algorithms are loaded
Step 2: the predicted result values are loaded

Step 3: the final result is obtained through linear fusion processing
Output Prediction results and prediction performance evaluation values
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reflects the degree of fitting between the predicted value and
the actual result. /e value range is [0, 1]. /e closer to 1, the
higher the degree of fitting, and the closer to 0, the lower the
degree of fitting. /ese evaluation indicators can evaluate
not only the forecast data and actual data but also the
suitability of the forecast algorithm. Comprehensive con-
sideration of trend graphs and evaluation indicators can
further reflect the applicability of the algorithm in the field of
traffic flow prediction. /eir expressions are shown in the
following equations:

MAE �
1
N

􏽘

N

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (16)

MAPE �
1
N

􏽘

N

i�1

yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

yi

, (17)

MSE �
1
N

􏽘

N

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

2
, (18)

RMSE �

��������������

1
N

􏽘

N

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

2

􏽶
􏽴

, (19)

R
2

� 1 −
􏽐i yi − 􏽢yi( 􏼁

2

􏽐i yi − yi( 􏼁
2. (20)

Here, y represents the actual traffic flow observed, 􏽢y

represents the corresponding time prediction value, y

represents the average value, i refers to the amount of change
in the traffic flow, and N represents the data volume of the
traffic flow prediction experiment.

3. Results and Discussion

3.1. Effect of BiLSTM. In this study, the traffic flowmeasured
by a vehicle detector at an intersection in Beilin District,
Xi’an is selected. /e duration lasts 10 days from November

0
200

400
600
800

1,000
1,200
1,400
1,600
1,800
2,000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

Tr
af

fic
 v

ol
um

e

Data number

Figure 6: Test results of actual traffic flow.

Table 2: Indicators for prediction performance of BiLSTM.

Item LSTM BiLSTM
MAE 106.156847 105.087415
MAPE 9.722147% 9.718624%
MSE 31354.984156 32846.946157
RMSE 176.184617 180.145275
R2 0.778742 0.795746
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Figure 7: Predicted results of LSTM.
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Figure 8: Predicted results of BiLSTM.
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Figure 9: Comparison on prediction results of BiLSTM and LSTM.
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1 to 10, 2021, and the traffic flow statistics interval is 2 hours.
A total of 120 sets of data are measured./e actual trend, the
BiLSTM result trend, and the LSTM trend predicted by the
construction training and prediction are shown in
Figures 6–8.

As illustrated in Figures 6 to 8, both the LSTM algorithm
and the BiLSTM algorithm could roughly predict the real
traffic flow data, but the fitting degree of the LSTM algorithm
at peak and low peaks was a little bit worse, and the cal-
culation results were more chaotic after simulation. /e
above three figures are fused, and it can show the difference
between the prediction result and the prediction result, as
shown in Figure 9.

In the figure, the abscissa is the data number and the
interval is 2 hours. A total of 120 sets of data are measured.
/e ordinate is the traffic flow on the road, and the interval is
500. /e figure reveals that the prediction results of LSTM
and BiLSTM are consistent with the actual traffic flow trend
overall, but the data of LSTM deviate greatly from the real
situation, and the error is more serious during peak periods.
BiLSTM is in good agreement with the real situation in the
stationary period and low peak period and is slightly dif-
ferent from the real situation in the peak period but still has a
better deviation than LSTM. In general, the prediction ac-
curacy of the BiLSTM algorithm for the traffic flow is higher
than that of the LSTM algorithm, which is in good agree-
ment with the real situation, so it is feasible in the actual
traffic flow prediction.

3.2. Algorithm Evaluation. /e MAE, MAPE, MSE, RMSE,
and R2 values of the prediction results were calculated, as
listed in Table 2.

As presented in Table 2, the R2 value of BiLSTM is larger
than that of LSTM, indicating that BiLSTM shows a higher
degree of fitting than LSTM algorithm, and BiLSTM predicts
more accurately and is more suitable for predicting traffic
flow than LSTM./eMAPE value of BiLSTM is smaller than
that of LSTM, indicating that the trend of BiLSTM’s pre-
diction results is more consistent than that of LSTM. /e
MAE value of BiLSTM is smaller than that of LSTM, in-
dicating that the actual prediction error of BiLSTM is smaller
than that of LSTM, and the deviation of each data compared
with the real data is smaller. /e MSE and RMSE values of
the BiLSTM algorithm are larger than those of the LSTM,
indicating that the LSTM is more concentrated and the effect
is better than the BiLSTM. Generally speaking, the BiLSTM
algorithm shows more advantages in traffic flow prediction
than the LSTM algorithm.

4. Conclusions

/is study mainly applies the traffic flow algorithm based on
the BiLSTM model. By predicting the traffic flow, the traffic
congestion can be managed and optimized. A BiLSTM-
based urban road short-term traffic state algorithm network
is established based on the collected traffic flow data, and
then its internal memory unit structure is optimized. In
addition, it is trained to be a high-quality prediction model,

and experimental simulation verification and predictive
performance evaluation are performed. Experiments show
that BiLSTM is in good agreement with the real situation in
the traffic stationary period and low peak period, and there is
a slight gap between the peak period and the real situation,
but it can still be used as a reference. In general, the pre-
diction accuracy of the BiLSTM algorithm for traffic flow is
relatively high, so it is feasible in actual traffic flow pre-
diction. Due to the limited capabilities, a slight flaw can be
found in the design of the fusion function of the BiLSTM
algorithm, which leads to a decrease in the accuracy of the
prediction result. In future, it will conduct in-depth ex-
ploration in this aspect to find a more suitable fusion
function to reduce the influence of human factors. All in all,
this study can play a certain reference role in the dynamic
control, monitoring, and guidance of urban traffic, and
congestion management.
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